"discover/gpu_info.h" did not exist on "0759d8996e10277f2879d99cca03fa2174d0ac3c"
training.py 36.7 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from apex.optimizers import FusedAdam as Adam

Neel Kant's avatar
Neel Kant committed
25
from megatron import get_args
Mohammad's avatar
Mohammad committed
26
27
from megatron import get_timers
from megatron import get_tensorboard_writer
mohammad's avatar
mohammad committed
28
29
from megatron import get_num_microbatches
from megatron import update_num_microbatches
30
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
31
from megatron import print_rank_0
32
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
33
34
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
35
36
from megatron.fp16 import FP16_Module
from megatron.fp16 import FP16_Optimizer
Mohammad's avatar
Mohammad committed
37
from megatron.initialize import initialize_megatron
38
39
40
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import get_params_for_weight_decay_optimization
Neel Kant's avatar
Neel Kant committed
41
from megatron.model.realm_model import ICTBertModel
42
from megatron.utils import check_adlr_autoresume_termination
43
from megatron.data.data_loaders import build_pretraining_data_loader
44
from megatron.utils import report_memory
45
46


47
def pretrain(train_valid_test_dataset_provider, model_provider,
48
             forward_step_func, extra_args_provider=None, args_defaults={}):
49
50
51
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
52
53
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
54
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
55
        4) train the modle using the forward_step_func.
56
57

    Arguments:
58
59
60
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
61
62
63
64
65
66
67
68
69
70
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
71
72
    """

73
    # Initalize and get arguments, timers, and Tensorboard writer.
74
75
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
76

77
    args = get_args()
Mohammad's avatar
Mohammad committed
78
    timers = get_timers()
79
80

    # Model, optimizer, and learning rate.
Mohammad's avatar
Mohammad committed
81
82
83
    timers('model and optimizer').start()
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider)
    timers('model and optimizer').stop()
84
85

    # Data stuff.
86
87
88
89
90
    timers('train/valid/test data iterators').start()
    train_data_iterator, valid_data_iterator, test_data_iterator \
        = build_train_valid_test_data_iterators(
            train_valid_test_dataset_provider)
    timers('train/valid/test data iterators').stop()
Mohammad's avatar
Mohammad committed
91
92
93

    # Print setup timing.
    print_rank_0('done with setups ...')
94
    timers.log(['model and optimizer', 'train/valid/test data iterators'])
Mohammad's avatar
Mohammad committed
95
    print_rank_0('training ...')
96
97

    iteration = 0
98
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
99
100
101
        iteration = train(forward_step_func,
                          model, optimizer, lr_scheduler,
                          train_data_iterator, valid_data_iterator)
Mohammad's avatar
Mohammad committed
102

103
104
105
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
106
                                   valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
107
                                   iteration, False)
108
109

    if args.save and iteration != 0:
110
        save_checkpoint(iteration, model, optimizer, lr_scheduler)
111
112
113
114
115
116

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
Mohammad's avatar
Mohammad committed
117
                                   0, True)
118

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
            update_num_microbatches(consumed_samples)
            consumed_samples += get_num_microbatches() * \
                                args.micro_batch_size * \
                                args.data_parallel_size
            iterations += 1
        # Reset
        update_num_microbatches(0)
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

150

Mohammad's avatar
Mohammad committed
151
def get_model(model_provider_func):
152
    """Build the model."""
Mohammad's avatar
Mohammad committed
153
    args = get_args()
154
155

    # Build model on cpu.
Mohammad's avatar
Mohammad committed
156
    model = model_provider_func()
157
158
159

    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
160
        print(' > number of parameters on (tensor, pipeline) '
161
              'model parallel rank ({}, {}): {}'.format(
162
163
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
164
165
166
167
168
169
170
171
172
173
174
            sum([p.nelement() for p in model.parameters()])), flush=True)

    # GPU allocation.
    model.cuda(torch.cuda.current_device())

    # Fp16 conversion.
    if args.fp16:
        model = FP16_Module(model)

    if args.DDP_impl == 'torch':
        i = torch.cuda.current_device()
Mohammad's avatar
Mohammad committed
175
176
        model = torchDDP(model, device_ids=[i], output_device=i,
                         process_group=mpu.get_data_parallel_group())
177
178
        return model
    if args.DDP_impl == 'local':
Mohammad's avatar
Mohammad committed
179
        model = LocalDDP(model)
180
181
        return model

