training.py 40 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()

25
26
27
28
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from apex.optimizers import FusedAdam as Adam

Neel Kant's avatar
Neel Kant committed
29
from megatron import get_args
Mohammad's avatar
Mohammad committed
30
31
from megatron import get_timers
from megatron import get_tensorboard_writer
32
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
33
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
34
from megatron import is_last_rank
mohammad's avatar
mohammad committed
35
from megatron import update_num_microbatches
36
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
37
from megatron import print_rank_0
38
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
39
40
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
41
from megatron.fp16 import FP16_Module
mohammad's avatar
mohammad committed
42
43
from megatron.optimizer.optimizer import get_megatron_optimizer

Mohammad's avatar
Mohammad committed
44
from megatron.initialize import initialize_megatron
45
from megatron.initialize import write_args_to_tensorboard
46
47
48
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import get_params_for_weight_decay_optimization
Neel Kant's avatar
Neel Kant committed
49
from megatron.model.realm_model import ICTBertModel
50
from megatron.utils import check_adlr_autoresume_termination
51
from megatron.data.data_loaders import build_pretraining_data_loader
52
from megatron.utils import report_memory
53
54


55
56
57
58
59
60
61
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


62
def pretrain(train_valid_test_dataset_provider, model_provider,
63
             forward_step_func, extra_args_provider=None, args_defaults={}):
64
65
66
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
67
68
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
69
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
70
        4) train the modle using the forward_step_func.
71
72

    Arguments:
73
74
75
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
76
77
78
79
80
81
82
83
84
85
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
86
87
    """

88
    # Initalize and get arguments, timers, and Tensorboard writer.
89
90
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
91

92
93
94
95
96
97
98
99
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
    start_time_tensor = torch.cuda.FloatTensor([_TRAIN_START_TIME])
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
100
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
101
102
103
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

104
    args = get_args()
Mohammad's avatar
Mohammad committed
105
    timers = get_timers()
106
107

    # Model, optimizer, and learning rate.
Mohammad's avatar
Mohammad committed
108
109
110
    timers('model and optimizer').start()
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider)
    timers('model and optimizer').stop()
111
112
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
113
114

    # Data stuff.
115
116
117
118
119
    timers('train/valid/test data iterators').start()
    train_data_iterator, valid_data_iterator, test_data_iterator \
        = build_train_valid_test_data_iterators(
            train_valid_test_dataset_provider)
    timers('train/valid/test data iterators').stop()
mshoeybi's avatar
mshoeybi committed
120
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
121
122
123

    # Print setup timing.
    print_rank_0('done with setups ...')
124
    timers.log(['model and optimizer', 'train/valid/test data iterators'])
Mohammad's avatar
Mohammad committed
125
    print_rank_0('training ...')
126
127

    iteration = 0
128
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
129
130
131
        iteration = train(forward_step_func,
                          model, optimizer, lr_scheduler,
                          train_data_iterator, valid_data_iterator)
132
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
133

134
135
136
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
137
                                   valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
138
                                   iteration, False)
139
140

    if args.save and iteration != 0:
141
        save_checkpoint(iteration, model, optimizer, lr_scheduler)
142
143
144
145
146
147

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
Mohammad's avatar
Mohammad committed
148
                                   0, True)
149

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
166
167
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
168
169
            iterations += 1
        # Reset
170
        update_num_microbatches(0, consistency_check=False)
171
172
173
174
175
176
177
178
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

179

Mohammad's avatar
Mohammad committed
180
def get_model(model_provider_func):
181
    """Build the model."""
Mohammad's avatar
Mohammad committed
182
    args = get_args()
183
184

    # Build model on cpu.
Mohammad's avatar
Mohammad committed
185
    model = model_provider_func()
186
187
188

    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
189
        print(' > number of parameters on (tensor, pipeline) '
190
              'model parallel rank ({}, {}): {}'.format(
191
192
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
193
194
195
196
197
198
199
200
201
202
203
            sum([p.nelement() for p in model.parameters()])), flush=True)

