training.py 41 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()

25
26
27
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

Neel Kant's avatar
Neel Kant committed
28
from megatron import get_args
Mohammad's avatar
Mohammad committed
29
30
from megatron import get_timers
from megatron import get_tensorboard_writer
31
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
32
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
33
from megatron import is_last_rank
mohammad's avatar
mohammad committed
34
from megatron import update_num_microbatches
35
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
36
from megatron import print_rank_0
37
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
38
39
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
40
from megatron.model import FP16Module
mohammad's avatar
mohammad committed
41
from megatron.optimizer import get_megatron_optimizer
mohammad's avatar
mohammad committed
42

Mohammad's avatar
Mohammad committed
43
from megatron.initialize import initialize_megatron
44
from megatron.initialize import write_args_to_tensorboard
45
46
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
Neel Kant's avatar
Neel Kant committed
47
from megatron.model.realm_model import ICTBertModel
48
from megatron.utils import check_adlr_autoresume_termination
49
from megatron.data.data_loaders import build_pretraining_data_loader
50
from megatron.utils import report_memory
51
52


53
54
55
56
57
58
59
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


60
def pretrain(train_valid_test_dataset_provider, model_provider,
61
             forward_step_func, extra_args_provider=None, args_defaults={}):
62
63
64
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
65
66
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
67
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
68
        4) train the modle using the forward_step_func.
69
70

    Arguments:
71
72
73
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
74
75
76
77
78
79
80
81
82
83
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
84
85
    """

86
    # Initalize and get arguments, timers, and Tensorboard writer.
87
88
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
89

90
91
92
93
94
95
96
97
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
    start_time_tensor = torch.cuda.FloatTensor([_TRAIN_START_TIME])
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
98
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
99
100
101
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

102
    args = get_args()
Mohammad's avatar
Mohammad committed
103
    timers = get_timers()
104
105

    # Model, optimizer, and learning rate.
Mohammad's avatar
Mohammad committed
106
107
108
    timers('model and optimizer').start()
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider)
    timers('model and optimizer').stop()
109
110
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
111
112

    # Data stuff.
113
114
115
116
117
    timers('train/valid/test data iterators').start()
    train_data_iterator, valid_data_iterator, test_data_iterator \
        = build_train_valid_test_data_iterators(
            train_valid_test_dataset_provider)
    timers('train/valid/test data iterators').stop()
mshoeybi's avatar
mshoeybi committed
118
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
119
120
121

    # Print setup timing.
    print_rank_0('done with setups ...')
122
    timers.log(['model and optimizer', 'train/valid/test data iterators'])
Mohammad's avatar
Mohammad committed
123
    print_rank_0('training ...')
124
125

    iteration = 0
126
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
127
128
129
        iteration = train(forward_step_func,
                          model, optimizer, lr_scheduler,
                          train_data_iterator, valid_data_iterator)
130
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
131

132
133
134
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
135
                                   valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
136
                                   iteration, False)
137
138

    if args.save and iteration != 0:
139
        save_checkpoint(iteration, model, optimizer, lr_scheduler)
140
141
142
143
144
145

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
Mohammad's avatar
Mohammad committed
146
                                   0, True)
147

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
164
165
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
166
167
            iterations += 1
        # Reset
168
        update_num_microbatches(0, consistency_check=False)
169
170
171
172
173
174
175
176
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

177

Mohammad's avatar
Mohammad committed
178
def get_model(model_provider_func):
179
    """Build the model."""
Mohammad's avatar
Mohammad committed
180
    args = get_args()
181
182

    # Build model on cpu.
Mohammad's avatar
Mohammad committed
183
    model = model_provider_func()
184

185
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
186
187
188
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
189
190
191
    for param in model.parameters():
        mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)

192
193
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
194
        print(' > number of parameters on (tensor, pipeline) '
195
              'model parallel rank ({}, {}): {}'.format(
196
197
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
198
199
200
201
202
203
204
            sum([p.nelement() for p in model.parameters()])), flush=True)

