"vscode:/vscode.git/clone" did not exist on "fb4cbdc277a0d345e0343b0f7bb63176aeb41cf9"
training.py 18.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Pretrain utilities"""

from datetime import datetime
import math

import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from apex.optimizers import FusedAdam as Adam

Mohammad's avatar
Mohammad committed
25
26
27
28
29
30
from megatron.global_vars import get_args
from megatron.global_vars import get_timers
from megatron.global_vars import get_tensorboard_writer
from megatron.global_vars import get_adlr_autoresume
from megatron.initialize import initialize_megatron

31
32
33
34
35
36
37
from megatron import mpu
from megatron.fp16 import FP16_Module
from megatron.fp16 import FP16_Optimizer
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import get_params_for_weight_decay_optimization
from megatron.utils import check_adlr_autoresume_termination
38
39
from megatron.checkpointing import load_checkpoint
from megatron import print_rank_0
40
from megatron.utils import report_memory
41
from megatron.checkpointing import save_checkpoint
42
43
44


def run(top_level_message, train_val_test_data_provider,
Mohammad's avatar
Mohammad committed
45
46
        model_provider, forward_step_func, extra_args_provider=None,
        args_defaults={}):
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
    """Main training program.

    This function will run the followings in the order provided:
        1) get input arguments.
        2) initialize distributed and seeds.
        3) call train_val_test_data_provider to get train/val/test datasets.
        4) setup model, optimizer and lr schedule using the model_provider.
        5) train the modle using the forward_step_func.

    Arguments:
        top_level_message: a meesage to print at the top of the run.
        train_val_test_data_provider: a function that takes `args` as input
            and returns `train, val, test` dataloaders. Note that args are
            passed and can be modified in case we need to use some parameters
            later. For example, we can set vocab size using
                args.vocab_size = ...
            and later use this value in `model_provider`.
        model_provider: a function that takes `args` and returns a vanilla
            version of the model. By vanilla we mean a simple model on cpu
            with no fp16 or ddp.
        forward_step_func: a function that takes a `data iterator`, `model`,
            `args`, and `timers` and returns a `loss` scalar with a dictionary
            with key:values being the info we would like to monitor during
            training, for example `lm-loss: value`. We also require that this
            function add `batch generator` to the timers class.
    """

74
    # Initalize and get arguments, timers, and Tensorboard writer.
Mohammad's avatar
Mohammad committed
75
76
77
78
79
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

    # Data stuff.
    train_data, val_data, test_data = train_val_test_data_provider(args)

    # Model, optimizer, and learning rate.
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider,
                                                               args)

    # Train, validation, and test data.
    train_data_iterator, val_data_iterator, \
        test_data_iterator = get_train_val_test_data_iterators(train_data,
                                                               val_data,
                                                               test_data,
                                                               args)

    iteration = 0
    if args.train_iters > 0:
        if args.do_train:
            iteration, _ = train(forward_step_func, model,
                                 optimizer, lr_scheduler,
                                 train_data_iterator, val_data_iterator,
                                 timers, args, writer)

    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   val_data_iterator, model,
                                   args, writer, iteration,
                                   timers, False)

    if args.save and iteration != 0:
111
        save_checkpoint(iteration, model, optimizer, lr_scheduler)
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
                                   args, None, 0, timers, True)


def get_model(model_provider_func, args):
    """Build the model."""

    # Build model on cpu.
    model = model_provider_func(args)

    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
        print(' > number of parameters on model parallel rank {}: {}'.format(
            mpu.get_model_parallel_rank(),
            sum([p.nelement() for p in model.parameters()])), flush=True)

    # GPU allocation.
    model.cuda(torch.cuda.current_device())

    # Fp16 conversion.
    if args.fp16:
        model = FP16_Module(model)

    # Wrap model for distributed training."""
    if args.DDP_impl == 'torch':
        i = torch.cuda.current_device()
        args.DDP_type = torchDDP
        model = args.DDP_type(model, device_ids=[i], output_device=i,
                              process_group=mpu.get_data_parallel_group())
        return model
    if args.DDP_impl == 'local':
        args.DDP_type = LocalDDP
        model = args.DDP_type(model)
        return model

    print_rank_0('Unknown DDP implementation specified: {}. '
                 'Exiting.'.format(args.DDP_impl))
    exit()
    return model


def get_optimizer(model, args):
    """Set up the optimizer."""