182
    raise NotImplementedError('Unknown DDP implementation specified: {}. '
183
                              'Exiting.'.format(args.DDP_impl))
184
185


Mohammad's avatar
Mohammad committed
186
def get_optimizer(model):
187
    """Set up the optimizer."""
Mohammad's avatar
Mohammad committed
188
    args = get_args()
189
190

    # Build parameter groups (weight decay and non-decay).
Mohammad's avatar
Mohammad committed
191
    while isinstance(model, (torchDDP, LocalDDP, FP16_Module)):
192
193
194
195
196
197
        model = model.module
    param_groups = get_params_for_weight_decay_optimization(model)

    # Add model parallel attribute if it is not set.
    for param_group in param_groups:
        for param in param_group['params']:
198
199
            if not hasattr(param, 'tensor_model_parallel'):
                param.tensor_model_parallel = False
200
201

    # Use Adam.
202
203
    optimizer = Adam(param_groups, lr=args.lr, weight_decay=args.weight_decay,
        betas=(args.adam_beta1, args.adam_beta2), eps=args.adam_eps)
204
205
206
207
208
209
210
211

    # Wrap into fp16 optimizer.
    if args.fp16:
        optimizer = FP16_Optimizer(optimizer,
                                   static_loss_scale=args.loss_scale,
                                   dynamic_loss_scale=args.dynamic_loss_scale,
                                   dynamic_loss_args={
                                       'scale_window': args.loss_scale_window,
Neel Kant's avatar
Neel Kant committed
212
                                       'min_scale': args.min_scale,
213
214
215
216
217
                                       'delayed_shift': args.hysteresis})

    return optimizer


Mohammad's avatar
Mohammad committed
218
def get_learning_rate_scheduler(optimizer):
219
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
220
    args = get_args()
221

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
        warmup_steps = args.lr_warmup_iters * args.global_batch_size
        decay_steps = args.lr_decay_iters * args.global_batch_size
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
        update_train_iters(args)        
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
        warmup_steps = args.lr_warmup_samples
        decay_steps = args.lr_decay_samples
238
    else:
239
240
241
        raise Exception(
            'either train-iters or train-samples should be provided.')

242
243
    lr_scheduler = AnnealingLR(
        optimizer,
244
        max_lr=args.lr,
245
        min_lr=args.min_lr,
246
247
        warmup_steps=warmup_steps,
        decay_steps=decay_steps,
248
        decay_style=args.lr_decay_style,
249
250
251
252
253
254
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


Mohammad's avatar
Mohammad committed
255
def setup_model_and_optimizer(model_provider_func):
256
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
257
    args = get_args()
258

Mohammad's avatar
Mohammad committed
259
260
261
    model = get_model(model_provider_func)
    optimizer = get_optimizer(model)
    lr_scheduler = get_learning_rate_scheduler(optimizer)
262
263

    if args.load is not None:
264
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
265
266
267
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
268
    # We only support local DDP with multiple micro-batches.
mohammad's avatar
mohammad committed
269
270
271
    if get_num_microbatches() > 1:
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
272
273
274
275
276
    # get model without FP16 and/or TorchDDP wrappers
    unwrapped_model = model
    while hasattr(unwrapped_model, 'module'):
        unwrapped_model = unwrapped_model.module

277
278
    if args.iteration == 0 and hasattr(unwrapped_model,
                                       'init_state_dict_from_bert'):
279
        print("Initializing ICT from pretrained BERT model", flush=True)
280
        unwrapped_model.init_state_dict_from_bert()
Neel Kant's avatar
Neel Kant committed
281

282
283
284
    return model, optimizer, lr_scheduler


285
286
287
288
289
290
291
292
def communicate(tensor_send_next, tensor_send_prev, recv_forward, recv_backward):
    """Communicate tensors between stages using torch.distributed.ring_exchange(.) API."""
    args = get_args()