    # GPU allocation.
    model.cuda(torch.cuda.current_device())

    # Fp16 conversion.
    if args.fp16:
205
        model = FP16Module(model)
206
207
208

    if args.DDP_impl == 'torch':
        i = torch.cuda.current_device()
Mohammad's avatar
Mohammad committed
209
210
        model = torchDDP(model, device_ids=[i], output_device=i,
                         process_group=mpu.get_data_parallel_group())
211
212
        return model
    if args.DDP_impl == 'local':
Mohammad's avatar
Mohammad committed
213
        model = LocalDDP(model)
214
215
        return model

216
    raise NotImplementedError('Unknown DDP implementation specified: {}. '
217
                              'Exiting.'.format(args.DDP_impl))
218
219


Mohammad's avatar
Mohammad committed
220
def get_learning_rate_scheduler(optimizer):
221
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
222
    args = get_args()
223

224
225
226
227
228
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
        decay_steps = args.lr_decay_iters * args.global_batch_size
229
230
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
231
232
        else:
            warmup_steps = args.lr_warmup_iters * args.global_batch_size
233
234
235
236
237
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
238
        update_train_iters(args)
239
240
241
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
        decay_steps = args.lr_decay_samples
242
243
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
244
245
        else:
            warmup_steps = args.lr_warmup_samples
246
    else:
247
248
249
        raise Exception(
            'either train-iters or train-samples should be provided.')

250
251
    lr_scheduler = AnnealingLR(
        optimizer,
252
        max_lr=args.lr,
253
        min_lr=args.min_lr,
254
255
        warmup_steps=warmup_steps,
        decay_steps=decay_steps,
256
        decay_style=args.lr_decay_style,
257
258
259
260
261
262
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


Mohammad's avatar
Mohammad committed
263
def setup_model_and_optimizer(model_provider_func):
264
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
265
    args = get_args()
266

Mohammad's avatar
Mohammad committed
267
    model = get_model(model_provider_func)
268
269

    unwrapped_model = model
270
    while isinstance(unwrapped_model, (torchDDP, LocalDDP, FP16Module)):
271
272
273
        unwrapped_model = unwrapped_model.module
    optimizer = get_megatron_optimizer(unwrapped_model)

Mohammad's avatar
Mohammad committed
274
    lr_scheduler = get_learning_rate_scheduler(optimizer)
275
276

    if args.load is not None:
277
278
279
280
281
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
        timers('load checkpoint').start()
282
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
283
284
285
        torch.distributed.barrier()
        timers('load checkpoint').stop()
        timers.log(['load checkpoint'])
286
287
288
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
289
    # We only support local DDP with multiple micro-batches.
mohammad's avatar
mohammad committed
290
291
292
    if get_num_microbatches() > 1:
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
293
294
295
296
297
    # get model without FP16 and/or TorchDDP wrappers
    unwrapped_model = model
    while hasattr(unwrapped_model, 'module'):
        unwrapped_model = unwrapped_model.module

298
299
    if args.iteration == 0 and hasattr(unwrapped_model,
                                       'init_state_dict_from_bert'):
300
        print("Initializing ICT from pretrained BERT model", flush=True)
301
        unwrapped_model.init_state_dict_from_bert()
Neel Kant's avatar
Neel Kant committed
302

303
304
305
    return model, optimizer, lr_scheduler


306
def communicate(tensor_send_next, tensor_send_prev, recv_forward, recv_backward):
307
    """Communicate tensors between stages."""
308
309
310
311
312
313
    args = get_args()

    # Create placeholder tensors for receive in forward and backward directions
    # if needed.
    tensor_recv_prev = None
    tensor_recv_next = None
314
    tensor_shape = (args.seq_length, args.micro_batch_size, args.hidden_size)
315
316
317
    dtype = args.params_dtype
    if args.fp32_residual_connection:
        dtype = torch.float
318
319
320
    if recv_forward:
        tensor_recv_prev = torch.empty(tensor_shape,
                                       requires_grad=True,
321
                                       device=torch.cuda.current_device(),
322
                                       dtype=dtype)
323
324
325
    if recv_backward:
        tensor_recv_next = torch.empty(tensor_shape,
                                       requires_grad=True,
326
                                       device=torch.cuda.current_device(),
327
                                       dtype=dtype)
328
329

