arguments.py 55 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
Raul Puri's avatar
Raul Puri committed
2

Mohammad's avatar
Mohammad committed
3
"""Megatron arguments."""
Raul Puri's avatar
Raul Puri committed
4
5
6
7

import argparse
import os

8
import torch
Raul Puri's avatar
Raul Puri committed
9

10
def parse_args(extra_args_provider=None, ignore_unknown_args=False):
Mohammad's avatar
Mohammad committed
11
    """Parse all arguments."""
12
13
    parser = argparse.ArgumentParser(description='Megatron-LM Arguments',
                                     allow_abbrev=False)
Mohammad's avatar
Mohammad committed
14

Mohammad's avatar
Mohammad committed
15
16
17
18
19
20
21
22
23
24
25
26
    # Standard arguments.
    parser = _add_network_size_args(parser)
    parser = _add_regularization_args(parser)
    parser = _add_training_args(parser)
    parser = _add_initialization_args(parser)
    parser = _add_learning_rate_args(parser)
    parser = _add_checkpointing_args(parser)
    parser = _add_mixed_precision_args(parser)
    parser = _add_distributed_args(parser)
    parser = _add_validation_args(parser)
    parser = _add_data_args(parser)
    parser = _add_autoresume_args(parser)
Mostofa Patwary's avatar
Mostofa Patwary committed
27
    parser = _add_biencoder_args(parser)
28
    parser = _add_vision_args(parser)
29
    parser = _add_logging_args(parser)
mshoeybi's avatar
mshoeybi committed
30
    parser = _add_inference_args(parser)
Mohammad's avatar
Mohammad committed
31
32
33
34

    # Custom arguments.
    if extra_args_provider is not None:
        parser = extra_args_provider(parser)
Mohammad's avatar
Mohammad committed
35

Mohammad's avatar
Mohammad committed
36
    # Parse.
37
38
39
40
    if ignore_unknown_args:
        args, _ = parser.parse_known_args()
    else:
        args = parser.parse_args()
Mohammad's avatar
Mohammad committed
41

42
43
44
45
    # Args from environment
    args.rank = int(os.getenv('RANK', '0'))
    args.world_size = int(os.getenv("WORLD_SIZE", '1'))
        
46
47
48
    return args

def validate_args(args, defaults={}):
mohammad's avatar
mohammad committed
49
    # Tensor model parallel size.
50
51
    args.tensor_model_parallel_size = min(
        args.tensor_model_parallel_size, args.world_size)
mohammad's avatar
mohammad committed
52
53
54
55
    assert args.world_size % args.tensor_model_parallel_size == 0, 'world size'\
        ' ({}) is not divisible by tensor model parallel size ({})'.format(
            args.world_size, args.tensor_model_parallel_size)
    # Pipeline model parallel size.
56
57
58
    args.pipeline_model_parallel_size = min(
        args.pipeline_model_parallel_size,
        (args.world_size // args.tensor_model_parallel_size))
59
60
    args.transformer_pipeline_model_parallel_size = (
        args.pipeline_model_parallel_size - 1
61
        if args.standalone_embedding_stage else
62
63
        args.pipeline_model_parallel_size
    )
mohammad's avatar
mohammad committed
64
    # Checks.
65
66
67
    model_parallel_size = args.pipeline_model_parallel_size * \
                          args.tensor_model_parallel_size
    assert args.world_size % model_parallel_size == 0, 'world size is not'\
68
        ' divisible by tensor parallel size ({}) times pipeline parallel ' \
mohammad's avatar
mohammad committed
69
70
        'size ({})'.format(args.world_size, args.tensor_model_parallel_size,
                           args.pipeline_model_parallel_size)
71
    args.data_parallel_size = args.world_size // model_parallel_size
Mohammad's avatar
Mohammad committed
72
    if args.rank == 0:
mohammad's avatar
mohammad committed
73
74
75
76
77
78
        print('using world size: {}, data-parallel-size: {}, '
              'tensor-model-parallel size: {}, '
              'pipeline-model-parallel size: {} '.format(
                  args.world_size, args.data_parallel_size,
                  args.tensor_model_parallel_size,
                  args.pipeline_model_parallel_size), flush=True)
79
80
81
82
83
84
    if args.pipeline_model_parallel_size > 1:
        if args.pipeline_model_parallel_split_rank is not None:
            assert args.pipeline_model_parallel_split_rank < \
                    args.pipeline_model_parallel_size, 'split rank needs'\
                    ' to be less than pipeline model parallel size ({})'.format(
                            args.pipeline_model_parallel_size)
mohammad's avatar
mohammad committed
85

