"docs/basic_usage/deepseek.md" did not exist on "dd83e7e9c3fbd7fcf24c5b18d858d0eb9479c50f"
training.py 34.4 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from apex.optimizers import FusedAdam as Adam

Neel Kant's avatar
Neel Kant committed
25
from megatron import get_args
Mohammad's avatar
Mohammad committed
26
27
from megatron import get_timers
from megatron import get_tensorboard_writer
mohammad's avatar
mohammad committed
28
29
from megatron import get_num_microbatches
from megatron import update_num_microbatches
30
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
31
from megatron import print_rank_0
32
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
33
34
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
35
36
from megatron.fp16 import FP16_Module
from megatron.fp16 import FP16_Optimizer
Mohammad's avatar
Mohammad committed
37
from megatron.initialize import initialize_megatron
38
39
40
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import get_params_for_weight_decay_optimization
Neel Kant's avatar
Neel Kant committed
41
from megatron.model.realm_model import ICTBertModel
42
from megatron.utils import check_adlr_autoresume_termination
43
from megatron.data.data_loaders import build_pretraining_data_loader
44
from megatron.utils import report_memory
45
46


47
def pretrain(train_valid_test_dataset_provider, model_provider,
48
             forward_step_func, extra_args_provider=None, args_defaults={}):
49
50
51
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
52
53
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
54
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
55
        4) train the modle using the forward_step_func.
56
57

    Arguments:
58
59
60
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
61
62
63
64
65
66
67
68
69
70
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
71
72
    """

73
    # Initalize and get arguments, timers, and Tensorboard writer.
74
75
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
76

77
    args = get_args()
Mohammad's avatar
Mohammad committed
78
    timers = get_timers()
79
80

    # Model, optimizer, and learning rate.
Mohammad's avatar
Mohammad committed
81
82
83
    timers('model and optimizer').start()
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider)
    timers('model and optimizer').stop()
84
85

    # Data stuff.
86
87
88
89
90
    timers('train/valid/test data iterators').start()
    train_data_iterator, valid_data_iterator, test_data_iterator \
        = build_train_valid_test_data_iterators(
            train_valid_test_dataset_provider)
    timers('train/valid/test data iterators').stop()
Mohammad's avatar
Mohammad committed
91
92
93

    # Print setup timing.
    print_rank_0('done with setups ...')
94
    timers.log(['model and optimizer', 'train/valid/test data iterators'])
Mohammad's avatar
Mohammad committed
95
    print_rank_0('training ...')
96
97

    iteration = 0
98
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
99
100
101
        iteration = train(forward_step_func,
                          model, optimizer, lr_scheduler,
                          train_data_iterator, valid_data_iterator)
Mohammad's avatar
Mohammad committed
102

103
104
105
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
106
                                   valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
107
                                   iteration, False)
108
109

    if args.save and iteration != 0:
110
        save_checkpoint(iteration, model, optimizer, lr_scheduler)
111
112
113
114
115
116

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
Mohammad's avatar
Mohammad committed
117
                                   0, True)
118
119


Mohammad's avatar
Mohammad committed
120
def get_model(model_provider_func):
121
    """Build the model."""
Mohammad's avatar
Mohammad committed
122
    args = get_args()
123
124

    # Build model on cpu.
Mohammad's avatar
Mohammad committed
125
    model = model_provider_func()
126
127
128

    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
129
        print(' > number of parameters on (tensor, pipeline) '
130
              'model parallel rank ({}, {}): {}'.format(
131
132
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
133
134
135
136
137
138
139
140
141
142
143
            sum([p.nelement() for p in model.parameters()])), flush=True)

    # GPU allocation.
    model.cuda(torch.cuda.current_device())

    # Fp16 conversion.
    if args.fp16:
        model = FP16_Module(model)

    if args.DDP_impl == 'torch':
        i = torch.cuda.current_device()
Mohammad's avatar
Mohammad committed
144
145
        model = torchDDP(model, device_ids=[i], output_device=i,
                         process_group=mpu.get_data_parallel_group())
146
147
        return model
    if args.DDP_impl == 'local':
Mohammad's avatar
Mohammad committed
148
        model = LocalDDP(model)
149
150
        return model