    # GPU allocation.
    model.cuda(torch.cuda.current_device())

    # Fp16 conversion.
    if args.fp16:
        model = FP16_Module(model)

    if args.DDP_impl == 'torch':
        i = torch.cuda.current_device()
Mohammad's avatar
Mohammad committed
204
205
        model = torchDDP(model, device_ids=[i], output_device=i,
                         process_group=mpu.get_data_parallel_group())
206
207
        return model
    if args.DDP_impl == 'local':
Mohammad's avatar
Mohammad committed
208
        model = LocalDDP(model)
209
210
        return model

211
    raise NotImplementedError('Unknown DDP implementation specified: {}. '
212
                              'Exiting.'.format(args.DDP_impl))
213
214


Mohammad's avatar
Mohammad committed
215
def get_optimizer(model):
216
    """Set up the optimizer."""
Mohammad's avatar
Mohammad committed
217
    args = get_args()
218
219

    # Build parameter groups (weight decay and non-decay).
Mohammad's avatar
Mohammad committed
220
    while isinstance(model, (torchDDP, LocalDDP, FP16_Module)):
221
222
223
224
225
226
        model = model.module
    param_groups = get_params_for_weight_decay_optimization(model)

    # Add model parallel attribute if it is not set.
    for param_group in param_groups:
        for param in param_group['params']:
227
228
            if not hasattr(param, 'tensor_model_parallel'):
                param.tensor_model_parallel = False
229
230

    # Use Adam.
231
232
    optimizer = Adam(param_groups, lr=args.lr, weight_decay=args.weight_decay,
        betas=(args.adam_beta1, args.adam_beta2), eps=args.adam_eps)
233
234

    # Wrap into fp16 optimizer.
mohammad's avatar
mohammad committed
235
    optimizer = get_megatron_optimizer(optimizer, model)
236
237
238
    return optimizer


Mohammad's avatar
Mohammad committed
239
def get_learning_rate_scheduler(optimizer):
240
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
241
    args = get_args()
242

243
244
245
246
247
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
        decay_steps = args.lr_decay_iters * args.global_batch_size
248
249
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
250
251
        else:
            warmup_steps = args.lr_warmup_iters * args.global_batch_size
252
253
254
255
256
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
257
        update_train_iters(args)
258
259
260
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
        decay_steps = args.lr_decay_samples
261
262
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
263
264
        else:
            warmup_steps = args.lr_warmup_samples
265
    else:
266
267
268
        raise Exception(
            'either train-iters or train-samples should be provided.')

269
270
    lr_scheduler = AnnealingLR(
        optimizer,
271
        max_lr=args.lr,
272
        min_lr=args.min_lr,
273
274
        warmup_steps=warmup_steps,
        decay_steps=decay_steps,
275
        decay_style=args.lr_decay_style,
276
277
278
279
280
281
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


Mohammad's avatar
Mohammad committed
282
def setup_model_and_optimizer(model_provider_func):
283
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
284
    args = get_args()
285

Mohammad's avatar
Mohammad committed
286
287
288
    model = get_model(model_provider_func)
    optimizer = get_optimizer(model)
    lr_scheduler = get_learning_rate_scheduler(optimizer)
289
290

    if args.load is not None:
291
292
293
294
295
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
        timers('load checkpoint').start()
296
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
297
298
299
        torch.distributed.barrier()
        timers('load checkpoint').stop()
        timers.log(['load checkpoint'])
300
301
302
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
303
    # We only support local DDP with multiple micro-batches.
mohammad's avatar
mohammad committed
304
305
306
    if get_num_microbatches() > 1:
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
307
308
309
310
311
    # get model without FP16 and/or TorchDDP wrappers
    unwrapped_model = model
    while hasattr(unwrapped_model, 'module'):
        unwrapped_model = unwrapped_model.module

312
313
    if args.iteration == 0 and hasattr(unwrapped_model,
                                       'init_state_dict_from_bert'):
314
        print("Initializing ICT from pretrained BERT model", flush=True)
315
        unwrapped_model.init_state_dict_from_bert()
Neel Kant's avatar
Neel Kant committed
316

317
318
319
    return model, optimizer, lr_scheduler


320
321
322
323
324
325
326
327
def communicate(tensor_send_next, tensor_send_prev, recv_forward, recv_backward):
    """Communicate tensors between stages using torch.distributed.ring_exchange(.) API."""
    args = get_args()

