training.py 29.8 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from apex.optimizers import FusedAdam as Adam

Neel Kant's avatar
Neel Kant committed
25
from megatron import get_args
Mohammad's avatar
Mohammad committed
26
27
from megatron import get_timers
from megatron import get_tensorboard_writer
28
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
29
from megatron import print_rank_0
30
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
31
32
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
33
34
from megatron.fp16 import FP16_Module
from megatron.fp16 import FP16_Optimizer
Mohammad's avatar
Mohammad committed
35
from megatron.initialize import initialize_megatron
36
37
38
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import get_params_for_weight_decay_optimization
Neel Kant's avatar
Neel Kant committed
39
from megatron.model.realm_model import ICTBertModel
40
from megatron.utils import check_adlr_autoresume_termination
41
from megatron.utils import make_data_loader
42
from megatron.utils import report_memory
43
44


45
def pretrain(train_valid_test_dataset_provider, model_provider,
46
             forward_step_func, extra_args_provider=None, args_defaults={}):
47
48
49
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
50
51
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
52
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
53
        4) train the modle using the forward_step_func.
54
55

    Arguments:
56
57
58
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
59
60
61
62
63
64
65
66
67
68
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
69
70
    """

71
    # Initalize and get arguments, timers, and Tensorboard writer.
72
73
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
74

75
    args = get_args()
Mohammad's avatar
Mohammad committed
76
    timers = get_timers()
77
78

    # Model, optimizer, and learning rate.
Mohammad's avatar
Mohammad committed
79
80
81
    timers('model and optimizer').start()
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider)
    timers('model and optimizer').stop()
82
83

    # Data stuff.
84
85
86
87
88
    timers('train/valid/test data iterators').start()
    train_data_iterator, valid_data_iterator, test_data_iterator \
        = build_train_valid_test_data_iterators(
            train_valid_test_dataset_provider)
    timers('train/valid/test data iterators').stop()
Mohammad's avatar
Mohammad committed
89
90
91

    # Print setup timing.
    print_rank_0('done with setups ...')
92
    timers.log(['model and optimizer', 'train/valid/test data iterators'])
Mohammad's avatar
Mohammad committed
93
    print_rank_0('training ...')
94
95

    iteration = 0
96
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
97
98
99
        iteration = train(forward_step_func,
                          model, optimizer, lr_scheduler,
                          train_data_iterator, valid_data_iterator)
Mohammad's avatar
Mohammad committed
100

101
102
103
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
104
                                   valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
105
                                   iteration, False)
106
107

    if args.save and iteration != 0:
108
        save_checkpoint(iteration, model, optimizer, lr_scheduler)
109
110
111
112
113
114

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
Mohammad's avatar
Mohammad committed
115
                                   0, True)
116
117


Mohammad's avatar
Mohammad committed
118
def get_model(model_provider_func):
119
    """Build the model."""
Mohammad's avatar
Mohammad committed
120
    args = get_args()
121
122

    # Build model on cpu.
Mohammad's avatar
Mohammad committed
123
    model = model_provider_func()
124
125
126

    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
127
        print(' > number of parameters on (tensor, pipeline) '
128
              'model parallel rank ({}, {}): {}'.format(
129
130
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
131
132
133
134
135
136
137
138
139
140
            sum([p.nelement() for p in model.parameters()])), flush=True)

    # GPU allocation.
    model.cuda(torch.cuda.current_device())

    # Fp16 conversion.
    if args.fp16:
        model = FP16_Module(model)

    # Wrap model for distributed training."""
141
    if args.num_microbatches_in_minibatch > 1:
142
143
        assert args.DDP_impl == 'local'

144
145
    if args.DDP_impl == 'torch':
        i = torch.cuda.current_device()
Mohammad's avatar
Mohammad committed
146
147
        model = torchDDP(model, device_ids=[i], output_device=i,
                         process_group=mpu.get_data_parallel_group())
148
149
        return model
    if args.DDP_impl == 'local':
Mohammad's avatar
Mohammad committed
150
        model = LocalDDP(model)
151
152
        return model

153
    raise NotImplementedError('Unknown DDP implementation specified: {}. '
154
                              'Exiting.'.format(args.DDP_impl))
155
156