    # Send tensors in both the forward and backward directions as appropriate.
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
    ops = []
    if tensor_send_prev is not None:
        send_prev_op = torch.distributed.P2POp(torch.distributed.isend, tensor_send_prev,
                                               mpu.get_pipeline_model_parallel_prev_rank())
        ops.append(send_prev_op)
    if tensor_recv_prev is not None:
        recv_prev_op = torch.distributed.P2POp(torch.distributed.irecv, tensor_recv_prev,
                                               mpu.get_pipeline_model_parallel_prev_rank())
        ops.append(recv_prev_op)
    if tensor_send_next is not None:
        send_next_op = torch.distributed.P2POp(torch.distributed.isend, tensor_send_next,
                                               mpu.get_pipeline_model_parallel_next_rank())
        ops.append(send_next_op)
    if tensor_recv_next is not None:
        recv_next_op = torch.distributed.P2POp(torch.distributed.irecv, tensor_recv_next,
                                               mpu.get_pipeline_model_parallel_next_rank())
        ops.append(recv_next_op)
    reqs = torch.distributed.batch_isend_irecv(ops)
    for req in reqs:
        req.wait()
350
351
352
353
354

    return tensor_recv_prev, tensor_recv_next


def backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad):
355
    """Backward step."""
Mohammad's avatar
Mohammad committed
356
357
    args = get_args()
    timers = get_timers()
358

359
360
361
362
    # Retain the grad on the input_tensor.
    if input_tensor is not None:
        input_tensor.retain_grad()

363
    # Backward pass.
mohammad's avatar
mohammad committed
364
365
366
    if output_tensor_grad is None:
        output_tensor = optimizer.scale_loss(output_tensor)
    torch.autograd.backward(output_tensor, grad_tensors=output_tensor_grad)
367
368
369
370
371
372
373
374
375

    # Collect the grad of the input_tensor.
    input_tensor_grad = None
    if input_tensor is not None:
        input_tensor_grad = input_tensor.grad

    return input_tensor_grad


376
377
378
def forward_step_with_communication(forward_step_func, data_iterator, model,
                                    input_tensors, output_tensors,
                                    losses_reduced, timers):
379
380
    args = get_args()

381
    if not mpu.is_pipeline_first_stage():
382
        timers('forward-recv').start()
383
384
385
386
387
        input_tensor, _ = communicate(
            tensor_send_next=None,
            tensor_send_prev=None,
            recv_forward=True,
            recv_backward=False)
388
        timers('forward-recv').stop()
389
390
391
392
    else:
        input_tensor = None

    # Forward model for one step.
393
    timers('forward-compute').start()
394
    output_tensor = forward_step_func(data_iterator, model, input_tensor)
395
    timers('forward-compute').stop()
396
397
398

    if mpu.is_pipeline_last_stage():
        loss, loss_reduced = output_tensor
mohammad's avatar
mohammad committed
399
        output_tensor = loss / get_num_microbatches()
400
401
        losses_reduced.append(loss_reduced)
    else:
402
        timers('forward-send').start()
403
404
405
406
407
        communicate(
            tensor_send_next=output_tensor,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=False)
408
        timers('forward-send').stop()
409
410
411
412
413
414
415
416
417
418
419
420

    input_tensors.append(input_tensor)
    output_tensors.append(output_tensor)


def backward_step_with_communication(optimizer, model, input_tensors, output_tensors, timers):
    input_tensor = input_tensors.pop(0)
    output_tensor = output_tensors.pop(0)

    if mpu.is_pipeline_last_stage():
        output_tensor_grad = None
    else:
421
        timers('backward-recv').start()
422
423
424
425
426
        _, output_tensor_grad = communicate(
            tensor_send_next=None,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=True)
427
        timers('backward-recv').stop()
428
429

    # Backward pass for one step.
430
    timers('backward-compute').start()
431
432
    input_grad_tensor = \
        backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad)
433
    timers('backward-compute').stop()
434
435

    if not mpu.is_pipeline_first_stage():
436
        timers('backward-send').start()
437
438
439
440
441
        communicate(
            tensor_send_next=None,
            tensor_send_prev=input_grad_tensor,
            recv_forward=False,
            recv_backward=False)
442
        timers('backward-send').stop()
443
444