86
87
88
89
90
91
92
93
94
95
    # Deprecated arguments
    assert args.batch_size is None, '--batch-size argument is no longer ' \
        'valid, use --micro-batch-size instead'
    del args.batch_size
    assert args.warmup is None, '--warmup argument is no longer valid, use ' \
        '--lr-warmup-fraction instead'
    del args.warmup
    assert args.model_parallel_size is None, '--model-parallel-size is no ' \
        'longer valid, use --tensor-model-parallel-size instead'
    del args.model_parallel_size
Vijay Korthikanti's avatar
Vijay Korthikanti committed
96

97
    if args.checkpoint_activations:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
98
99
        args.recompute_granularity = 'full'
        args.recompute_method = 'uniform'
slym's avatar
slym committed
100
101
        if args.rank == 0:
            print('--checkpoint-activations is no longer valid, '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
102
103
                  'use --recompute-granularity and --recompute-method  instead. '
                  'Defaulting to recompute-granularity=full and recompute-method=uniform.')
104
    del args.checkpoint_activations
105

Vijay Korthikanti's avatar
Vijay Korthikanti committed
106
107
108
109
    if args.recompute_activations:
        args.recompute_granularity = 'selective'
    del args.recompute_activations

Jared Casper's avatar
Jared Casper committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
    # Set input defaults.
    for key in defaults:
        # For default to be valid, it should not be provided in the
        # arguments that are passed to the program. We check this by
        # ensuring the arg is set to None.
        if getattr(args, key) is not None:
            if args.rank == 0:
                print('WARNING: overriding default arguments for {key}:{v} \
                       with {key}:{v2}'.format(key=key, v=defaults[key],
                                               v2=getattr(args, key)),
                                               flush=True)
        else:
            setattr(args, key, defaults[key])

mohammad's avatar
mohammad committed
124
125
126
127
128
129
130
131
132
    # Batch size.
    assert args.micro_batch_size is not None
    assert args.micro_batch_size > 0
    if args.global_batch_size is None:
        args.global_batch_size = args.micro_batch_size * args.data_parallel_size
        if args.rank == 0:
            print('setting global batch size to {}'.format(
                args.global_batch_size), flush=True)
    assert args.global_batch_size > 0
133
    if args.num_layers_per_virtual_pipeline_stage is not None:
134
135
136
        assert args.pipeline_model_parallel_size > 2, \
            'pipeline-model-parallel size should be greater than 2 with ' \
            'interleaved schedule'
137
138
139
140
        assert args.num_layers % args.num_layers_per_virtual_pipeline_stage == 0, \
            'number of layers is not divisible by number of layers per virtual ' \
            'pipeline stage'
        args.virtual_pipeline_model_parallel_size = \
Lawrence McAfee's avatar
Lawrence McAfee committed
141
            (args.num_layers // args.transformer_pipeline_model_parallel_size) // \
142
143
144
            args.num_layers_per_virtual_pipeline_stage
    else:
        args.virtual_pipeline_model_parallel_size = None
Mohammad's avatar
Mohammad committed
145

146
147
148
    # Parameters dtype.
    args.params_dtype = torch.float
    if args.fp16:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
149
        assert not args.bf16
150
        args.params_dtype = torch.half
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
151
152
153
    if args.bf16:
        assert not args.fp16
        args.params_dtype = torch.bfloat16
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
154
155
156
157
158
159
160
        # bfloat16 requires gradient accumulation and all-reduce to
        # be done in fp32.
        if not args.accumulate_allreduce_grads_in_fp32:
            args.accumulate_allreduce_grads_in_fp32 = True
            if args.rank == 0:
                print('accumulate and all-reduce gradients in fp32 for '
                      'bfloat16 data type.', flush=True)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
161

162
163
164
165
    if args.rank == 0:
        print('using {} for parameters ...'.format(args.params_dtype),
              flush=True)