Mohammad's avatar
Mohammad committed
157
def get_optimizer(model):
158
    """Set up the optimizer."""
Mohammad's avatar
Mohammad committed
159
    args = get_args()
160
161

    # Build parameter groups (weight decay and non-decay).
Mohammad's avatar
Mohammad committed
162
    while isinstance(model, (torchDDP, LocalDDP, FP16_Module)):
163
164
165
166
167
168
        model = model.module
    param_groups = get_params_for_weight_decay_optimization(model)

    # Add model parallel attribute if it is not set.
    for param_group in param_groups:
        for param in param_group['params']:
169
170
            if not hasattr(param, 'tensor_model_parallel'):
                param.tensor_model_parallel = False
171
172

    # Use Adam.
173
174
    optimizer = Adam(param_groups, lr=args.lr, weight_decay=args.weight_decay,
        betas=(args.adam_beta1, args.adam_beta2), eps=args.adam_eps)
175
176
177
178
179
180
181
182

    # Wrap into fp16 optimizer.
    if args.fp16:
        optimizer = FP16_Optimizer(optimizer,
                                   static_loss_scale=args.loss_scale,
                                   dynamic_loss_scale=args.dynamic_loss_scale,
                                   dynamic_loss_args={
                                       'scale_window': args.loss_scale_window,
Neel Kant's avatar
Neel Kant committed
183
                                       'min_scale': args.min_scale,
184
185
186
187
188
                                       'delayed_shift': args.hysteresis})

    return optimizer


Mohammad's avatar
Mohammad committed
189
def get_learning_rate_scheduler(optimizer):
190
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
191
    args = get_args()
192
193
194
195
196
197
198

    # Add linear learning rate scheduler.
    if args.lr_decay_iters is not None:
        num_iters = args.lr_decay_iters
    else:
        num_iters = args.train_iters
    num_iters = max(1, num_iters)
Mohammad's avatar
Mohammad committed
199
    init_step = 0
200
201
202
203
204
    warmup_iter = args.warmup * num_iters
    lr_scheduler = AnnealingLR(
        optimizer,
        start_lr=args.lr,
        warmup_iter=warmup_iter,
Mohammad's avatar
Mohammad committed
205
        total_iters=num_iters,
206
207
208
209
210
211
212
213
214
        decay_style=args.lr_decay_style,
        last_iter=init_step,
        min_lr=args.min_lr,
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


Mohammad's avatar
Mohammad committed
215
def setup_model_and_optimizer(model_provider_func):
216
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
217
    args = get_args()
218

Mohammad's avatar
Mohammad committed
219
220
221
    model = get_model(model_provider_func)
    optimizer = get_optimizer(model)
    lr_scheduler = get_learning_rate_scheduler(optimizer)
222
223

    if args.load is not None:
224
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
225
226
227
    else:
        args.iteration = 0

Neel Kant's avatar
Neel Kant committed
228
229
230
231
232
    # get model without FP16 and/or TorchDDP wrappers
    unwrapped_model = model
    while hasattr(unwrapped_model, 'module'):
        unwrapped_model = unwrapped_model.module

233
    if args.iteration == 0 and hasattr(unwrapped_model, 'init_state_dict_from_bert'):
234
        print("Initializing ICT from pretrained BERT model", flush=True)
235
        unwrapped_model.init_state_dict_from_bert()
Neel Kant's avatar
Neel Kant committed
236

237
238
239
    return model, optimizer, lr_scheduler


240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
def communicate(tensor_send_next, tensor_send_prev, recv_forward, recv_backward):
    """Communicate tensors between stages using torch.distributed.ring_exchange(.) API."""
    args = get_args()

    # Create placeholder tensors for receive in forward and backward directions
    # if needed.
    tensor_recv_prev = None
    tensor_recv_next = None
    tensor_shape = (args.batch_size, args.seq_length, args.hidden_size)
    if recv_forward:
        tensor_recv_prev = torch.empty(tensor_shape,
                                       requires_grad=True,
                                       dtype=args.params_dtype).cuda()
    if recv_backward:
        tensor_recv_next = torch.empty(tensor_shape,
                                       requires_grad=True,
                                       dtype=args.params_dtype).cuda()