    # Create placeholder tensors for receive in forward and backward directions
    # if needed.
    tensor_recv_prev = None
    tensor_recv_next = None
328
    tensor_shape = (args.seq_length, args.micro_batch_size, args.hidden_size)
329
330
331
    dtype = args.params_dtype
    if args.fp32_residual_connection:
        dtype = torch.float
332
333
334
    if recv_forward:
        tensor_recv_prev = torch.empty(tensor_shape,
                                       requires_grad=True,
335
                                       device=torch.cuda.current_device(),
336
                                       dtype=dtype)
337
338
339
    if recv_backward:
        tensor_recv_next = torch.empty(tensor_shape,
                                       requires_grad=True,
340
                                       device=torch.cuda.current_device(),
341
                                       dtype=dtype)
342
343
344
345
346
347

    # Send tensors in both the forward and backward directions as appropriate.
    torch.distributed.ring_exchange(tensor_send_prev=tensor_send_prev,
                                    tensor_recv_prev=tensor_recv_prev,
                                    tensor_send_next=tensor_send_next,
                                    tensor_recv_next=tensor_recv_next,
348
                                    group=mpu.get_pipeline_model_parallel_group())
349
350
351
352
353

    return tensor_recv_prev, tensor_recv_next


def backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad):
354
    """Backward step."""
Mohammad's avatar
Mohammad committed
355
356
    args = get_args()
    timers = get_timers()
357

358
359
360
361
    # Retain the grad on the input_tensor.
    if input_tensor is not None:
        input_tensor.retain_grad()

362
    # Backward pass.
mohammad's avatar
mohammad committed
363
364
365
    if output_tensor_grad is None:
        output_tensor = optimizer.scale_loss(output_tensor)
    torch.autograd.backward(output_tensor, grad_tensors=output_tensor_grad)
366

367
368
369
370
371
372
373
374
    # Collect the grad of the input_tensor.
    input_tensor_grad = None
    if input_tensor is not None:
        input_tensor_grad = input_tensor.grad

    return input_tensor_grad


375
376
377
def forward_step_with_communication(forward_step_func, data_iterator, model,
                                    input_tensors, output_tensors,
                                    losses_reduced, timers):
378
379
    args = get_args()

380
    if not mpu.is_pipeline_first_stage():
381
        timers('forward-recv').start()
382
383
384
385
386
        input_tensor, _ = communicate(
            tensor_send_next=None,
            tensor_send_prev=None,
            recv_forward=True,
            recv_backward=False)
387
        timers('forward-recv').stop()
388
389
390
391
    else:
        input_tensor = None

    # Forward model for one step.
392
    timers('forward-compute').start()
393
    output_tensor = forward_step_func(data_iterator, model, input_tensor)
394
    timers('forward-compute').stop()
395
396
397

    if mpu.is_pipeline_last_stage():
        loss, loss_reduced = output_tensor
mohammad's avatar
mohammad committed
398
        output_tensor = loss / get_num_microbatches()
399
400
        losses_reduced.append(loss_reduced)
    else:
401
        timers('forward-send').start()
402
403
404
405
406
        communicate(
            tensor_send_next=output_tensor,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=False)
407
        timers('forward-send').stop()
408
409
410
411
412
413
414
415
416
417
418
419

    input_tensors.append(input_tensor)
    output_tensors.append(output_tensor)


def backward_step_with_communication(optimizer, model, input_tensors, output_tensors, timers):
    input_tensor = input_tensors.pop(0)
    output_tensor = output_tensors.pop(0)

    if mpu.is_pipeline_last_stage():
        output_tensor_grad = None
    else:
420
        timers('backward-recv').start()
421
422
423
424
425
        _, output_tensor_grad = communicate(
            tensor_send_next=None,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=True)
426
        timers('backward-recv').stop()
427
428

    # Backward pass for one step.
429
    timers('backward-compute').start()
430
431
    input_grad_tensor = \
        backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad)
432
    timers('backward-compute').stop()
433
434

    if not mpu.is_pipeline_first_stage():
435
        timers('backward-send').start()
436
437
438
439
440
        communicate(
            tensor_send_next=None,
            tensor_send_prev=input_grad_tensor,
            recv_forward=False,
            recv_backward=False)
441
        timers('backward-send').stop()
442
443