166
167
    # If we do accumulation and all-reduces in fp32, we need to have local DDP
    # and we should make sure use-contiguous-buffers-in-local-ddp is not off.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
168
169
    if args.accumulate_allreduce_grads_in_fp32:
        assert args.DDP_impl == 'local'
170
        assert args.use_contiguous_buffers_in_local_ddp
171

172
173
174
175
176
    # If we use the distributed optimizer, we need to have local DDP
    # and we should make sure use-contiguous-buffers-in-local-ddp is on.
    if args.use_distributed_optimizer:
        assert args.DDP_impl == 'local'
        assert args.use_contiguous_buffers_in_local_ddp
177

mshoeybi's avatar
mshoeybi committed
178
179
180
181
    # For torch DDP, we do not use contiguous buffer
    if args.DDP_impl == 'torch':
        args.use_contiguous_buffers_in_local_ddp = False

182
183
184
    if args.dataloader_type is None:
        args.dataloader_type = 'single'

185
186
187
    # Consumed tokens.
    args.consumed_train_samples = 0
    args.consumed_valid_samples = 0
188

189
190
191
192
193
194
195
    # Support for variable sequence lengths across batches/microbatches.
    # set it if the dataloader supports generation of variable sequence lengths
    # across batches/microbatches. Due to additional communication overhead
    # during pipeline parallelism, it should not be set if sequence length
    # is constant during training.
    args.variable_seq_lengths = False

196
197
198
199
200
201
202
203
204
    # Iteration-based training.
    if args.train_iters:
        # If we use iteration-based training, make sure the
        # sample-based options are off.
        assert args.train_samples is None, \
            'expected iteration-based training'
        assert args.lr_decay_samples is None, \
            'expected iteration-based learning rate decay'
        assert args.lr_warmup_samples == 0, \
205
            'expected iteration-based learning rate warmup'
206
207
        assert args.rampup_batch_size is None, \
            'expected no batch-size rampup for iteration-based training'
208
        if args.lr_warmup_fraction is not None:
209
            assert args.lr_warmup_iters == 0, \
210
                'can only specify one of lr-warmup-fraction and lr-warmup-iters'
211
212
213
214
215
216
217
218
219
220
221

    # Sample-based training.
    if args.train_samples:
        # If we use sample-based training, make sure the
        # iteration-based options are off.
        assert args.train_iters is None, \
            'expected sample-based training'
        assert args.lr_decay_iters is None, \
            'expected sample-based learning rate decay'
        assert args.lr_warmup_iters == 0, \
            'expected sample-based learnig rate warmup'
222
        if args.lr_warmup_fraction is not None:
223
            assert args.lr_warmup_samples == 0, \
224
225
                'can only specify one of lr-warmup-fraction ' \
                'and lr-warmup-samples'
226

227
    if args.num_layers is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
228
229
        assert args.encoder_num_layers is None, \
            'cannot have both num-layers and encoder-num-layers specified'
230
231
        args.encoder_num_layers = args.num_layers
    else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
232
233
        assert args.encoder_num_layers is not None, \
            'either num-layers or encoder-num-layers should be specified'
234
235
        args.num_layers = args.encoder_num_layers

236
    # Check required arguments.
Mohammad's avatar
Mohammad committed
237
238
    required_args = ['num_layers', 'hidden_size', 'num_attention_heads',
                     'max_position_embeddings']
239
    for req_arg in required_args:
Mohammad's avatar
Mohammad committed
240
        _check_arg_is_not_none(args, req_arg)
241

Mohammad's avatar
Mohammad committed
242
    # Checks.
243
244
245
246
247
248
249
250
251
252
253
254
255
    if args.ffn_hidden_size is None:
        args.ffn_hidden_size = 4 * args.hidden_size

    if args.kv_channels is None:
        assert args.hidden_size % args.num_attention_heads == 0
        args.kv_channels = args.hidden_size // args.num_attention_heads

    if args.seq_length is not None:
        assert args.encoder_seq_length is None
        args.encoder_seq_length = args.seq_length
    else:
        assert args.encoder_seq_length is not None
        args.seq_length = args.encoder_seq_length
256