    # Send tensors in both the forward and backward directions as appropriate.
    torch.distributed.ring_exchange(tensor_send_prev=tensor_send_prev,
                                    tensor_recv_prev=tensor_recv_prev,
                                    tensor_send_next=tensor_send_next,
                                    tensor_recv_next=tensor_recv_next,
263
                                    group=mpu.get_pipeline_model_parallel_group())
264
265
266
267
268

    return tensor_recv_prev, tensor_recv_next


def backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad):
269
    """Backward step."""
Mohammad's avatar
Mohammad committed
270
271
    args = get_args()
    timers = get_timers()
272

273
274
275
276
    # Retain the grad on the input_tensor.
    if input_tensor is not None:
        input_tensor.retain_grad()

277
    # Backward pass.
278
279
280
281
282
283
284
285
286
287
288
289
290
291
    if args.fp16:
        optimizer.backward(output_tensor, update_master_grads=False,
                           output_tensor_grad=output_tensor_grad)
    else:
        torch.autograd.backward(output_tensor, grad_tensors=output_tensor_grad)

    # Collect the grad of the input_tensor.
    input_tensor_grad = None
    if input_tensor is not None:
        input_tensor_grad = input_tensor.grad

    return input_tensor_grad


292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
def forward_step_with_communication(forward_step_func, data_iterator, model,
                                    input_tensors, output_tensors,
                                    losses_reduced, timers):
    if not mpu.is_pipeline_first_stage():
        input_tensor, _ = communicate(
            tensor_send_next=None,
            tensor_send_prev=None,
            recv_forward=True,
            recv_backward=False)
    else:
        input_tensor = None

    # Forward model for one step.
    output_tensor = forward_step_func(data_iterator, model, input_tensor)

    if mpu.is_pipeline_last_stage():
        loss, loss_reduced = output_tensor
        output_tensor = loss
        losses_reduced.append(loss_reduced)
    else:
        communicate(
            tensor_send_next=output_tensor,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=False)

    input_tensors.append(input_tensor)
    output_tensors.append(output_tensor)


def backward_step_with_communication(optimizer, model, input_tensors, output_tensors, timers):
    """Backward step."""
    input_tensor = input_tensors.pop(0)
    output_tensor = output_tensors.pop(0)

    if mpu.is_pipeline_last_stage():
        output_tensor_grad = None
    else:
        _, output_tensor_grad = communicate(
            tensor_send_next=None,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=True)

    # Backward pass for one step.
    input_grad_tensor = \
        backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad)

    if not mpu.is_pipeline_first_stage():
        communicate(
            tensor_send_next=None,
            tensor_send_prev=input_grad_tensor,
            recv_forward=False,
            recv_backward=False)


348
349
350
351
352
353
354
def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
355
    if args.fp16:
mohammad's avatar
mohammad committed
356
        optimizer.zero_grad(set_grads_to_None=True)
357
    else:
mohammad's avatar
mohammad committed
358
        optimizer.zero_grad()
359
360

    # Compute number of microbatches in a minibatch.
361
    num_microbatches_in_minibatch = args.num_microbatches_in_minibatch
362
363
364
    # For now, perform training without warmup. Perform forward
    # passes for all microbatches, then backward passes for all
    # microbatches.
365
366
    # TODO: Switch to the following schedule to facilitate more
    # memory-efficient training.
367
368
369
370
371
372
373
    # num_warmup_microbatches = \
    #     (torch.distributed.get_world_size(group=mpu.get_pipeline_model_parallel_group()) -
    #      torch.distributed.get_rank(group=mpu.get_pipeline_model_parallel_group()) - 1)
    # num_warmup_microbatches = min(
    #     num_warmup_microbatches,
    #     num_microbatches_in_minibatch)
    num_warmup_microbatches = num_microbatches_in_minibatch
374
375
376
377
378

    input_tensors = []
    output_tensors = []
    losses_reduced = []

379
    # Run warmup forward passes.
380
    timers('forward').start()
381
    for i in range(num_warmup_microbatches):
382
383
384
385
386
387
388
389
390
391
392
393
        if args.pipeline_model_parallel_size > 1:
            forward_step_with_communication(
                forward_step_func, data_iterator, model,
                input_tensors, output_tensors,
                losses_reduced, timers)
        else:
            input_tensor = None
            loss, loss_reduced = forward_step_func(data_iterator, model, input_tensor)
            output_tensor = loss
            losses_reduced.append(loss_reduced)
            input_tensors.append(input_tensor)
            output_tensors.append(output_tensor)
394
    timers('forward').stop()
395
396