444
445
446
447
448
def forward_and_backward_steps_with_communication(forward_step_func, data_iterator, model,
                                                  optimizer,
                                                  input_tensor, last_microbatch,
                                                  input_tensors, output_tensors,
                                                  losses_reduced, timers):
449
450
    args = get_args()

451
452
453
454
455
456
457
    # Forward model for one step.
    timers('forward-compute').start()
    output_tensor = forward_step_func(data_iterator, model, input_tensor)
    timers('forward-compute').stop()

    if mpu.is_pipeline_last_stage():
        loss, loss_reduced = output_tensor
mohammad's avatar
mohammad committed
458
        output_tensor = loss / get_num_microbatches()
459
460
461
        output_tensor_grad = None
        losses_reduced.append(loss_reduced)
    else:
Deepak Narayanan's avatar
Deepak Narayanan committed
462
        timers('forward-send-backward-recv').start()
463
464
465
466
467
        _, output_tensor_grad = communicate(
            tensor_send_next=output_tensor,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=True)
Deepak Narayanan's avatar
Deepak Narayanan committed
468
        timers('forward-send-backward-recv').stop()
469
470
471
472
473
474
475
476
477
478
479
480
481
482

    input_tensors.append(input_tensor)
    output_tensors.append(output_tensor)

    input_tensor = input_tensors.pop(0)
    output_tensor = output_tensors.pop(0)

    # Backward pass for one step.
    timers('backward-compute').start()
    input_grad_tensor = \
        backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad)
    timers('backward-compute').stop()

    if not mpu.is_pipeline_first_stage():
Deepak Narayanan's avatar
Deepak Narayanan committed
483
        timers('backward-send-forward-recv').start()
484
485
486
487
488
        input_tensor, _ = communicate(
            tensor_send_next=None,
            tensor_send_prev=input_grad_tensor,
            recv_forward=(not last_microbatch),
            recv_backward=False)
Deepak Narayanan's avatar
Deepak Narayanan committed
489
        timers('backward-send-forward-recv').stop()
490
491
492
493
494
495
    else:
        input_tensor = None

    return input_tensor


496
497
498
def forward_backward_no_pipelining(forward_step_func, data_iterator, model,
                                   optimizer, timers):
    """Run forward and backward passes without inter-stage communication."""
499
500
    args = get_args()

501
    losses_reduced = []
mohammad's avatar
mohammad committed
502
    for i in range(get_num_microbatches()):
503
504
        timers('forward-compute').start()
        loss, loss_reduced = forward_step_func(data_iterator, model, input_tensor=None)
mohammad's avatar
mohammad committed
505
        output_tensor = loss / get_num_microbatches()
506
507
508
509
510
511
512
513
514
515
        losses_reduced.append(loss_reduced)
        timers('forward-compute').stop()

        timers('backward-compute').start()
        output_tensor_grad = None
        backward_step(optimizer, model, input_tensor=None,
                      output_tensor=output_tensor, output_tensor_grad=None)
        timers('backward-compute').stop()

    return losses_reduced
516

517
518
519
520
521
522
523

def forward_backward_pipelining(forward_step_func, data_iterator, model,
                                optimizer, timers):
    """Run 1F1B schedule, with communication and warmup + cooldown microbatches as needed."""
    args = get_args()

    # Compute number of warmup microbatches.
mohammad's avatar
mohammad committed
524
    num_microbatches = get_num_microbatches()
525
526
527
528
529
    num_warmup_microbatches = \
        (mpu.get_pipeline_model_parallel_world_size() -
         mpu.get_pipeline_model_parallel_rank() - 1)
    num_warmup_microbatches = min(
        num_warmup_microbatches,
530
531
532
        num_microbatches)
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches
533
534
535
536
537

    input_tensors = []
    output_tensors = []
    losses_reduced = []

538
539
    # Run warmup forward passes.
    for i in range(num_warmup_microbatches):
540
541
542
543
        forward_step_with_communication(
            forward_step_func, data_iterator, model,
            input_tensors, output_tensors,
            losses_reduced, timers)
544