Mohammad's avatar
Mohammad committed
257
258
    if args.seq_length is not None:
        assert args.max_position_embeddings >= args.seq_length
Jared Casper's avatar
Jared Casper committed
259
260
    if args.decoder_seq_length is not None:
        assert args.max_position_embeddings >= args.decoder_seq_length
Mohammad's avatar
Mohammad committed
261
262
    if args.lr is not None:
        assert args.min_lr <= args.lr
Mohammad's avatar
Mohammad committed
263
264
    if args.save is not None:
        assert args.save_interval is not None
mohammad's avatar
mohammad committed
265
266
267
    # Mixed precision checks.
    if args.fp16_lm_cross_entropy:
        assert args.fp16, 'lm cross entropy in fp16 only support in fp16 mode.'
268
    if args.fp32_residual_connection:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
269
270
        assert args.fp16 or args.bf16, \
            'residual connection in fp32 only supported when using fp16 or bf16.'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
271

Vijay Korthikanti's avatar
Vijay Korthikanti committed
272
273
274
275
276
    if args.weight_decay_incr_style == 'constant':
        assert args.start_weight_decay is None
        assert args.end_weight_decay is None
        args.start_weight_decay = args.weight_decay
        args.end_weight_decay = args.weight_decay
Vijay Korthikanti's avatar
Vijay Korthikanti committed
277
    else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
278
279
        assert args.start_weight_decay is not None
        assert args.end_weight_decay is not None
280

Sangkug Lym's avatar
Sangkug Lym committed
281
282
283
284
285
286
287
288
289
290
    TORCH_MAJOR = int(torch.__version__.split('.')[0])
    TORCH_MINOR = int(torch.__version__.split('.')[1])
    # Persistent fused layer norm.
    if TORCH_MAJOR < 1 or (TORCH_MAJOR == 1 and TORCH_MINOR < 11):
        args.no_persist_layer_norm = True
        if args.rank == 0:
            print('Persistent fused layer norm kernel is supported from '
                  'pytorch v1.11 (nvidia pytorch container paired with v1.11). '
                  'Defaulting to no_persist_layer_norm=True')

Vijay Korthikanti's avatar
Vijay Korthikanti committed
291
    # Activation recomputing.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
292
    if args.distribute_saved_activations:
mshoeybi's avatar
mshoeybi committed
293
        assert args.tensor_model_parallel_size > 1, 'can distribute ' \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
294
            'recomputed activations only across tensor model ' \
mshoeybi's avatar
mshoeybi committed
295
            'parallel groups'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
296
297
298
299
300
301
        assert args.recompute_granularity == 'full', \
            'distributed recompute activations is only '\
            'application to full recompute granularity'
        assert args.recompute_method is not None, \
            'for distributed recompute activations to work you '\
            'need to use a recompute method '
302
        assert TORCH_MAJOR >= 1 and TORCH_MINOR >= 10, \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
303
            'distributed recompute activations are supported for pytorch ' \
304
305
            'v1.10 and above (Nvidia Pytorch container >= 21.07). Current ' \
            'pytorch version is v%s.%s.' % (TORCH_MAJOR, TORCH_MINOR)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
306

Vijay Korthikanti's avatar
Vijay Korthikanti committed
307
308
309
310
    if args.recompute_granularity == 'selective':
        assert args.recompute_method is None, \
            'recompute method is not yet supported for ' \
            'selective recomputing granularity'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
311
312
313
314
315
316
317

    # disable sequence parallelism when tp=1
    # to avoid change in numerics when
    # sequence_parallelism is enabled.
    if args.tensor_model_parallel_size == 1:
        args.sequence_parallel = False

Vijay Korthikanti's avatar
Vijay Korthikanti committed
318
    # disable async_tensor_model_parallel_allreduce when
Vijay Korthikanti's avatar
Vijay Korthikanti committed
319
    # model parallel memory optimization is enabled
Vijay Korthikanti's avatar
Vijay Korthikanti committed
320
321
    if args.sequence_parallel:
        args.async_tensor_model_parallel_allreduce = False
Vijay Korthikanti's avatar
Vijay Korthikanti committed
322

323
324
325
326
327
328
329
330
331
332
333
334

    if os.environ.get('CUDA_DEVICE_MAX_CONNECTIONS') != "1":
        if args.sequence_parallel:
            raise RuntimeError(
                "Using sequence parallelism requires setting the environment variable "
                "CUDA_DEVICE_MAX_CONNECTIONS to 1")
        if args.async_tensor_model_parallel_allreduce:
            raise RuntimeError(
                "Using async gradient all reduce requires setting the environment "
                "variable CUDA_DEVICE_MAX_CONNECTIONS to 1")