    # Run cooldown backward passes.
397
    timers('backward').start()
398
    for i in range(num_warmup_microbatches):
399
400
401
402
403
404
405
406
        if args.pipeline_model_parallel_size > 1:
            backward_step_with_communication(
                optimizer, model, input_tensors, output_tensors, timers)
        else:
            input_tensor = input_tensors.pop(0)
            output_tensor = output_tensors.pop(0)
            output_tensor_grad = None
            backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad)
407
408
409

    # All-reduce if needed.
    if args.DDP_impl == 'local':
410
        timers('backward-params-all-reduce').start()
411
412
        model.allreduce_params(reduce_after=False,
                               fp32_allreduce=args.fp32_allreduce)
413
        timers('backward-params-all-reduce').stop()
414

415
416
417
418
    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
419
    timers('backward-embedding-all-reduce').start()
420
421
    if (mpu.is_pipeline_first_stage() or mpu.is_pipeline_last_stage()) and \
            args.pipeline_model_parallel_size > 1:
422
423
424
425
426
427
428
        unwrapped_model = model
        while isinstance(unwrapped_model, (torchDDP, LocalDDP, FP16_Module)):
            unwrapped_model = unwrapped_model.module

        word_embeddings_weight = unwrapped_model.word_embeddings_weight()
        torch.distributed.all_reduce(word_embeddings_weight.grad,
                                     group=mpu.get_embedding_group())
429
    timers('backward-embedding-all-reduce').stop()
430

431
432
433
434
435
436
    # Update master gradients.
    timers('backward-master-grad').start()
    if args.fp16:
        optimizer.update_master_grads()
    timers('backward-master-grad').stop()

437
    # Clipping gradients helps prevent the exploding gradient.
438
    timers('backward-clip-grad').start()
439
    if args.clip_grad > 0.:
440
        if not args.fp16:
441
442
443
444
445
446
447
448
            named_parameters = model.named_parameters()
            parameters = []
            parameter_names = []
            for parameter_name, parameter in model.named_parameters():
                parameters.append(parameter)
                parameter_names.append(parameter_name)
            mpu.clip_grad_norm(parameters, args.clip_grad,
                               parameter_names=parameter_names)
449
450
        else:
            optimizer.clip_master_grads(args.clip_grad)
451
    timers('backward-clip-grad').stop()
452
    timers('backward').stop()
453
454
455
456
457
458
459
460
461
462
463
464
465

    # Update parameters.
    timers('optimizer').start()
    optimizer.step()
    timers('optimizer').stop()

    # Update learning rate.
    skipped_iter = 0
    if not (args.fp16 and optimizer.overflow):
        lr_scheduler.step()
    else:
        skipped_iter = 1

466
    if mpu.is_pipeline_last_stage():
467
468
469
470
471
472
473
474
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
            loss_reduced[key] = sum(losses_reduced_for_key) / \
                    len(losses_reduced_for_key)
        return loss_reduced, skipped_iter
    return {}, skipped_iter
475
476


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
477
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
478
                 loss_scale, report_memory_flag, skipped_iter):
Mohammad's avatar
Mohammad committed
479
480
481
482
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
483
484

    # Update losses.
mohammad's avatar
mohammad committed
485
486
487
    skipped_iters_key = 'skipped iterations'
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
488
    got_nan_key = 'got nan'
mohammad's avatar
mohammad committed
489
490

    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
491
    for key in loss_dict:
mohammad's avatar
mohammad committed
492
        if not skipped_iter:
493
494
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
495
496
497
498
499
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
500
501
502
503
            got_nan = got_nan or is_nan

    total_loss_dict[got_nan_key] = total_loss_dict.get(
        got_nan_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
504
505
506

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
507

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
508
509
510
511
512
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
    add_to_logging('forward')
    add_to_logging('backward')
513
    add_to_logging('backward-master-grad')
514
    add_to_logging('backward-params-all-reduce')
515
    add_to_logging('backward-embedding-all-reduce')
516
    add_to_logging('backward-clip-grad')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
    add_to_logging('optimizer')
    add_to_logging('batch generator')