545
    # Before running 1F1B, need to receive first forward tensor.
546
547
    # If all microbatches are run in warmup / cooldown phase, then no need to
    # receive this tensor here.
548
    if num_microbatches_remaining > 0:
549
550
551
        if mpu.is_pipeline_first_stage():
            input_tensor = None
        else:
552
            timers('forward-recv').start()
553
554
555
556
            input_tensor, _ = communicate(tensor_send_next=None,
                                          tensor_send_prev=None,
                                          recv_forward=True,
                                          recv_backward=False)
557
            timers('forward-recv').stop()
558
559

    # Run 1F1B.
560
561
    for i in range(num_microbatches_remaining):
        last_iteration = (i == (num_microbatches_remaining - 1))
562
563
564
565
566
567
568
        input_tensor = \
            forward_and_backward_steps_with_communication(forward_step_func, data_iterator, model,
                                                          optimizer,
                                                          input_tensor, last_iteration,
                                                          input_tensors, output_tensors,
                                                          losses_reduced, timers)

569
570
    # Run cooldown backward passes.
    for i in range(num_warmup_microbatches):
571
572
573
574
575
576
577
578
579
580
581
582
583
        backward_step_with_communication(
            optimizer, model, input_tensors, output_tensors, timers)

    return losses_reduced


def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
mohammad's avatar
mohammad committed
584
    optimizer.zero_grad()
585
586
587
588
589
590
591

    if mpu.get_pipeline_model_parallel_world_size() > 1:
        losses_reduced = forward_backward_pipelining(
            forward_step_func, data_iterator, model, optimizer, timers)
    else:
        losses_reduced = forward_backward_no_pipelining(
            forward_step_func, data_iterator, model, optimizer, timers)
592
593
594

    # All-reduce if needed.
    if args.DDP_impl == 'local':
595
        timers('backward-params-all-reduce').start()
596
597
        model.allreduce_params(reduce_after=False,
                               fp32_allreduce=args.fp32_allreduce)
598
        timers('backward-params-all-reduce').stop()
599

600
601
602
603
    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
604
    timers('backward-embedding-all-reduce').start()
605
    if (mpu.is_pipeline_first_stage() or mpu.is_pipeline_last_stage()) and \
606
            mpu.get_pipeline_model_parallel_world_size() > 1:
607
608
609
610
        unwrapped_model = model
        while isinstance(unwrapped_model, (torchDDP, LocalDDP, FP16_Module)):
            unwrapped_model = unwrapped_model.module

611
612
613
614
        if unwrapped_model.share_word_embeddings:
            word_embeddings_weight = unwrapped_model.word_embeddings_weight()
            torch.distributed.all_reduce(word_embeddings_weight.grad,
                                         group=mpu.get_embedding_group())
615
    timers('backward-embedding-all-reduce').stop()
616

617
618
    # Update parameters.
    timers('optimizer').start()
mohammad's avatar
mohammad committed
619
    update_successfull = optimizer.step()
620
621
622
    timers('optimizer').stop()

    # Update learning rate.
mohammad's avatar
mohammad committed
623
    if update_successfull:
624
625
626
627
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
        lr_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
628
        skipped_iter = 0
629
630
631
    else:
        skipped_iter = 1

632
    if mpu.is_pipeline_last_stage():
633
634
635
636
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
637
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
638
639
        return loss_reduced, skipped_iter
    return {}, skipped_iter
640
641


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
642
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
643
                 loss_scale, report_memory_flag, skipped_iter):
Mohammad's avatar
Mohammad committed
644
645
646
647
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
648

mohammad's avatar
mohammad committed
649
650
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
651
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
652
653
654
655
656
657
658
659
660
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
661
662
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
663
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
664
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
665
    for key in loss_dict:
mohammad's avatar
mohammad committed
666
        if not skipped_iter:
667
668
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
669
670
671
672
673
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
674
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
675
676
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
677
678
679