Mohammad's avatar
Mohammad committed
335
336
    _print_args(args)
    return args
Mohammad's avatar
Mohammad committed
337
338


Mohammad's avatar
Mohammad committed
339
340
341
def _print_args(args):
    """Print arguments."""
    if args.rank == 0:
mohammad's avatar
mohammad committed
342
343
        print('------------------------ arguments ------------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
344
345
        str_list = []
        for arg in vars(args):
mohammad's avatar
mohammad committed
346
            dots = '.' * (48 - len(arg))
Mohammad's avatar
Mohammad committed
347
348
349
            str_list.append('  {} {} {}'.format(arg, dots, getattr(args, arg)))
        for arg in sorted(str_list, key=lambda x: x.lower()):
            print(arg, flush=True)
mohammad's avatar
mohammad committed
350
351
        print('-------------------- end of arguments ---------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
352
353


354
355
356
357
def _check_arg_is_not_none(args, arg):
    assert getattr(args, arg) is not None, '{} argument is None'.format(arg)


mshoeybi's avatar
mshoeybi committed
358
359
360
361
362
363
364
365
def _add_inference_args(parser):
    group = parser.add_argument_group(title='inference')

    group.add_argument('--inference-batch-times-seqlen-threshold',
                       type=int, default=512,
                       help='During inference, if batch-size times '
                       'sequence-length is smaller than this threshold '
                       'then we will not use pipelining, otherwise we will.')
366
367
368
369
370
371
    
    group.add_argument('--max-tokens-to-oom',
                       type=int, default=12000,
                       help='Maximum number of tokens during inference'
                       'tokens here is # in prompt + # to generate'
                       'Allows us to throw an error before OOM crashes server')
mshoeybi's avatar
mshoeybi committed
372
373
374
    return parser

    
Mohammad's avatar
Mohammad committed
375
def _add_network_size_args(parser):
Mohammad's avatar
Mohammad committed
376
    group = parser.add_argument_group(title='network size')
Mohammad's avatar
Mohammad committed
377

378
    group.add_argument('--num-layers', type=int, default=None,
Mohammad's avatar
Mohammad committed
379
                       help='Number of transformer layers.')
380
381
382
383
    group.add_argument('--encoder-num-layers', type=int, default=None,
                       help='Number of encoder transformer layers.')
    group.add_argument('--decoder-num-layers', type=int, default=None,
                       help='Number of decoder transformer layers.')
384
    group.add_argument('--hidden-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
385
                       help='Tansformer hidden size.')
386
    group.add_argument('--ffn-hidden-size', type=int, default=None,
387
388
                       help='Transformer Feed-Forward Network hidden size. '
                       'This is set to 4*hidden-size if not provided')
389
    group.add_argument('--num-attention-heads', type=int, default=None,
Mohammad's avatar
Mohammad committed
390
                       help='Number of transformer attention heads.')
391
    group.add_argument('--kv-channels', type=int, default=None,
392
393
394
395
                       help='Projection weights dimension in multi-head '
                       'attention. This is set to '
                       '   args.hidden_size // args.num_attention_heads '
                       'if not provided.')
396
    group.add_argument('--max-position-embeddings', type=int, default=None,
Mohammad's avatar
Mohammad committed
397
398
399
400
401
                       help='Maximum number of position embeddings to use. '
                       'This is the size of position embedding.')
    group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
                       help='Pad the vocab size to be divisible by this value.'
                       'This is added for computational efficieny reasons.')
Mohammad's avatar
Mohammad committed
402
403
    group.add_argument('--layernorm-epsilon', type=float, default=1e-5,
                       help='Layer norm epsilon.')
Mohammad's avatar
Mohammad committed
404
405
406
407
    group.add_argument('--apply-residual-connection-post-layernorm',
                       action='store_true',
                       help='If set, use original BERT residula connection '
                       'ordering.')
408
409
410
411
    group.add_argument('--openai-gelu', action='store_true',
                       help='Use OpenAIs GeLU implementation. This option'
                       'should not be used unless for backward compatibility'
                       'reasons.')
412
    group.add_argument('--onnx-safe', type=bool, required=False,
413
414
                       help='Use workarounds for known problems with '
                       'Torch ONNX exporter')
415
416
417
    group.add_argument('--bert-no-binary-head', action='store_false',
                       help='Disable BERT binary head.',
                       dest='bert_binary_head')
rprenger's avatar
rprenger committed
418
419
    group.add_argument('--num-experts', type=int, default=None,
                       help='Number of Experts in Switch Transformer (None means no Switch)')
Mohammad's avatar
Mohammad committed
420
421
422
    return parser