    # Tensorboard values.
    if writer and torch.distributed.get_rank() == 0:
        writer.add_scalar('learning_rate', learning_rate, iteration)
        for key in loss_dict:
            writer.add_scalar(key, loss_dict[key], iteration)
        if args.fp16:
            writer.add_scalar('loss_scale', loss_scale, iteration)
        normalizer = iteration % args.log_interval
        if normalizer == 0:
            normalizer = args.log_interval
        timers.write(timers_to_log, writer, iteration,
                     normalizer=normalizer)

    if iteration % args.log_interval == 0:
        elapsed_time = timers('interval time').elapsed()
        if writer and torch.distributed.get_rank() == 0:
            writer.add_scalar('iteration_time',
                              elapsed_time / args.log_interval, iteration)
        log_string = ' iteration {:8d}/{:8d} |'.format(iteration,
                                                       args.train_iters)
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
            elapsed_time * 1000.0 / args.log_interval)
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
543
544
        num_iterations = max(
            1, args.log_interval - total_loss_dict[skipped_iters_key])
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
545
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
546
            if key not in [skipped_iters_key, got_nan_key]:
mohammad's avatar
mohammad committed
547
                avg = total_loss_dict[key].item() / float(num_iterations)
548
549
550
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
551
552
        if args.fp16:
            log_string += ' loss scale: {:.1f} |'.format(loss_scale)
mohammad's avatar
mohammad committed
553
554
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
555
556
        log_string += ' number of nan iterations: {:3d} |'.format(
            total_loss_dict[got_nan_key])
mohammad's avatar
mohammad committed
557
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
558
        total_loss_dict[got_nan_key] = 0
559
        print_rank_last(log_string)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
560
561
562
563
564
565
566
567
        if report_memory_flag:
            report_memory('after {} iterations'.format(iteration))
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


568
def train(forward_step_func, model, optimizer, lr_scheduler,
569
          train_data_iterator, valid_data_iterator):
570
    """Train the model function."""
Mohammad's avatar
Mohammad committed
571
572
    args = get_args()
    timers = get_timers()
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589

    # Turn on training mode which enables dropout.
    model.train()

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

    timers('interval time').start()
    report_memory_flag = True
    while iteration < args.train_iters:
        loss_dict, skipped_iter = train_step(forward_step_func,
                                             train_data_iterator,
                                             model,
                                             optimizer,
Mohammad's avatar
Mohammad committed
590
                                             lr_scheduler)
591
592
593
        iteration += 1

        # Logging.
Mohammad's avatar
Mohammad committed
594
595
596
        loss_scale = None
        if args.fp16:
            loss_scale = optimizer.loss_scale
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
597
598
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
599
                                          iteration, loss_scale,
mohammad's avatar
mohammad committed
600
                                          report_memory_flag, skipped_iter)
601
602

        # Autoresume
603
604
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
605
            check_adlr_autoresume_termination(iteration, model, optimizer,
606
                                              lr_scheduler)
607
608
609
610

        # Checkpointing
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
611
            save_checkpoint(iteration, model, optimizer, lr_scheduler)
612
613
614
615
616
617

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
618
                                       valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
619
                                       iteration, False)
620
621

        if args.exit_interval and iteration % args.exit_interval == 0:
622
            torch.distributed.barrier()
623
624
            time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
            rank = torch.distributed.get_rank()
Mohammad's avatar
Mohammad committed
625
626
627
            print_rank_0('rank: {} | time: {} | exiting the program at '
                         'iteration {}'.format(rank, time_str, iteration))
            sys.exit()
628

mohammad's avatar
mohammad committed
629
    return iteration
630
631


Mohammad's avatar
Mohammad committed
632
def evaluate(forward_step_func, data_iterator, model, verbose=False):
633
    """Evaluation."""
Mohammad's avatar
Mohammad committed
634
    args = get_args()
635
636
637
638
639
640
641
642
643
644
645
646
647