151
    raise NotImplementedError('Unknown DDP implementation specified: {}. '
152
                              'Exiting.'.format(args.DDP_impl))
153
154


Mohammad's avatar
Mohammad committed
155
def get_optimizer(model):
156
    """Set up the optimizer."""
Mohammad's avatar
Mohammad committed
157
    args = get_args()
158
159

    # Build parameter groups (weight decay and non-decay).
Mohammad's avatar
Mohammad committed
160
    while isinstance(model, (torchDDP, LocalDDP, FP16_Module)):
161
162
163
164
165
166
        model = model.module
    param_groups = get_params_for_weight_decay_optimization(model)

    # Add model parallel attribute if it is not set.
    for param_group in param_groups:
        for param in param_group['params']:
167
168
            if not hasattr(param, 'tensor_model_parallel'):
                param.tensor_model_parallel = False
169
170

    # Use Adam.
171
172
    optimizer = Adam(param_groups, lr=args.lr, weight_decay=args.weight_decay,
        betas=(args.adam_beta1, args.adam_beta2), eps=args.adam_eps)
173
174
175
176
177
178
179
180

    # Wrap into fp16 optimizer.
    if args.fp16:
        optimizer = FP16_Optimizer(optimizer,
                                   static_loss_scale=args.loss_scale,
                                   dynamic_loss_scale=args.dynamic_loss_scale,
                                   dynamic_loss_args={
                                       'scale_window': args.loss_scale_window,
Neel Kant's avatar
Neel Kant committed
181
                                       'min_scale': args.min_scale,
182
183
184
185
186
                                       'delayed_shift': args.hysteresis})

    return optimizer


Mohammad's avatar
Mohammad committed
187
def get_learning_rate_scheduler(optimizer):
188
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
189
    args = get_args()
190
191
192
193
194
195
196

    # Add linear learning rate scheduler.
    if args.lr_decay_iters is not None:
        num_iters = args.lr_decay_iters
    else:
        num_iters = args.train_iters
    num_iters = max(1, num_iters)
Mohammad's avatar
Mohammad committed
197
    init_step = 0
198
199
200
    warmup_iter = args.warmup * num_iters
    lr_scheduler = AnnealingLR(
        optimizer,
201
        max_lr=args.lr,
202
        min_lr=args.min_lr,
203
204
205
206
        warmup_steps=warmup_iter,
        decay_steps=num_iters,
        decay_style=args.lr_decay_style,
        num_steps=init_step,
207
208
209
210
211
212
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


Mohammad's avatar
Mohammad committed
213
def setup_model_and_optimizer(model_provider_func):
214
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
215
    args = get_args()
216

Mohammad's avatar
Mohammad committed
217
218
219
    model = get_model(model_provider_func)
    optimizer = get_optimizer(model)
    lr_scheduler = get_learning_rate_scheduler(optimizer)
220
221

    if args.load is not None:
222
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
223
224
225
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
226
227
228
229
    # Wrap model for distributed training."""
    if get_num_microbatches() > 1:
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
230
231
232
233
234
    # get model without FP16 and/or TorchDDP wrappers
    unwrapped_model = model
    while hasattr(unwrapped_model, 'module'):
        unwrapped_model = unwrapped_model.module

235
236
    if args.iteration == 0 and hasattr(unwrapped_model,
                                       'init_state_dict_from_bert'):
237
        print("Initializing ICT from pretrained BERT model", flush=True)
238
        unwrapped_model.init_state_dict_from_bert()
Neel Kant's avatar
Neel Kant committed
239

240
241
242
    return model, optimizer, lr_scheduler


243
244
245
246
247
248
249
250
def communicate(tensor_send_next, tensor_send_prev, recv_forward, recv_backward):
    """Communicate tensors between stages using torch.distributed.ring_exchange(.) API."""
    args = get_args()