445
446
447
448
449
def forward_and_backward_steps_with_communication(forward_step_func, data_iterator, model,
                                                  optimizer,
                                                  input_tensor, last_microbatch,
                                                  input_tensors, output_tensors,
                                                  losses_reduced, timers):
450
451
    args = get_args()

452
453
454
455
456
457
458
    # Forward model for one step.
    timers('forward-compute').start()
    output_tensor = forward_step_func(data_iterator, model, input_tensor)
    timers('forward-compute').stop()

    if mpu.is_pipeline_last_stage():
        loss, loss_reduced = output_tensor
mohammad's avatar
mohammad committed
459
        output_tensor = loss / get_num_microbatches()
460
461
462
        output_tensor_grad = None
        losses_reduced.append(loss_reduced)
    else:
Deepak Narayanan's avatar
Deepak Narayanan committed
463
        timers('forward-send-backward-recv').start()
464
465
466
467
468
        _, output_tensor_grad = communicate(
            tensor_send_next=output_tensor,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=True)
Deepak Narayanan's avatar
Deepak Narayanan committed
469
        timers('forward-send-backward-recv').stop()
470
471
472
473
474
475
476
477
478
479
480
481
482
483

    input_tensors.append(input_tensor)
    output_tensors.append(output_tensor)

    input_tensor = input_tensors.pop(0)
    output_tensor = output_tensors.pop(0)

    # Backward pass for one step.
    timers('backward-compute').start()
    input_grad_tensor = \
        backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad)
    timers('backward-compute').stop()

    if not mpu.is_pipeline_first_stage():
Deepak Narayanan's avatar
Deepak Narayanan committed
484
        timers('backward-send-forward-recv').start()
485
486
487
488
489
        input_tensor, _ = communicate(
            tensor_send_next=None,
            tensor_send_prev=input_grad_tensor,
            recv_forward=(not last_microbatch),
            recv_backward=False)
Deepak Narayanan's avatar
Deepak Narayanan committed
490
        timers('backward-send-forward-recv').stop()
491
492
493
494
495
496
    else:
        input_tensor = None

    return input_tensor


497
498
499
def forward_backward_no_pipelining(forward_step_func, data_iterator, model,
                                   optimizer, timers):
    """Run forward and backward passes without inter-stage communication."""
500
501
    args = get_args()

502
    losses_reduced = []
mohammad's avatar
mohammad committed
503
    for i in range(get_num_microbatches()):
504
505
        timers('forward-compute').start()
        loss, loss_reduced = forward_step_func(data_iterator, model, input_tensor=None)
mohammad's avatar
mohammad committed
506
        output_tensor = loss / get_num_microbatches()
507
508
509
510
511
512
513
514
515
516
        losses_reduced.append(loss_reduced)
        timers('forward-compute').stop()

        timers('backward-compute').start()
        output_tensor_grad = None
        backward_step(optimizer, model, input_tensor=None,
                      output_tensor=output_tensor, output_tensor_grad=None)
        timers('backward-compute').stop()

    return losses_reduced
517

518
519
520
521
522
523
524

def forward_backward_pipelining(forward_step_func, data_iterator, model,
                                optimizer, timers):
    """Run 1F1B schedule, with communication and warmup + cooldown microbatches as needed."""
    args = get_args()

    # Compute number of warmup microbatches.
mohammad's avatar
mohammad committed
525
    num_microbatches = get_num_microbatches()
526
527
528
529
530
    num_warmup_microbatches = \
        (mpu.get_pipeline_model_parallel_world_size() -
         mpu.get_pipeline_model_parallel_rank() - 1)
    num_warmup_microbatches = min(
        num_warmup_microbatches,
531
532
533
        num_microbatches)
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches
534
535
536
537
538

    input_tensors = []
    output_tensors = []
    losses_reduced = []

539
540
    # Run warmup forward passes.
    for i in range(num_warmup_microbatches):
541
542
543
544
        forward_step_with_communication(
            forward_step_func, data_iterator, model,
            input_tensors, output_tensors,
            losses_reduced, timers)
545