    # Create placeholder tensors for receive in forward and backward directions
    # if needed.
    tensor_recv_prev = None
    tensor_recv_next = None
293
    tensor_shape = (args.seq_length, args.micro_batch_size, args.hidden_size)
294
295
296
    if recv_forward:
        tensor_recv_prev = torch.empty(tensor_shape,
                                       requires_grad=True,
297
298
                                       device=torch.cuda.current_device(),
                                       dtype=args.params_dtype)
299
300
301
    if recv_backward:
        tensor_recv_next = torch.empty(tensor_shape,
                                       requires_grad=True,
302
303
                                       device=torch.cuda.current_device(),
                                       dtype=args.params_dtype)
304
305
306
307
308
309

    # Send tensors in both the forward and backward directions as appropriate.
    torch.distributed.ring_exchange(tensor_send_prev=tensor_send_prev,
                                    tensor_recv_prev=tensor_recv_prev,
                                    tensor_send_next=tensor_send_next,
                                    tensor_recv_next=tensor_recv_next,
310
                                    group=mpu.get_pipeline_model_parallel_group())
311
312
313
314
315

    return tensor_recv_prev, tensor_recv_next


def backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad):
316
    """Backward step."""
Mohammad's avatar
Mohammad committed
317
318
    args = get_args()
    timers = get_timers()
319

320
321
322
323
    # Retain the grad on the input_tensor.
    if input_tensor is not None:
        input_tensor.retain_grad()

324
    # Backward pass.
325
326
327
328
329
330
331
332
333
334
335
336
337
338
    if args.fp16:
        optimizer.backward(output_tensor, update_master_grads=False,
                           output_tensor_grad=output_tensor_grad)
    else:
        torch.autograd.backward(output_tensor, grad_tensors=output_tensor_grad)

    # Collect the grad of the input_tensor.
    input_tensor_grad = None
    if input_tensor is not None:
        input_tensor_grad = input_tensor.grad

    return input_tensor_grad


339
340
341
def forward_step_with_communication(forward_step_func, data_iterator, model,
                                    input_tensors, output_tensors,
                                    losses_reduced, timers):
342
343
    args = get_args()

344
    if not mpu.is_pipeline_first_stage():
345
        timers('forward-recv').start()
346
347
348
349
350
        input_tensor, _ = communicate(
            tensor_send_next=None,
            tensor_send_prev=None,
            recv_forward=True,
            recv_backward=False)
351
        timers('forward-recv').stop()
352
353
354
355
    else:
        input_tensor = None

    # Forward model for one step.
356
    timers('forward-compute').start()
357
    output_tensor = forward_step_func(data_iterator, model, input_tensor)
358
    timers('forward-compute').stop()
359
360
361

    if mpu.is_pipeline_last_stage():
        loss, loss_reduced = output_tensor
mohammad's avatar
mohammad committed
362
        output_tensor = loss / get_num_microbatches()
363
364
        losses_reduced.append(loss_reduced)
    else:
365
        timers('forward-send').start()
366
367
368
369
370
        communicate(
            tensor_send_next=output_tensor,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=False)
371
        timers('forward-send').stop()
372
373
374
375
376
377
378
379
380
381
382
383

    input_tensors.append(input_tensor)
    output_tensors.append(output_tensor)


def backward_step_with_communication(optimizer, model, input_tensors, output_tensors, timers):
    input_tensor = input_tensors.pop(0)
    output_tensor = output_tensors.pop(0)

    if mpu.is_pipeline_last_stage():
        output_tensor_grad = None
    else:
384
        timers('backward-recv').start()
385
386
387
388
389
        _, output_tensor_grad = communicate(
            tensor_send_next=None,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=True)
390
        timers('backward-recv').stop()
391
392

    # Backward pass for one step.
393
    timers('backward-compute').start()
394
395
    input_grad_tensor = \
        backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad)
396
    timers('backward-compute').stop()
397
398

    if not mpu.is_pipeline_first_stage():
399
        timers('backward-send').start()
400
401
402
403
404
        communicate(
            tensor_send_next=None,
            tensor_send_prev=input_grad_tensor,
            recv_forward=False,
            recv_backward=False)
405
        timers('backward-send').stop()
406
407