    # Create placeholder tensors for receive in forward and backward directions
    # if needed.
    tensor_recv_prev = None
    tensor_recv_next = None
251
    tensor_shape = (args.seq_length, args.micro_batch_size, args.hidden_size)
252
253
254
    if recv_forward:
        tensor_recv_prev = torch.empty(tensor_shape,
                                       requires_grad=True,
255
256
                                       device=torch.cuda.current_device(),
                                       dtype=args.params_dtype)
257
258
259
    if recv_backward:
        tensor_recv_next = torch.empty(tensor_shape,
                                       requires_grad=True,
260
261
                                       device=torch.cuda.current_device(),
                                       dtype=args.params_dtype)
262
263
264
265
266
267

    # Send tensors in both the forward and backward directions as appropriate.
    torch.distributed.ring_exchange(tensor_send_prev=tensor_send_prev,
                                    tensor_recv_prev=tensor_recv_prev,
                                    tensor_send_next=tensor_send_next,
                                    tensor_recv_next=tensor_recv_next,
268
                                    group=mpu.get_pipeline_model_parallel_group())
269
270
271
272
273

    return tensor_recv_prev, tensor_recv_next


def backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad):
274
    """Backward step."""
Mohammad's avatar
Mohammad committed
275
276
    args = get_args()
    timers = get_timers()
277

278
279
280
281
    # Retain the grad on the input_tensor.
    if input_tensor is not None:
        input_tensor.retain_grad()

282
    # Backward pass.
283
284
285
286
287
288
289
290
291
292
293
294
295
296
    if args.fp16:
        optimizer.backward(output_tensor, update_master_grads=False,
                           output_tensor_grad=output_tensor_grad)
    else:
        torch.autograd.backward(output_tensor, grad_tensors=output_tensor_grad)

    # Collect the grad of the input_tensor.
    input_tensor_grad = None
    if input_tensor is not None:
        input_tensor_grad = input_tensor.grad

    return input_tensor_grad


297
298
299
def forward_step_with_communication(forward_step_func, data_iterator, model,
                                    input_tensors, output_tensors,
                                    losses_reduced, timers):
300
301
    args = get_args()

302
    if not mpu.is_pipeline_first_stage():
303
        timers('forward-recv').start()
304
305
306
307
308
        input_tensor, _ = communicate(
            tensor_send_next=None,
            tensor_send_prev=None,
            recv_forward=True,
            recv_backward=False)
309
        timers('forward-recv').stop()
310
311
312
313
    else:
        input_tensor = None

    # Forward model for one step.
314
    timers('forward-compute').start()
315
    output_tensor = forward_step_func(data_iterator, model, input_tensor)
316
    timers('forward-compute').stop()
317
318
319

    if mpu.is_pipeline_last_stage():
        loss, loss_reduced = output_tensor
mohammad's avatar
mohammad committed
320
        output_tensor = loss / get_num_microbatches()
321
322
        losses_reduced.append(loss_reduced)
    else:
323
        timers('forward-send').start()
324
325
326
327
328
        communicate(
            tensor_send_next=output_tensor,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=False)
329
        timers('forward-send').stop()
330
331
332
333
334
335
336
337
338
339
340
341

    input_tensors.append(input_tensor)
    output_tensors.append(output_tensor)


def backward_step_with_communication(optimizer, model, input_tensors, output_tensors, timers):
    input_tensor = input_tensors.pop(0)
    output_tensor = output_tensors.pop(0)

    if mpu.is_pipeline_last_stage():
        output_tensor_grad = None
    else:
342
        timers('backward-recv').start()
343
344
345
346
347
        _, output_tensor_grad = communicate(
            tensor_send_next=None,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=True)
348
        timers('backward-recv').stop()
349
350

    # Backward pass for one step.
351
    timers('backward-compute').start()
352
353
    input_grad_tensor = \
        backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad)
354
    timers('backward-compute').stop()
355
356

    if not mpu.is_pipeline_first_stage():
357
        timers('backward-send').start()
358
359
360
361
362
        communicate(
            tensor_send_next=None,
            tensor_send_prev=input_grad_tensor,
            recv_forward=False,
            recv_backward=False)
363
        timers('backward-send').stop()
364
365


366
367
368
369
370
def forward_and_backward_steps_with_communication(forward_step_func, data_iterator, model,
                                                  optimizer,
                                                  input_tensor, last_microbatch,
                                                  input_tensors, output_tensors,
                                                  losses_reduced, timers):
371
372
    args = get_args()