423
424
425
426
427
def _add_logging_args(parser):
    group = parser.add_argument_group(title='logging')

    group.add_argument('--log-params-norm', action='store_true',
                       help='If set, calculate and log parameters norm.')
428
    group.add_argument('--log-num-zeros-in-grad', action='store_true',
Rewon Child's avatar
Rewon Child committed
429
                       help='If set, calculate and log the number of zeros in gradient.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
    group.add_argument('--timing-log-level', type=int,
                       default=0, choices=range(0,3),
                       help='Granularity level to measure and report timing. '
                       '   0: report only iteration time and make sure timing '
                       '      does not introduce extra overhead.'
                       '   1: report timing for operations that are executed '
                       '      very limited times (basically once) during '
                       '      each iteration (such as gradient all-reduce) '
                       '   2: report timing for operations that migh be '
                       '      executed numerous times during each iteration. '
                       'Note that setting the level to 1 or 2 might '
                       'cause increase in iteration time.')
    group.add_argument('--no-barrier-with-level-1-timing', action='store_false',
                       help='If not set, use barrier with level 1 time '
                       'measurements. Note that this is up to the user '
                       'to make sure calling barrier with their timers '
                       'will not result in hangs. This can happen if for '
                       'example the user adds a level 1 timer that is not '
                       'called by all ranks.',
                       dest='barrier_with_L1_time')
    group.add_argument('--timing-log-option', type=str, default='minmax',
                       choices=['max', 'minmax', 'all'],
                       help='Options for logging timing:'
                       '  max: report the max timing across all ranks'
                       '  minmax: report min and max timings across all ranks'
                       '  all: report timings of all ranks.')
456
457
    group.add_argument('--tensorboard-log-interval', type=int, default=1,
                       help='Report to tensorboard interval.')
458
459
460
461
    group.add_argument('--tensorboard-queue-size', type=int, default=1000,
                       help='Size of the tensorboard queue for pending events '
                       'and summaries before one of the ‘add’ calls forces a '
                       'flush to disk.')
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
    group.add_argument('--log-timers-to-tensorboard', action='store_true',
                       help='If set, write timers to tensorboard.')
    group.add_argument('--log-batch-size-to-tensorboard', action='store_true',
                       help='If set, write batch-size to tensorboard.')
    group.add_argument('--no-log-learnig-rate-to-tensorboard',
                       action='store_false',
                       help='Disable learning rate logging to tensorboard.',
                       dest='log_learning_rate_to_tensorboard')
    group.add_argument('--no-log-loss-scale-to-tensorboard',
                       action='store_false',
                       help='Disable loss-scale logging to tensorboard.',
                       dest='log_loss_scale_to_tensorboard')
    group.add_argument('--log-validation-ppl-to-tensorboard',
                       action='store_true',
                       help='If set, write validation perplexity to '
                       'tensorboard.')
478
479
    group.add_argument('--log-memory-to-tensorboard',
                       action='store_true',
480
                       help='Enable memory logging to tensorboard.')
481
482
483
    group.add_argument('--log-world-size-to-tensorboard',
                       action='store_true',
                       help='Enable world size logging to tensorboard.')
484
485
486
487

    return parser


Mohammad's avatar
Mohammad committed
488
def _add_regularization_args(parser):
Mohammad's avatar
Mohammad committed
489
490
491
    group = parser.add_argument_group(title='regularization')