408
409
410
411
412
def forward_and_backward_steps_with_communication(forward_step_func, data_iterator, model,
                                                  optimizer,
                                                  input_tensor, last_microbatch,
                                                  input_tensors, output_tensors,
                                                  losses_reduced, timers):
413
414
    args = get_args()

415
416
417
418
419
420
421
    # Forward model for one step.
    timers('forward-compute').start()
    output_tensor = forward_step_func(data_iterator, model, input_tensor)
    timers('forward-compute').stop()

    if mpu.is_pipeline_last_stage():
        loss, loss_reduced = output_tensor
mohammad's avatar
mohammad committed
422
        output_tensor = loss / get_num_microbatches()
423
424
425
        output_tensor_grad = None
        losses_reduced.append(loss_reduced)
    else:
Deepak Narayanan's avatar
Deepak Narayanan committed
426
        timers('forward-send-backward-recv').start()
427
428
429
430
431
        _, output_tensor_grad = communicate(
            tensor_send_next=output_tensor,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=True)
Deepak Narayanan's avatar
Deepak Narayanan committed
432
        timers('forward-send-backward-recv').stop()
433
434
435
436
437
438
439
440
441
442
443
444
445
446

    input_tensors.append(input_tensor)
    output_tensors.append(output_tensor)

    input_tensor = input_tensors.pop(0)
    output_tensor = output_tensors.pop(0)

    # Backward pass for one step.
    timers('backward-compute').start()
    input_grad_tensor = \
        backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad)
    timers('backward-compute').stop()

    if not mpu.is_pipeline_first_stage():
Deepak Narayanan's avatar
Deepak Narayanan committed
447
        timers('backward-send-forward-recv').start()
448
449
450
451
452
        input_tensor, _ = communicate(
            tensor_send_next=None,
            tensor_send_prev=input_grad_tensor,
            recv_forward=(not last_microbatch),
            recv_backward=False)
Deepak Narayanan's avatar
Deepak Narayanan committed
453
        timers('backward-send-forward-recv').stop()
454
455
456
457
458
459
    else:
        input_tensor = None

    return input_tensor


460
461
462
def forward_backward_no_pipelining(forward_step_func, data_iterator, model,
                                   optimizer, timers):
    """Run forward and backward passes without inter-stage communication."""
463
464
    args = get_args()

465
    losses_reduced = []
mohammad's avatar
mohammad committed
466
    for i in range(get_num_microbatches()):
467
468
        timers('forward-compute').start()
        loss, loss_reduced = forward_step_func(data_iterator, model, input_tensor=None)
mohammad's avatar
mohammad committed
469
        output_tensor = loss / get_num_microbatches()
470
471
472
473
474
475
476
477
478
479
        losses_reduced.append(loss_reduced)
        timers('forward-compute').stop()

        timers('backward-compute').start()
        output_tensor_grad = None
        backward_step(optimizer, model, input_tensor=None,
                      output_tensor=output_tensor, output_tensor_grad=None)
        timers('backward-compute').stop()

    return losses_reduced
480

481
482
483
484
485
486
487

def forward_backward_pipelining(forward_step_func, data_iterator, model,
                                optimizer, timers):
    """Run 1F1B schedule, with communication and warmup + cooldown microbatches as needed."""
    args = get_args()

    # Compute number of warmup microbatches.
mohammad's avatar
mohammad committed
488
    num_microbatches = get_num_microbatches()
489
490
491
492
493
    num_warmup_microbatches = \
        (mpu.get_pipeline_model_parallel_world_size() -
         mpu.get_pipeline_model_parallel_rank() - 1)
    num_warmup_microbatches = min(
        num_warmup_microbatches,
494
495
496
        num_microbatches)
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches
497
498
499
500
501

    input_tensors = []
    output_tensors = []
    losses_reduced = []

502
503
    # Run warmup forward passes.
    for i in range(num_warmup_microbatches):
504
505
506
507
        forward_step_with_communication(
            forward_step_func, data_iterator, model,
            input_tensors, output_tensors,
            losses_reduced, timers)
508