373
374
375
376
377
378
379
    # Forward model for one step.
    timers('forward-compute').start()
    output_tensor = forward_step_func(data_iterator, model, input_tensor)
    timers('forward-compute').stop()

    if mpu.is_pipeline_last_stage():
        loss, loss_reduced = output_tensor
mohammad's avatar
mohammad committed
380
        output_tensor = loss / get_num_microbatches()
381
382
383
        output_tensor_grad = None
        losses_reduced.append(loss_reduced)
    else:
Deepak Narayanan's avatar
Deepak Narayanan committed
384
        timers('forward-send-backward-recv').start()
385
386
387
388
389
        _, output_tensor_grad = communicate(
            tensor_send_next=output_tensor,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=True)
Deepak Narayanan's avatar
Deepak Narayanan committed
390
        timers('forward-send-backward-recv').stop()
391
392
393
394
395
396
397
398
399
400
401
402
403
404

    input_tensors.append(input_tensor)
    output_tensors.append(output_tensor)

    input_tensor = input_tensors.pop(0)
    output_tensor = output_tensors.pop(0)

    # Backward pass for one step.
    timers('backward-compute').start()
    input_grad_tensor = \
        backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad)
    timers('backward-compute').stop()

    if not mpu.is_pipeline_first_stage():
Deepak Narayanan's avatar
Deepak Narayanan committed
405
        timers('backward-send-forward-recv').start()
406
407
408
409
410
        input_tensor, _ = communicate(
            tensor_send_next=None,
            tensor_send_prev=input_grad_tensor,
            recv_forward=(not last_microbatch),
            recv_backward=False)
Deepak Narayanan's avatar
Deepak Narayanan committed
411
        timers('backward-send-forward-recv').stop()
412
413
414
415
416
417
    else:
        input_tensor = None

    return input_tensor


418
419
420
def forward_backward_no_pipelining(forward_step_func, data_iterator, model,
                                   optimizer, timers):
    """Run forward and backward passes without inter-stage communication."""
421
422
    args = get_args()

423
    losses_reduced = []
mohammad's avatar
mohammad committed
424
    for i in range(get_num_microbatches()):
425
426
        timers('forward-compute').start()
        loss, loss_reduced = forward_step_func(data_iterator, model, input_tensor=None)
mohammad's avatar
mohammad committed
427
        output_tensor = loss / get_num_microbatches()
428
429
430
431
432
433
434
435
436
437
        losses_reduced.append(loss_reduced)
        timers('forward-compute').stop()

        timers('backward-compute').start()
        output_tensor_grad = None
        backward_step(optimizer, model, input_tensor=None,
                      output_tensor=output_tensor, output_tensor_grad=None)
        timers('backward-compute').stop()

    return losses_reduced
438

439
440
441
442
443
444
445

def forward_backward_pipelining(forward_step_func, data_iterator, model,
                                optimizer, timers):
    """Run 1F1B schedule, with communication and warmup + cooldown microbatches as needed."""
    args = get_args()

    # Compute number of warmup microbatches.
mohammad's avatar
mohammad committed
446
    num_microbatches = get_num_microbatches()
447
448
449
450
451
    num_warmup_microbatches = \
        (mpu.get_pipeline_model_parallel_world_size() -
         mpu.get_pipeline_model_parallel_rank() - 1)
    num_warmup_microbatches = min(
        num_warmup_microbatches,
452
453
454
        num_microbatches)
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches
455
456
457
458
459

    input_tensors = []
    output_tensors = []
    losses_reduced = []

460
461
    # Run warmup forward passes.
    for i in range(num_warmup_microbatches):
462
463
464
465
        forward_step_with_communication(
            forward_step_func, data_iterator, model,
            input_tensors, output_tensors,
            losses_reduced, timers)
466

467
    # Before running 1F1B, need to receive first forward tensor.
468
469
    # If all microbatches are run in warmup / cooldown phase, then no need to
    # receive this tensor here.
470
    if num_microbatches_remaining > 0:
471
472
473
        if mpu.is_pipeline_first_stage():
            input_tensor = None
        else:
474
            timers('forward-recv').start()
475
476
477
478
            input_tensor, _ = communicate(tensor_send_next=None,
                                          tensor_send_prev=None,
                                          recv_forward=True,
                                          recv_backward=False)
479
            timers('forward-recv').stop()
480
481