    # Build parameter groups (weight decay and non-decay).
    while isinstance(model, (args.DDP_type, FP16_Module)):
        model = model.module
    param_groups = get_params_for_weight_decay_optimization(model)

    # Add model parallel attribute if it is not set.
    for param_group in param_groups:
        for param in param_group['params']:
            if not hasattr(param, 'model_parallel'):
                param.model_parallel = False

    # Use Adam.
    optimizer = Adam(param_groups,
                     lr=args.lr, weight_decay=args.weight_decay)

    # Wrap into fp16 optimizer.
    if args.fp16:
        optimizer = FP16_Optimizer(optimizer,
                                   static_loss_scale=args.loss_scale,
                                   dynamic_loss_scale=args.dynamic_loss_scale,
                                   dynamic_loss_args={
                                       'scale_window': args.loss_scale_window,
                                       'min_scale':args.min_scale,
                                       'delayed_shift': args.hysteresis})

    return optimizer


def get_learning_rate_scheduler(optimizer, args):
    """Build the learning rate scheduler."""

    # Add linear learning rate scheduler.
    if args.lr_decay_iters is not None:
        num_iters = args.lr_decay_iters
    else:
        num_iters = args.train_iters
    num_iters = max(1, num_iters)
    init_step = -1
    warmup_iter = args.warmup * num_iters
    lr_scheduler = AnnealingLR(
        optimizer,
        start_lr=args.lr,
        warmup_iter=warmup_iter,
        num_iters=num_iters,
        decay_style=args.lr_decay_style,
        last_iter=init_step,
        min_lr=args.min_lr,
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


def setup_model_and_optimizer(model_provider_func, args):
    """Setup model and optimizer."""

    model = get_model(model_provider_func, args)
    optimizer = get_optimizer(model, args)
    lr_scheduler = get_learning_rate_scheduler(optimizer, args)

    if args.load is not None:
222
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
    else:
        args.iteration = 0

    return model, optimizer, lr_scheduler


def backward_step(optimizer, model, loss, args, timers):
    """Backward step."""

    # Backward pass.
    optimizer.zero_grad()
    if args.fp16:
        optimizer.backward(loss, update_master_grads=False)
    else:
        loss.backward()

    # All-reduce if needed.
    if args.DDP_impl == 'local':
        timers('allreduce').start()
        model.allreduce_params(reduce_after=False,
                               fp32_allreduce=args.fp32_allreduce)
        timers('allreduce').stop()

    # Update master gradients.
    if args.fp16:
        optimizer.update_master_grads()

    # Clipping gradients helps prevent the exploding gradient.
    if args.clip_grad > 0:
        if not args.fp16:
            mpu.clip_grad_norm(model.parameters(), args.clip_grad)
        else:
            optimizer.clip_master_grads(args.clip_grad)


def train_step(forward_step_func, data_iterator, model, optimizer, lr_scheduler,
               args, timers):
    """Single training step."""

    # Forward model for one step.
    timers('forward').start()
    loss, loss_reduced = forward_step_func(data_iterator, model, args, timers)
    timers('forward').stop()

    # Calculate gradients, reduce across processes, and clip.
    timers('backward').start()
    backward_step(optimizer, model, loss, args, timers)
    timers('backward').stop()

    # Update parameters.
    timers('optimizer').start()
    optimizer.step()
    timers('optimizer').stop()

    # Update learning rate.
    skipped_iter = 0
    if not (args.fp16 and optimizer.overflow):
        lr_scheduler.step()
    else:
        skipped_iter = 1

    return loss_reduced, skipped_iter


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
                 loss_scale, report_memory_flag, writer, args, timers):

    # Update losses.
    for key in loss_dict:
        total_loss_dict[key] = total_loss_dict.get(key, 0.) + loss_dict[key]

    # Logging.
    timers_to_log = []
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
    add_to_logging('forward')
    add_to_logging('backward')
    add_to_logging('allreduce')
    add_to_logging('optimizer')
    add_to_logging('batch generator')

    # Tensorboard values.
    if writer and torch.distributed.get_rank() == 0:
        writer.add_scalar('learning_rate', learning_rate, iteration)
        for key in loss_dict:
            writer.add_scalar(key, loss_dict[key], iteration)
        if args.fp16:
            writer.add_scalar('loss_scale', loss_scale, iteration)
        normalizer = iteration % args.log_interval
        if normalizer == 0:
            normalizer = args.log_interval
        timers.write(timers_to_log, writer, iteration,
                     normalizer=normalizer)