509
    # Before running 1F1B, need to receive first forward tensor.
510
511
    # If all microbatches are run in warmup / cooldown phase, then no need to
    # receive this tensor here.
512
    if num_microbatches_remaining > 0:
513
514
515
        if mpu.is_pipeline_first_stage():
            input_tensor = None
        else:
516
            timers('forward-recv').start()
517
518
519
520
            input_tensor, _ = communicate(tensor_send_next=None,
                                          tensor_send_prev=None,
                                          recv_forward=True,
                                          recv_backward=False)
521
            timers('forward-recv').stop()
522
523

    # Run 1F1B.
524
525
    for i in range(num_microbatches_remaining):
        last_iteration = (i == (num_microbatches_remaining - 1))
526
527
528
529
530
531
532
        input_tensor = \
            forward_and_backward_steps_with_communication(forward_step_func, data_iterator, model,
                                                          optimizer,
                                                          input_tensor, last_iteration,
                                                          input_tensors, output_tensors,
                                                          losses_reduced, timers)

533
534
    # Run cooldown backward passes.
    for i in range(num_warmup_microbatches):
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
        backward_step_with_communication(
            optimizer, model, input_tensors, output_tensors, timers)

    return losses_reduced


def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
    if args.fp16:
        optimizer.zero_grad(set_grads_to_None=True)
    else:
        optimizer.zero_grad()

    if mpu.get_pipeline_model_parallel_world_size() > 1:
        losses_reduced = forward_backward_pipelining(
            forward_step_func, data_iterator, model, optimizer, timers)
    else:
        losses_reduced = forward_backward_no_pipelining(
            forward_step_func, data_iterator, model, optimizer, timers)
559
560
561

    # All-reduce if needed.
    if args.DDP_impl == 'local':
562
        timers('backward-params-all-reduce').start()
563
564
        model.allreduce_params(reduce_after=False,
                               fp32_allreduce=args.fp32_allreduce)
565
        timers('backward-params-all-reduce').stop()
566

567
568
569
570
    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
571
    timers('backward-embedding-all-reduce').start()
572
    if (mpu.is_pipeline_first_stage() or mpu.is_pipeline_last_stage()) and \
573
            mpu.get_pipeline_model_parallel_world_size() > 1:
574
575
576
577
        unwrapped_model = model
        while isinstance(unwrapped_model, (torchDDP, LocalDDP, FP16_Module)):
            unwrapped_model = unwrapped_model.module

578
579
580
581
        if unwrapped_model.share_word_embeddings:
            word_embeddings_weight = unwrapped_model.word_embeddings_weight()
            torch.distributed.all_reduce(word_embeddings_weight.grad,
                                         group=mpu.get_embedding_group())
582
    timers('backward-embedding-all-reduce').stop()
583

584
585
586
587
588
589
    # Update master gradients.
    timers('backward-master-grad').start()
    if args.fp16:
        optimizer.update_master_grads()
    timers('backward-master-grad').stop()

590
    # Clipping gradients helps prevent the exploding gradient.
591
    timers('backward-clip-grad').start()
592
    if args.clip_grad > 0.:
593
        if not args.fp16:
594
595
596
597
598
599
600
601
            named_parameters = model.named_parameters()
            parameters = []
            parameter_names = []
            for parameter_name, parameter in model.named_parameters():
                parameters.append(parameter)
                parameter_names.append(parameter_name)
            mpu.clip_grad_norm(parameters, args.clip_grad,
                               parameter_names=parameter_names)
602
603
        else:
            optimizer.clip_master_grads(args.clip_grad)
604
    timers('backward-clip-grad').stop()
605
606
607
608
609
610
611
612
613

    # Update parameters.
    timers('optimizer').start()
    optimizer.step()
    timers('optimizer').stop()

    # Update learning rate.
    skipped_iter = 0
    if not (args.fp16 and optimizer.overflow):
614
615
616
617
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
        lr_scheduler.step(increment=increment)
618
619
620
    else:
        skipped_iter = 1

621
    if mpu.is_pipeline_last_stage():
622
623
624
625
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
626
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
627
628
        return loss_reduced, skipped_iter
    return {}, skipped_iter
629
630