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
680

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
681
682
683
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
684
685
686
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
687
    add_to_logging('forward-send-backward-recv')
688
689
690
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
691
    add_to_logging('backward-send-forward-recv')
692
    add_to_logging('backward-params-all-reduce')
693
    add_to_logging('backward-embedding-all-reduce')
mohammad's avatar
mohammad committed
694
695
696
697
    add_to_logging('optimizer-copy-to-master-grad')
    add_to_logging('optimizer-unscale-and-check-inf')
    add_to_logging('optimizer-clip-master-grad')
    add_to_logging('optimizer-copy-master-to-model-params')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
698
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
699
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
700

mohammad's avatar
mohammad committed
701
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
702
703
704
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
705
706
707
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
708
    # Tensorboard values.
mohammad's avatar
mohammad committed
709
710
711
    if writer and is_last_rank():
        writer.add_scalar('learning-rate', learning_rate, iteration)
        writer.add_scalar('learning-rate vs samples', learning_rate,
712
                          args.consumed_train_samples)
mohammad's avatar
mohammad committed
713
714
        writer.add_scalar('batch-size', batch_size, iteration)
        writer.add_scalar('batch-size vs samples', batch_size,
715
                          args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
716
        for key in loss_dict:
mohammad's avatar
mohammad committed
717
718
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
719
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
720
        if args.fp16:
mohammad's avatar
mohammad committed
721
722
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
723
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
724
        timers.write(timers_to_log, writer, iteration,
mohammad's avatar
mohammad committed
725
                     normalizer=total_iterations)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
726
727
728

    if iteration % args.log_interval == 0:
        elapsed_time = timers('interval time').elapsed()
mohammad's avatar
mohammad committed
729
        elapsed_time_per_iteration = elapsed_time / total_iterations
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
730
        if writer and torch.distributed.get_rank() == 0:
mohammad's avatar
mohammad committed
731
732
            writer.add_scalar('iteration-time',
                              elapsed_time_per_iteration, iteration)
733
734
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
735
        log_string += ' consumed samples: {:12d} |'.format(
736
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
737
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
738
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
739
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
740
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
741
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
742
743
744
745
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
746
747
748
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
749
750
        if args.fp16:
            log_string += ' loss scale: {:.1f} |'.format(loss_scale)
mohammad's avatar
mohammad committed
751
752
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
753
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
754
755
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
756
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
757
        total_loss_dict[nan_iters_key] = 0
758
        print_rank_last(log_string)
759
760
761
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
762
763
764
765
766
767
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


768
769
770
771
772
773
774
775
776
777
778
779
def save_checkpoint_and_time(iteration, model, optimizer, lr_scheduler):
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
    timers('save checkpoint').start()
    save_checkpoint(iteration, model, optimizer, lr_scheduler)
    torch.distributed.barrier()
    timers('save checkpoint').stop()
    timers.log(['save checkpoint'])


780
def train(forward_step_func, model, optimizer, lr_scheduler,
781
          train_data_iterator, valid_data_iterator):
782
    """Train the model function."""
Mohammad's avatar
Mohammad committed
783
784
    args = get_args()
    timers = get_timers()
785

786
787
788
    # Write args to tensorboard
    write_args_to_tensorboard()

789
790
791
792
793
794
795
796
797
798
    # Turn on training mode which enables dropout.
    model.train()

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

    timers('interval time').start()
799
    print_datetime('before the start of training step')
800
801
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
802
        update_num_microbatches(args.consumed_train_samples)
803
804
805
806
        loss_dict, skipped_iter = train_step(forward_step_func,
                                             train_data_iterator,
                                             model,
                                             optimizer,
Mohammad's avatar
Mohammad committed
807
                                             lr_scheduler)
808
        iteration += 1
809
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
810
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
811
                                       get_num_microbatches()
812
813

        # Logging.
Mohammad's avatar
Mohammad committed
814
815
        loss_scale = None
        if args.fp16:
mohammad's avatar
mohammad committed
816
            loss_scale = optimizer.get_loss_scale().item()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
817
818
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
819
                                          iteration, loss_scale,
mohammad's avatar
mohammad committed
820
                                          report_memory_flag, skipped_iter)
821
822

        # Autoresume
823
824
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
825
            check_adlr_autoresume_termination(iteration, model, optimizer,
826
                                              lr_scheduler)
827
828
829
830
831
832

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
833
                                       valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
834
                                       iteration, False)
835