    # Run 1F1B.
482
483
    for i in range(num_microbatches_remaining):
        last_iteration = (i == (num_microbatches_remaining - 1))
484
485
486
487
488
489
490
        input_tensor = \
            forward_and_backward_steps_with_communication(forward_step_func, data_iterator, model,
                                                          optimizer,
                                                          input_tensor, last_iteration,
                                                          input_tensors, output_tensors,
                                                          losses_reduced, timers)

491
492
    # Run cooldown backward passes.
    for i in range(num_warmup_microbatches):
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
        backward_step_with_communication(
            optimizer, model, input_tensors, output_tensors, timers)

    return losses_reduced


def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
    if args.fp16:
        optimizer.zero_grad(set_grads_to_None=True)
    else:
        optimizer.zero_grad()

    if mpu.get_pipeline_model_parallel_world_size() > 1:
        losses_reduced = forward_backward_pipelining(
            forward_step_func, data_iterator, model, optimizer, timers)
    else:
        losses_reduced = forward_backward_no_pipelining(
            forward_step_func, data_iterator, model, optimizer, timers)
517
518
519

    # All-reduce if needed.
    if args.DDP_impl == 'local':
520
        timers('backward-params-all-reduce').start()
521
522
        model.allreduce_params(reduce_after=False,
                               fp32_allreduce=args.fp32_allreduce)
523
        timers('backward-params-all-reduce').stop()
524

525
526
527
528
    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
529
    timers('backward-embedding-all-reduce').start()
530
    if (mpu.is_pipeline_first_stage() or mpu.is_pipeline_last_stage()) and \
531
            mpu.get_pipeline_model_parallel_world_size() > 1:
532
533
534
535
536
537
538
        unwrapped_model = model
        while isinstance(unwrapped_model, (torchDDP, LocalDDP, FP16_Module)):
            unwrapped_model = unwrapped_model.module

        word_embeddings_weight = unwrapped_model.word_embeddings_weight()
        torch.distributed.all_reduce(word_embeddings_weight.grad,
                                     group=mpu.get_embedding_group())
539
    timers('backward-embedding-all-reduce').stop()
540

541
542
543
544
545
546
    # Update master gradients.
    timers('backward-master-grad').start()
    if args.fp16:
        optimizer.update_master_grads()
    timers('backward-master-grad').stop()

547
    # Clipping gradients helps prevent the exploding gradient.
548
    timers('backward-clip-grad').start()
549
    if args.clip_grad > 0.:
550
        if not args.fp16:
551
552
553
554
555
556
557
558
            named_parameters = model.named_parameters()
            parameters = []
            parameter_names = []
            for parameter_name, parameter in model.named_parameters():
                parameters.append(parameter)
                parameter_names.append(parameter_name)
            mpu.clip_grad_norm(parameters, args.clip_grad,
                               parameter_names=parameter_names)
559
560
        else:
            optimizer.clip_master_grads(args.clip_grad)
561
    timers('backward-clip-grad').stop()
562
563
564
565
566
567
568
569
570
571
572
573
574

    # Update parameters.
    timers('optimizer').start()
    optimizer.step()
    timers('optimizer').stop()

    # Update learning rate.
    skipped_iter = 0
    if not (args.fp16 and optimizer.overflow):
        lr_scheduler.step()
    else:
        skipped_iter = 1

575
    if mpu.is_pipeline_last_stage():
576
577
578
579
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
580
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
581
582
        return loss_reduced, skipped_iter
    return {}, skipped_iter
583
584


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
585
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
586
                 loss_scale, report_memory_flag, skipped_iter):
Mohammad's avatar
Mohammad committed
587
588
589
590
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
591
592

    # Update losses.
mohammad's avatar
mohammad committed
593
594
595
    skipped_iters_key = 'skipped iterations'
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
596
    got_nan_key = 'got nan'
mohammad's avatar
mohammad committed
597
598