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
631
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
632
                 loss_scale, report_memory_flag, skipped_iter):
Mohammad's avatar
Mohammad committed
633
634
635
636
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
637
638

    # Update losses.
mohammad's avatar
mohammad committed
639
640
641
    skipped_iters_key = 'skipped iterations'
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
642
    got_nan_key = 'got nan'
mohammad's avatar
mohammad committed
643
644

    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
645
    for key in loss_dict:
mohammad's avatar
mohammad committed
646
        if not skipped_iter:
647
648
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
649
650
651
652
653
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
654
655
656
657
            got_nan = got_nan or is_nan

    total_loss_dict[got_nan_key] = total_loss_dict.get(
        got_nan_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
658
659
660

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
661

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
662
663
664
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
665
666
667
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
668
    add_to_logging('forward-send-backward-recv')
669
670
671
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
672
    add_to_logging('backward-send-forward-recv')
673
    add_to_logging('backward-master-grad')
674
    add_to_logging('backward-params-all-reduce')
675
    add_to_logging('backward-embedding-all-reduce')
676
    add_to_logging('backward-clip-grad')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
    add_to_logging('optimizer')
    add_to_logging('batch generator')

    # Tensorboard values.
    if writer and torch.distributed.get_rank() == 0:
        writer.add_scalar('learning_rate', learning_rate, iteration)
        for key in loss_dict:
            writer.add_scalar(key, loss_dict[key], iteration)
        if args.fp16:
            writer.add_scalar('loss_scale', loss_scale, iteration)
        normalizer = iteration % args.log_interval
        if normalizer == 0:
            normalizer = args.log_interval
        timers.write(timers_to_log, writer, iteration,
                     normalizer=normalizer)

    if iteration % args.log_interval == 0:
        elapsed_time = timers('interval time').elapsed()
        if writer and torch.distributed.get_rank() == 0:
            writer.add_scalar('iteration_time',
                              elapsed_time / args.log_interval, iteration)
698
699
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
700
701
702
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
            elapsed_time * 1000.0 / args.log_interval)
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
703
704
        num_iterations = max(
            1, args.log_interval - total_loss_dict[skipped_iters_key])
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
705
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
706
            if key not in [skipped_iters_key, got_nan_key]:
mohammad's avatar
mohammad committed
707
                avg = total_loss_dict[key].item() / float(num_iterations)
708
709
710
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
711
712
        if args.fp16:
            log_string += ' loss scale: {:.1f} |'.format(loss_scale)
mohammad's avatar
mohammad committed
713
714
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
715
716
        log_string += ' number of nan iterations: {:3d} |'.format(
            total_loss_dict[got_nan_key])
mohammad's avatar
mohammad committed
717
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
718
        total_loss_dict[got_nan_key] = 0
719
        print_rank_last(log_string)
720
721
722
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
723
724
725
726
727
728
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


729
def train(forward_step_func, model, optimizer, lr_scheduler,
730
          train_data_iterator, valid_data_iterator):
731
    """Train the model function."""
Mohammad's avatar
Mohammad committed
732
733
    args = get_args()
    timers = get_timers()
734
735
736
737
738
739
740
741
742
743
744
745
746

    # Turn on training mode which enables dropout.
    model.train()

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

    timers('interval time').start()
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
747
        update_num_microbatches(args.consumed_train_samples)
748
749
750
751
        loss_dict, skipped_iter = train_step(forward_step_func,
                                             train_data_iterator,
                                             model,
                                             optimizer,
Mohammad's avatar
Mohammad committed
752
                                             lr_scheduler)
753
        iteration += 1
754
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
755
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
756
                                       get_num_microbatches()
757
758

        # Logging.
Mohammad's avatar
Mohammad committed
759
760
761
        loss_scale = None
        if args.fp16:
            loss_scale = optimizer.loss_scale
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
762
763
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
764
                                          iteration, loss_scale,
mohammad's avatar
mohammad committed
765
                                          report_memory_flag, skipped_iter)
766
767

        # Autoresume
768
769
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
770
            check_adlr_autoresume_termination(iteration, model, optimizer,
771
                                              lr_scheduler)
772
773
774
775