546
    # Before running 1F1B, need to receive first forward tensor.
547
548
    # If all microbatches are run in warmup / cooldown phase, then no need to
    # receive this tensor here.
549
    if num_microbatches_remaining > 0:
550
551
552
        if mpu.is_pipeline_first_stage():
            input_tensor = None
        else:
553
            timers('forward-recv').start()
554
555
556
557
            input_tensor, _ = communicate(tensor_send_next=None,
                                          tensor_send_prev=None,
                                          recv_forward=True,
                                          recv_backward=False)
558
            timers('forward-recv').stop()
559
560

    # Run 1F1B.
561
562
    for i in range(num_microbatches_remaining):
        last_iteration = (i == (num_microbatches_remaining - 1))
563
564
565
566
567
568
569
        input_tensor = \
            forward_and_backward_steps_with_communication(forward_step_func, data_iterator, model,
                                                          optimizer,
                                                          input_tensor, last_iteration,
                                                          input_tensors, output_tensors,
                                                          losses_reduced, timers)

570
571
    # Run cooldown backward passes.
    for i in range(num_warmup_microbatches):
572
573
574
575
576
577
578
579
580
581
582
583
584
        backward_step_with_communication(
            optimizer, model, input_tensors, output_tensors, timers)

    return losses_reduced


def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
mohammad's avatar
mohammad committed
585
    optimizer.zero_grad()
586
587
588
589
590
591
592

    if mpu.get_pipeline_model_parallel_world_size() > 1:
        losses_reduced = forward_backward_pipelining(
            forward_step_func, data_iterator, model, optimizer, timers)
    else:
        losses_reduced = forward_backward_no_pipelining(
            forward_step_func, data_iterator, model, optimizer, timers)
593
594
595

    # All-reduce if needed.
    if args.DDP_impl == 'local':
596
        timers('backward-params-all-reduce').start()
597
598
        model.allreduce_params(reduce_after=False,
                               fp32_allreduce=args.fp32_allreduce)
599
        timers('backward-params-all-reduce').stop()
600

601
602
603
604
    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
605
    timers('backward-embedding-all-reduce').start()
606
    if (mpu.is_pipeline_first_stage() or mpu.is_pipeline_last_stage()) and \
607
            mpu.get_pipeline_model_parallel_world_size() > 1:
608
        unwrapped_model = model
609
        while isinstance(unwrapped_model, (torchDDP, LocalDDP, FP16Module)):
610
611
            unwrapped_model = unwrapped_model.module

612
613
614
615
        if unwrapped_model.share_word_embeddings:
            word_embeddings_weight = unwrapped_model.word_embeddings_weight()
            torch.distributed.all_reduce(word_embeddings_weight.grad,
                                         group=mpu.get_embedding_group())
616
    timers('backward-embedding-all-reduce').stop()
617

618
619
    # Update parameters.
    timers('optimizer').start()
620
    update_successfull, grad_norm = optimizer.step()
621
622
623
    timers('optimizer').stop()

    # Update learning rate.
mohammad's avatar
mohammad committed
624
    if update_successfull:
625
626
627
628
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
        lr_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
629
        skipped_iter = 0
630
631
632
    else:
        skipped_iter = 1

633
    if mpu.is_pipeline_last_stage():
634
635
636
637
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
638
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
639
640
        return loss_reduced, skipped_iter, grad_norm
    return {}, skipped_iter, grad_norm
641
642


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
643
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
644
                 loss_scale, report_memory_flag, skipped_iter, grad_norm):
Mohammad's avatar
Mohammad committed
645
646
647
648
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
649

mohammad's avatar
mohammad committed
650
651
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
652
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
653
654
655
656
657
658
659
660
661
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
662
663
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
664
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
665
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
666
    for key in loss_dict:
mohammad's avatar
mohammad committed
667
        if not skipped_iter:
668
669
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
670
671
672
673
674
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
675
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
676
677
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
678
679
680