    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
599
    for key in loss_dict:
mohammad's avatar
mohammad committed
600
        if not skipped_iter:
601
602
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
603
604
605
606
607
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
608
609
610
611
            got_nan = got_nan or is_nan

    total_loss_dict[got_nan_key] = total_loss_dict.get(
        got_nan_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
612
613
614

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
615

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
616
617
618
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
619
620
621
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
622
    add_to_logging('forward-send-backward-recv')
623
624
625
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
626
    add_to_logging('backward-send-forward-recv')
627
    add_to_logging('backward-master-grad')
628
    add_to_logging('backward-params-all-reduce')
629
    add_to_logging('backward-embedding-all-reduce')
630
    add_to_logging('backward-clip-grad')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
    add_to_logging('optimizer')
    add_to_logging('batch generator')

    # Tensorboard values.
    if writer and torch.distributed.get_rank() == 0:
        writer.add_scalar('learning_rate', learning_rate, iteration)
        for key in loss_dict:
            writer.add_scalar(key, loss_dict[key], iteration)
        if args.fp16:
            writer.add_scalar('loss_scale', loss_scale, iteration)
        normalizer = iteration % args.log_interval
        if normalizer == 0:
            normalizer = args.log_interval
        timers.write(timers_to_log, writer, iteration,
                     normalizer=normalizer)

    if iteration % args.log_interval == 0:
        elapsed_time = timers('interval time').elapsed()
        if writer and torch.distributed.get_rank() == 0:
            writer.add_scalar('iteration_time',
                              elapsed_time / args.log_interval, iteration)
        log_string = ' iteration {:8d}/{:8d} |'.format(iteration,
                                                       args.train_iters)
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
            elapsed_time * 1000.0 / args.log_interval)
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
657
658
        num_iterations = max(
            1, args.log_interval - total_loss_dict[skipped_iters_key])
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
659
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
660
            if key not in [skipped_iters_key, got_nan_key]:
mohammad's avatar
mohammad committed
661
                avg = total_loss_dict[key].item() / float(num_iterations)
662
663
664
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
665
666
        if args.fp16:
            log_string += ' loss scale: {:.1f} |'.format(loss_scale)
mohammad's avatar
mohammad committed
667
668
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
669
670
        log_string += ' number of nan iterations: {:3d} |'.format(
            total_loss_dict[got_nan_key])
mohammad's avatar
mohammad committed
671
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
672
        total_loss_dict[got_nan_key] = 0
673
        print_rank_last(log_string)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
674
675
676
677
678
679
680
681
        if report_memory_flag:
            report_memory('after {} iterations'.format(iteration))
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


682
def train(forward_step_func, model, optimizer, lr_scheduler,
683
          train_data_iterator, valid_data_iterator):
684
    """Train the model function."""
Mohammad's avatar
Mohammad committed
685
686
    args = get_args()
    timers = get_timers()
687
688
689
690
691
692
693
694
695
696
697
698
699

    # Turn on training mode which enables dropout.
    model.train()

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

    timers('interval time').start()
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
700
        update_num_microbatches(args.consumed_train_samples)
701
702
703
704
        loss_dict, skipped_iter = train_step(forward_step_func,
                                             train_data_iterator,
                                             model,
                                             optimizer,
Mohammad's avatar
Mohammad committed
705
                                             lr_scheduler)
706
        iteration += 1
707
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
708
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
709
                                       get_num_microbatches()
710
711

        # Logging.
Mohammad's avatar
Mohammad committed
712
713
714
        loss_scale = None
        if args.fp16:
            loss_scale = optimizer.loss_scale
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
715
716
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
717
                                          iteration, loss_scale,
mohammad's avatar
mohammad committed
718
                                          report_memory_flag, skipped_iter)
719
720

        # Autoresume
721
722
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
723
            check_adlr_autoresume_termination(iteration, model, optimizer,
724
                                              lr_scheduler)
725
726
727
728

        # Checkpointing
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
729
            save_checkpoint(iteration, model, optimizer, lr_scheduler)
730
731
732
733
734
735