        # Checkpointing
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
776
            save_checkpoint(iteration, model, optimizer, lr_scheduler)
777
778
779
780
781
782

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
783
                                       valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
784
                                       iteration, False)
785
786

        if args.exit_interval and iteration % args.exit_interval == 0:
787
            torch.distributed.barrier()
788
789
            time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
            rank = torch.distributed.get_rank()
Mohammad's avatar
Mohammad committed
790
791
792
            print_rank_0('rank: {} | time: {} | exiting the program at '
                         'iteration {}'.format(rank, time_str, iteration))
            sys.exit()
793

mohammad's avatar
mohammad committed
794
    return iteration
795
796


Mohammad's avatar
Mohammad committed
797
def evaluate(forward_step_func, data_iterator, model, verbose=False):
798
    """Evaluation."""
Mohammad's avatar
Mohammad committed
799
    args = get_args()
800
801
802
803
804
805
806
807
808
809
810
811
812

    # Turn on evaluation mode which disables dropout.
    model.eval()

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
813

mohammad's avatar
mohammad committed
814
            for _ in range(get_num_microbatches()):
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
                if not mpu.is_pipeline_first_stage():
                    input_tensor, _ = communicate(
                        tensor_send_next=None,
                        tensor_send_prev=None,
                        recv_forward=True,
                        recv_backward=False)
                else:
                    input_tensor = None

                # Forward evaluation.
                output_tensor = forward_step_func(data_iterator, model, input_tensor)

                if mpu.is_pipeline_last_stage():
                    _, loss_dict = output_tensor
                    # Reduce across processes.
                    for key in loss_dict:
                        total_loss_dict[key] = total_loss_dict.get(key, torch.cuda.FloatTensor([0.0])) + \
                            loss_dict[key]
                else:
                    communicate(
                        tensor_send_next=output_tensor,
                        tensor_send_prev=None,
                        recv_forward=False,
                        recv_backward=False)
839

840
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
841
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
842
                                           * get_num_microbatches()
843
844
845
846
    # Move model back to the train mode.
    model.train()

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
847
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
848
849
850
851
852

    return total_loss_dict

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
Mohammad's avatar
Mohammad committed
853
                               iteration, verbose=False):
854
    """Helper function to evaluate and dump results on screen."""
Mohammad's avatar
Mohammad committed
855
856
857
    writer = get_tensorboard_writer()

    total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
858
859
860
861
862
863
864
865
866
867
868
869
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
        if writer and torch.distributed.get_rank() == 0:
            writer.add_scalar('{} value'.format(key),
                              total_loss_dict[key].item(),
                              iteration)
            writer.add_scalar('{} ppl'.format(key), ppl, iteration)

    length = len(string) + 1
870
871
872
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
873
874


875
876
877
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
878
    args = get_args()
879

880
881
882
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
883
884
885

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
886
887
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
888
        args.consumed_train_samples = args.iteration * args.global_batch_size
889
    if args.iteration > 0 and args.consumed_valid_samples == 0:
890
891
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
892
        args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
mohammad's avatar
mohammad committed
893
            args.eval_iters * args.global_batch_size
894

895
    # Data loader only on rank 0 of each model parallel group.
896
    if mpu.get_tensor_model_parallel_rank() == 0:
897
898

        # Number of train/valid/test samples.
899
900
901
902
903
904
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
905
        test_iters = args.eval_iters
906
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
907
908
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
909
910
911
912
913
914
915
916
917
918
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
919
920
921
922
923
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
924
925
926
927
928
929
930
931
932
933
934
935
936

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
937
938
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
939
940
941
942
943
944
945
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

    # Build iterators.
    if train_dataloader is not None:
        train_data_iterator = iter(train_dataloader)
946
947
948
    else:
        train_data_iterator = None

949
950
    if valid_dataloader is not None:
        valid_data_iterator = iter(valid_dataloader)
951
    else:
952
        valid_data_iterator = None
953

954
955
    if test_dataloader is not None:
        test_data_iterator = iter(test_dataloader)
956
957
958
    else:
        test_data_iterator = None

959
    return train_data_iterator, valid_data_iterator, test_data_iterator