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
681

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
682
683
684
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
685
686
687
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
688
    add_to_logging('forward-send-backward-recv')
689
690
691
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
692
    add_to_logging('backward-send-forward-recv')
693
    add_to_logging('backward-params-all-reduce')
694
    add_to_logging('backward-embedding-all-reduce')
695
    add_to_logging('optimizer-copy-to-main-grad')
mohammad's avatar
mohammad committed
696
    add_to_logging('optimizer-unscale-and-check-inf')
697
698
    add_to_logging('optimizer-clip-main-grad')
    add_to_logging('optimizer-copy-main-to-model-params')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
699
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
700
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
701

mohammad's avatar
mohammad committed
702
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
703
704
705
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
706
707
708
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
709
    # Tensorboard values.
mohammad's avatar
mohammad committed
710
711
712
    if writer and is_last_rank():
        writer.add_scalar('learning-rate', learning_rate, iteration)
        writer.add_scalar('learning-rate vs samples', learning_rate,
713
                          args.consumed_train_samples)
mohammad's avatar
mohammad committed
714
715
        writer.add_scalar('batch-size', batch_size, iteration)
        writer.add_scalar('batch-size vs samples', batch_size,
716
                          args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
717
        for key in loss_dict:
mohammad's avatar
mohammad committed
718
719
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
720
                              args.consumed_train_samples)
721
722
723
        writer.add_scalar('loss-scale', loss_scale, iteration)
        writer.add_scalar('loss-scale vs samples', loss_scale,
                          args.consumed_train_samples)
724
725
726
727
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
728
        timers.write(timers_to_log, writer, iteration,
mohammad's avatar
mohammad committed
729
                     normalizer=total_iterations)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
730
731
732

    if iteration % args.log_interval == 0:
        elapsed_time = timers('interval time').elapsed()
mohammad's avatar
mohammad committed
733
        elapsed_time_per_iteration = elapsed_time / total_iterations
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
734
        if writer and torch.distributed.get_rank() == 0:
mohammad's avatar
mohammad committed
735
736
            writer.add_scalar('iteration-time',
                              elapsed_time_per_iteration, iteration)
737
738
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
739
        log_string += ' consumed samples: {:12d} |'.format(
740
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
741
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
742
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
743
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
744
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
745
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
746
747
748
749
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
750
751
752
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
753
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
754
755
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
mohammad's avatar
mohammad committed
756
757
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
758
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
759
760
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
761
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
762
        total_loss_dict[nan_iters_key] = 0
763
        print_rank_last(log_string)
764
765
766
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
767
768
769
770
771
772
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


773
774
775
776
777
778
779
780
781
782
783
784
def save_checkpoint_and_time(iteration, model, optimizer, lr_scheduler):
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
    timers('save checkpoint').start()
    save_checkpoint(iteration, model, optimizer, lr_scheduler)
    torch.distributed.barrier()
    timers('save checkpoint').stop()
    timers.log(['save checkpoint'])


785
def train(forward_step_func, model, optimizer, lr_scheduler,
786
          train_data_iterator, valid_data_iterator):
787
    """Train the model function."""
Mohammad's avatar
Mohammad committed
788
789
    args = get_args()
    timers = get_timers()
790

791
792
793
    # Write args to tensorboard
    write_args_to_tensorboard()

794
795
796
797
798
799
800
801
802
803
    # Turn on training mode which enables dropout.
    model.train()

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

    timers('interval time').start()
804
    print_datetime('before the start of training step')
805
806
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
807
        update_num_microbatches(args.consumed_train_samples)
808
809
810
811
812
        loss_dict, skipped_iter, grad_norm = train_step(forward_step_func,
                                                        train_data_iterator,
                                                        model,
                                                        optimizer,
                                                        lr_scheduler)
813
        iteration += 1
814
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
815
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
816
                                       get_num_microbatches()
817
818

        # Logging.
819
        loss_scale = optimizer.get_loss_scale().item()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
820
821
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
822
                                          iteration, loss_scale,
823
824
                                          report_memory_flag, skipped_iter,
                                          grad_norm)
825
826

        # Autoresume
827
828
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
829
            check_adlr_autoresume_termination(iteration, model, optimizer,
830
                                              lr_scheduler)
831
832
833
834
835
836

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
837
                                       valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
838
                                       iteration, False)
839

840
841
842
843
844
845
846
847
        # Checkpointing
        saved_checkpoint = False
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
                                     lr_scheduler)
            saved_checkpoint = True

848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
                                             lr_scheduler)
                print_datetime('exiting program after {} minutes'.format(train_time))                
                sys.exit()