    if iteration % args.log_interval == 0:
        elapsed_time = timers('interval time').elapsed()
        if writer and torch.distributed.get_rank() == 0:
            writer.add_scalar('iteration_time',
                              elapsed_time / args.log_interval, iteration)
        log_string = ' iteration {:8d}/{:8d} |'.format(iteration,
                                                       args.train_iters)
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
            elapsed_time * 1000.0 / args.log_interval)
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
        for key in total_loss_dict:
            avg = total_loss_dict[key].item() / args.log_interval
            log_string += ' {}: {:.6E} |'.format(key, avg)
            total_loss_dict[key] = 0.0
        if args.fp16:
            log_string += ' loss scale: {:.1f} |'.format(loss_scale)
        print_rank_0(log_string)
        if report_memory_flag:
            report_memory('after {} iterations'.format(iteration))
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
def train(forward_step_func, model, optimizer, lr_scheduler,
          train_data_iterator, val_data_iterator, timers, args, writer):
    """Train the model function."""

    # Turn on training mode which enables dropout.
    model.train()

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration
    skipped_iters = 0

    timers('interval time').start()
    report_memory_flag = True
    while iteration < args.train_iters:
        loss_dict, skipped_iter = train_step(forward_step_func,
                                             train_data_iterator,
                                             model,
                                             optimizer,
                                             lr_scheduler,
                                             args, timers)
        skipped_iters += skipped_iter
        iteration += 1

        # Logging.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
370
371
372
373
374
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
                                          iteration, optimizer.loss_scale,
                                          report_memory_flag, writer, args,
                                          timers)
375
376
377
378
379

        # Autoresume
        if (iteration % args.adlr_autoresume_interval == 0) and \
           args.adlr_autoresume:
            check_adlr_autoresume_termination(iteration, model, optimizer,
380
                                              lr_scheduler)
381
382
383
384

        # Checkpointing
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
385
            save_checkpoint(iteration, model, optimizer, lr_scheduler)
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
                                       val_data_iterator, model, args,
                                       writer, iteration, timers, False)

        if args.exit_interval and iteration % args.exit_interval == 0:
            torch.distributed.barrier()
            time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
            rank = torch.distributed.get_rank()
            print('rank: {} | time: {} | exiting the program at iteration {}'.
                  format(rank, time_str, iteration), flush=True)
            exit()

    return iteration, skipped_iters


def evaluate(forward_step_func, data_iterator, model,
             args, timers, verbose=False):
    """Evaluation."""

    # Turn on evaluation mode which disables dropout.
    model.eval()

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
            # Forward evaluation.
            _, loss_dict = forward_step_func(data_iterator, model,
                                             args, timers)
            # Reduce across processes.
            for key in loss_dict:
                total_loss_dict[key] = total_loss_dict.get(key, 0.) + \
                                       loss_dict[key]
    # Move model back to the train mode.
    model.train()

    for key in total_loss_dict:
        total_loss_dict[key] /= args.eval_iters

    return total_loss_dict


def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
                               args, writer, iteration,
                               timers, verbose=False):
    """Helper function to evaluate and dump results on screen."""
    total_loss_dict = evaluate(forward_step_func, data_iterator, model,
                               args, timers, verbose)
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
        if writer and torch.distributed.get_rank() == 0:
            writer.add_scalar('{} value'.format(key),
                              total_loss_dict[key].item(),
                              iteration)
            writer.add_scalar('{} ppl'.format(key), ppl, iteration)

    length = len(string) + 1
    print_rank_0('-' * length)
    print_rank_0(string)
    print_rank_0('-' * length)


def get_train_val_test_data_iterators(train_data, val_data, test_data, args):
    """Build train/validation/test iterators"""

Mohammad's avatar
Mohammad committed
465
466
467
468
469
470
471
472
473
474
475
476
477
    # Shift the start iterations.
    if train_data is not None:
        train_data.batch_sampler.start_iter = args.iteration % \
                                              len(train_data)
        print_rank_0('setting training data start iteration to {}'.
                     format(train_data.batch_sampler.start_iter))
    if val_data is not None:
        start_iter_val = (args.iteration // args.eval_interval) * \
                         args.eval_iters
        val_data.batch_sampler.start_iter = start_iter_val % \
                                            len(val_data)
        print_rank_0('setting validation data start iteration to {}'.
                     format(val_data.batch_sampler.start_iter))
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

    if train_data is not None:
        train_data_iterator = iter(train_data)
    else:
        train_data_iterator = None

    if val_data is not None:
        val_data_iterator = iter(val_data)
    else:
        val_data_iterator = None

    if test_data is not None:
        test_data_iterator = iter(test_data)
    else:
        test_data_iterator = None

    return train_data_iterator, val_data_iterator, test_data_iterator