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
736
                                       valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
737
                                       iteration, False)
738
739

        if args.exit_interval and iteration % args.exit_interval == 0:
740
            torch.distributed.barrier()
741
742
            time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
            rank = torch.distributed.get_rank()
Mohammad's avatar
Mohammad committed
743
744
745
            print_rank_0('rank: {} | time: {} | exiting the program at '
                         'iteration {}'.format(rank, time_str, iteration))
            sys.exit()
746

mohammad's avatar
mohammad committed
747
    return iteration
748
749


Mohammad's avatar
Mohammad committed
750
def evaluate(forward_step_func, data_iterator, model, verbose=False):
751
    """Evaluation."""
Mohammad's avatar
Mohammad committed
752
    args = get_args()
753
754
755
756
757
758
759
760
761
762
763
764
765

    # Turn on evaluation mode which disables dropout.
    model.eval()

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
766

mohammad's avatar
mohammad committed
767
            for _ in range(get_num_microbatches()):
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
                if not mpu.is_pipeline_first_stage():
                    input_tensor, _ = communicate(
                        tensor_send_next=None,
                        tensor_send_prev=None,
                        recv_forward=True,
                        recv_backward=False)
                else:
                    input_tensor = None

                # Forward evaluation.
                output_tensor = forward_step_func(data_iterator, model, input_tensor)

                if mpu.is_pipeline_last_stage():
                    _, loss_dict = output_tensor
                    # Reduce across processes.
                    for key in loss_dict:
                        total_loss_dict[key] = total_loss_dict.get(key, torch.cuda.FloatTensor([0.0])) + \
                            loss_dict[key]
                else:
                    communicate(
                        tensor_send_next=output_tensor,
                        tensor_send_prev=None,
                        recv_forward=False,
                        recv_backward=False)
792

793
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
794
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
795
                                           * get_num_microbatches()
796
797
798
799
    # Move model back to the train mode.
    model.train()

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
800
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
801
802
803
804
805
806

    return total_loss_dict


def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
Mohammad's avatar
Mohammad committed
807
                               iteration, verbose=False):
808
    """Helper function to evaluate and dump results on screen."""
Mohammad's avatar
Mohammad committed
809
810
811
    writer = get_tensorboard_writer()

    total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
812
813
814
815
816
817
818
819
820
821
822
823
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
        if writer and torch.distributed.get_rank() == 0:
            writer.add_scalar('{} value'.format(key),
                              total_loss_dict[key].item(),
                              iteration)
            writer.add_scalar('{} ppl'.format(key), ppl, iteration)

    length = len(string) + 1
824
825
826
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
827
828


829
830
831
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
832
    args = get_args()
833

834
835
836
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
837
838
839

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
mohammad's avatar
mohammad committed
840
        args.consumed_train_samples = args.iteration * args.global_batch_size
841
842
    if args.iteration > 0 and args.consumed_valid_samples == 0:
        args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
mohammad's avatar
mohammad committed
843
            args.eval_iters * args.global_batch_size
844

845
    # Data loader only on rank 0 of each model parallel group.
846
    if mpu.get_tensor_model_parallel_rank() == 0:
847
848
849
850
851

        # Number of train/valid/test samples.
        train_iters = args.train_iters
        eval_iters = (train_iters // args.eval_interval + 1) * args.eval_iters
        test_iters = args.eval_iters
mohammad's avatar
mohammad committed
852
853
854
        train_val_test_num_samples = [train_iters * args.global_batch_size,
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
855
856
857
858
859
860
861
862
863
864
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
865
866
867
868
869
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
870
871
872
873
874
875
876
877
878
879
880
881
882

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
883
884
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
885
886
887
888
889
890
891
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

    # Build iterators.
    if train_dataloader is not None:
        train_data_iterator = iter(train_dataloader)
892
893
894
    else:
        train_data_iterator = None

895
896
    if valid_dataloader is not None:
        valid_data_iterator = iter(valid_dataloader)
897
    else:
898
        valid_data_iterator = None
899

900
901
    if test_dataloader is not None:
        test_data_iterator = iter(test_dataloader)
902
903
904
    else:
        test_data_iterator = None

905
    return train_data_iterator, valid_data_iterator, test_data_iterator