836
837
838
839
840
841
842
843
        # Checkpointing
        saved_checkpoint = False
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
                                     lr_scheduler)
            saved_checkpoint = True

844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
                                             lr_scheduler)
                print_datetime('exiting program after {} minutes'.format(train_time))                
                sys.exit()

        # Exiting based on iterations        
860
        if args.exit_interval and iteration % args.exit_interval == 0:
861
862
863
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
                                         lr_scheduler)
864
            torch.distributed.barrier()
865
            print_datetime('exiting program at iteration {}'.format(iteration))                
Mohammad's avatar
Mohammad committed
866
            sys.exit()
867

868

mohammad's avatar
mohammad committed
869
    return iteration
870
871


Mohammad's avatar
Mohammad committed
872
def evaluate(forward_step_func, data_iterator, model, verbose=False):
873
    """Evaluation."""
Mohammad's avatar
Mohammad committed
874
    args = get_args()
875
876
877
878
879
880
881
882
883
884
885
886
887

    # Turn on evaluation mode which disables dropout.
    model.eval()

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
888

mohammad's avatar
mohammad committed
889
            for _ in range(get_num_microbatches()):
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
                if not mpu.is_pipeline_first_stage():
                    input_tensor, _ = communicate(
                        tensor_send_next=None,
                        tensor_send_prev=None,
                        recv_forward=True,
                        recv_backward=False)
                else:
                    input_tensor = None

                # Forward evaluation.
                output_tensor = forward_step_func(data_iterator, model, input_tensor)

                if mpu.is_pipeline_last_stage():
                    _, loss_dict = output_tensor
                    # Reduce across processes.
                    for key in loss_dict:
                        total_loss_dict[key] = total_loss_dict.get(key, torch.cuda.FloatTensor([0.0])) + \
                            loss_dict[key]
                else:
                    communicate(
                        tensor_send_next=output_tensor,
                        tensor_send_prev=None,
                        recv_forward=False,
                        recv_backward=False)
914

915
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
916
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
917
                                           * get_num_microbatches()
918
919
920
921
    # Move model back to the train mode.
    model.train()

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
922
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
923
924
925
926
927

    return total_loss_dict

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
Mohammad's avatar
Mohammad committed
928
                               iteration, verbose=False):
929
    """Helper function to evaluate and dump results on screen."""
Mohammad's avatar
Mohammad committed
930
931
932
    writer = get_tensorboard_writer()

    total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
933
934
935
936
937
938
939
940
941
942
943
944
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
        if writer and torch.distributed.get_rank() == 0:
            writer.add_scalar('{} value'.format(key),
                              total_loss_dict[key].item(),
                              iteration)
            writer.add_scalar('{} ppl'.format(key), ppl, iteration)

    length = len(string) + 1
945
946
947
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
948
949


950
951
952
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
953
    args = get_args()
954

955
956
957
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
958
959
960

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
961
962
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
963
        args.consumed_train_samples = args.iteration * args.global_batch_size
964
    if args.iteration > 0 and args.consumed_valid_samples == 0:
965
966
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
967
        args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
mohammad's avatar
mohammad committed
968
            args.eval_iters * args.global_batch_size
969

970
    # Data loader only on rank 0 of each model parallel group.
971
    if mpu.get_tensor_model_parallel_rank() == 0:
972
973

        # Number of train/valid/test samples.
974
975
976
977
978
979
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
980
        test_iters = args.eval_iters
981
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
982
983
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
984
985
986
987
988
989
990
991
992
993
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
994
995
996
997
998
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
1012
1013
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
1014
1015
1016
1017
1018
1019
1020
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

    # Build iterators.
    if train_dataloader is not None:
        train_data_iterator = iter(train_dataloader)
1021
1022
1023
    else:
        train_data_iterator = None

1024
1025
    if valid_dataloader is not None:
        valid_data_iterator = iter(valid_dataloader)
1026
    else:
1027
        valid_data_iterator = None
1028

1029
1030
    if test_dataloader is not None:
        test_data_iterator = iter(test_dataloader)
1031
1032
1033
    else:
        test_data_iterator = None

1034
    return train_data_iterator, valid_data_iterator, test_data_iterator