        # Exiting based on iterations        
864
        if args.exit_interval and iteration % args.exit_interval == 0:
865
866
867
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
                                         lr_scheduler)
868
            torch.distributed.barrier()
869
            print_datetime('exiting program at iteration {}'.format(iteration))                
Mohammad's avatar
Mohammad committed
870
            sys.exit()
871

872

mohammad's avatar
mohammad committed
873
    return iteration
874
875


Mohammad's avatar
Mohammad committed
876
def evaluate(forward_step_func, data_iterator, model, verbose=False):
877
    """Evaluation."""
Mohammad's avatar
Mohammad committed
878
    args = get_args()
879
880
881
882
883
884
885
886
887
888
889
890
891

    # Turn on evaluation mode which disables dropout.
    model.eval()

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
892

mohammad's avatar
mohammad committed
893
            for _ in range(get_num_microbatches()):
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
                if not mpu.is_pipeline_first_stage():
                    input_tensor, _ = communicate(
                        tensor_send_next=None,
                        tensor_send_prev=None,
                        recv_forward=True,
                        recv_backward=False)
                else:
                    input_tensor = None

                # Forward evaluation.
                output_tensor = forward_step_func(data_iterator, model, input_tensor)

                if mpu.is_pipeline_last_stage():
                    _, loss_dict = output_tensor
                    # Reduce across processes.
                    for key in loss_dict:
                        total_loss_dict[key] = total_loss_dict.get(key, torch.cuda.FloatTensor([0.0])) + \
                            loss_dict[key]
                else:
                    communicate(
                        tensor_send_next=output_tensor,
                        tensor_send_prev=None,
                        recv_forward=False,
                        recv_backward=False)
918

919
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
920
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
921
                                           * get_num_microbatches()
922
923
924
925
    # Move model back to the train mode.
    model.train()

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
926
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
927
928
929
930
931

    return total_loss_dict

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
Mohammad's avatar
Mohammad committed
932
                               iteration, verbose=False):
933
    """Helper function to evaluate and dump results on screen."""
934
    args = get_args()
Mohammad's avatar
Mohammad committed
935
936
937
    writer = get_tensorboard_writer()

    total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
938
939
940
941
942
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
943
944
        if writer and is_last_rank():
            writer.add_scalar('{} value-validation'.format(key),
945
946
                              total_loss_dict[key].item(),
                              iteration)
947
948
949
950
951
952
            writer.add_scalar('{} ppl-validation'.format(key), ppl, iteration)
            writer.add_scalar('{} value-validation vs samples'.format(key),
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
            writer.add_scalar('{} ppl-validation vs samples'.format(key), ppl,
                              args.consumed_train_samples)
953
954

    length = len(string) + 1
955
956
957
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
958
959


960
961
962
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
963
    args = get_args()
964

965
966
967
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
968
969
970

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
971
972
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
973
        args.consumed_train_samples = args.iteration * args.global_batch_size
974
    if args.iteration > 0 and args.consumed_valid_samples == 0:
975
976
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
977
        args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
mohammad's avatar
mohammad committed
978
            args.eval_iters * args.global_batch_size
979

980
    # Data loader only on rank 0 of each model parallel group.
981
    if mpu.get_tensor_model_parallel_rank() == 0:
982
983

        # Number of train/valid/test samples.
984
985
986
987
988
989
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
990
        test_iters = args.eval_iters
991
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
992
993
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
994
995
996
997
998
999
1000
1001
1002
1003
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
1004
1005
1006
1007
1008
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
1022
1023
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
1024
1025
1026
1027
1028
1029
1030
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

    # Build iterators.
    if train_dataloader is not None:
        train_data_iterator = iter(train_dataloader)
1031
1032
1033
    else:
        train_data_iterator = None

1034
1035
    if valid_dataloader is not None:
        valid_data_iterator = iter(valid_dataloader)
1036
    else:
1037
        valid_data_iterator = None
1038

1039
1040
    if test_dataloader is not None:
        test_data_iterator = iter(test_dataloader)
1041
1042
1043
    else:
        test_data_iterator = None

1044
    return train_data_iterator, valid_data_iterator, test_data_iterator