    # Turn on evaluation mode which disables dropout.
    model.eval()

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
648

649
            if not mpu.is_pipeline_first_stage():
650
651
652
653
654
655
656
657
                input_tensor, _ = communicate(
                    tensor_send_next=None,
                    tensor_send_prev=None,
                    recv_forward=True,
                    recv_backward=False)
            else:
                input_tensor = None

658
            # Forward evaluation.
659
660
            output_tensor = forward_step_func(data_iterator, model, input_tensor)

661
            if mpu.is_pipeline_last_stage():
662
663
664
665
666
667
668
669
670
671
672
673
                _, loss_dict = output_tensor
                # Reduce across processes.
                for key in loss_dict:
                    total_loss_dict[key] = total_loss_dict.get(key, 0.) + \
                        loss_dict[key]
            else:
                communicate(
                    tensor_send_next=output_tensor,
                    tensor_send_prev=None,
                    recv_forward=False,
                    recv_backward=False)

674
675
676
677
678
679
680
681
682
683
684
    # Move model back to the train mode.
    model.train()

    for key in total_loss_dict:
        total_loss_dict[key] /= args.eval_iters

    return total_loss_dict


def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
Mohammad's avatar
Mohammad committed
685
                               iteration, verbose=False):
686
    """Helper function to evaluate and dump results on screen."""
Mohammad's avatar
Mohammad committed
687
688
689
    writer = get_tensorboard_writer()

    total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
690
691
692
693
694
695
696
697
698
699
700
701
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
        if writer and torch.distributed.get_rank() == 0:
            writer.add_scalar('{} value'.format(key),
                              total_loss_dict[key].item(),
                              iteration)
            writer.add_scalar('{} ppl'.format(key), ppl, iteration)

    length = len(string) + 1
702
703
704
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
705
706


707
708
709
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
710
    args = get_args()
711

712
713
714
715
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
    # Data loader only on rank 0 of each model parallel group.
716
    if mpu.get_tensor_model_parallel_rank() == 0:
717
718
        # Rank, size, and global batch size.
        data_parallel_size = mpu.get_data_parallel_world_size()
719
        global_batch_size = args.batch_size * data_parallel_size * args.num_microbatches_in_minibatch
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753

        # Number of train/valid/test samples.
        train_iters = args.train_iters
        eval_iters = (train_iters // args.eval_interval + 1) * args.eval_iters
        test_iters = args.eval_iters
        train_val_test_num_samples = [train_iters * global_batch_size,
                                      eval_iters * global_batch_size,
                                      test_iters * global_batch_size]
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
        train_dataloader = make_data_loader(train_ds)
        valid_dataloader = make_data_loader(valid_ds)
        test_dataloader = make_data_loader(test_ds)

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
754
755
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
756
757
758
759
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

Mohammad's avatar
Mohammad committed
760
    # Shift the start iterations.
761
762
    if train_dataloader is not None:
        train_dataloader.batch_sampler.start_iter = args.iteration % \
Neel Kant's avatar
Neel Kant committed
763
            len(train_dataloader)
Mohammad's avatar
Mohammad committed
764
        print_rank_0('setting training data start iteration to {}'.
765
766
                     format(train_dataloader.batch_sampler.start_iter))
    if valid_dataloader is not None:
Mohammad's avatar
Mohammad committed
767
        start_iter_val = (args.iteration // args.eval_interval) * \
Neel Kant's avatar
Neel Kant committed
768
            args.eval_iters
769
        valid_dataloader.batch_sampler.start_iter = start_iter_val % \
Neel Kant's avatar
Neel Kant committed
770
            len(valid_dataloader)
Mohammad's avatar
Mohammad committed
771
        print_rank_0('setting validation data start iteration to {}'.
772
                     format(valid_dataloader.batch_sampler.start_iter))
773

774
775
776
    # Build iterators.
    if train_dataloader is not None:
        train_data_iterator = iter(train_dataloader)
777
778
779
    else:
        train_data_iterator = None

780
781
    if valid_dataloader is not None:
        valid_data_iterator = iter(valid_dataloader)
782
    else:
783
        valid_data_iterator = None
784

785
786
    if test_dataloader is not None:
        test_data_iterator = iter(test_dataloader)
787
788
789
    else:
        test_data_iterator = None

790
    return train_data_iterator, valid_data_iterator, test_data_iterator