    group.add_argument('--attention-dropout', type=float, default=0.1,
492
                       help='Post attention dropout probability.')
Mohammad's avatar
Mohammad committed
493
494
495
496
    group.add_argument('--hidden-dropout', type=float, default=0.1,
                       help='Dropout probability for hidden state transformer.')
    group.add_argument('--weight-decay', type=float, default=0.01,
                       help='Weight decay coefficient for L2 regularization.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
497
    group.add_argument('--start-weight-decay', type=float,
498
                       help='Initial weight decay coefficient for L2 regularization.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
499
    group.add_argument('--end-weight-decay', type=float,
500
                       help='End of run weight decay coefficient for L2 regularization.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
501
    group.add_argument('--weight-decay-incr-style', type=str, default='constant',
502
503
                       choices=['constant', 'linear', 'cosine'],
                       help='Weight decay increment function.')
Mohammad's avatar
Mohammad committed
504
505
    group.add_argument('--clip-grad', type=float, default=1.0,
                       help='Gradient clipping based on global L2 norm.')
506
    group.add_argument('--adam-beta1', type=float, default=0.9,
507
508
                       help='First coefficient for computing running averages '
                       'of gradient and its square')
509
    group.add_argument('--adam-beta2', type=float, default=0.999,
510
511
                       help='Second coefficient for computing running averages '
                       'of gradient and its square')
512
    group.add_argument('--adam-eps', type=float, default=1e-08,
513
                       help='Term added to the denominator to improve'
514
                       'numerical stability')
515
516
    group.add_argument('--sgd-momentum', type=float, default=0.9,
                       help='Momentum factor for sgd')
Mohammad's avatar
Mohammad committed
517
518
519

    return parser

Mohammad's avatar
Mohammad committed
520
521

def _add_training_args(parser):
Mohammad's avatar
Mohammad committed
522
523
    group = parser.add_argument_group(title='training')

524
    group.add_argument('--micro-batch-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
525
526
                       help='Batch size per model instance (local batch size). '
                       'Global batch size is local batch size times data '
mohammad's avatar
mohammad committed
527
                       'parallel size times number of micro batches.')
528
529
530
    group.add_argument('--batch-size', type=int, default=None,
                       help='Old batch size parameter, do not use. '
                       'Use --micro-batch-size instead')
mohammad's avatar
mohammad committed
531
    group.add_argument('--global-batch-size', type=int, default=None,
mohammad's avatar
mohammad committed
532
533
534
                       help='Training batch size. If set, it should be a '
                       'multiple of micro-batch-size times data-parallel-size. '
                       'If this value is None, then '
mohammad's avatar
mohammad committed
535
                       'use micro-batch-size * data-parallel-size as the '
mohammad's avatar
mohammad committed
536
537
                       'global batch size. This choice will result in 1 for '
                       'number of micro-batches.')
mohammad's avatar
mohammad committed
538
539
540
541
542
543
544
545
546
547
548
549
    group.add_argument('--rampup-batch-size', nargs='*', default=None,
                       help='Batch size ramp up with the following values:'
                       '  --rampup-batch-size <start batch size> '
                       '                      <batch size incerement> '
                       '                      <ramp-up samples> '
                       'For example:'
                       '   --rampup-batch-size 16 8 300000 \ '
                       '   --global-batch-size 1024'
                       'will start with global batch size 16 and over '
                       ' (1024 - 16) / 8 = 126 intervals will increase'
                       'the batch size linearly to 1024. In each interval'
                       'we will use approximately 300000 / 126 = 2380 samples.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
550
551
    group.add_argument('--recompute-activations', action='store_true',
                       help='recompute activation to allow for training '
Mohammad's avatar
Mohammad committed
552
                       'with larger models, sequences, and batch sizes.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
553
    group.add_argument('--recompute-granularity', type=str, default=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
554
                       choices=['full', 'selective'],
Vijay Korthikanti's avatar
Vijay Korthikanti committed
555
                       help='Checkpoint activations to allow for training '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
556
557
                       'with larger models, sequences, and batch sizes. '
                       'It is supported at two granularities 1) full: '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
558
                       'whole transformer layer is recomputed, '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
559
                       '2) selective: core attention part of the transformer '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
560
                       'layer is recomputed.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
561
    group.add_argument('--distribute-saved-activations',
562
                       action='store_true',
Vijay Korthikanti's avatar
Vijay Korthikanti committed
563
                       help='If set, distribute recomputed activations '
564
                       'across model parallel group.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
565
    group.add_argument('--recompute-method', type=str, default=None,
566
567
                       choices=['uniform', 'block'],
                       help='1) uniform: uniformly divide the total number of '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
568
                       'Transformer layers and recompute the input activation of '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
569
                       'each divided chunk at specified granularity, '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
570
                       '2) recompute the input activations of only a set number of '
slym's avatar
slym committed
571
                       'individual Transformer layers per pipeline stage and do the '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
572
573
574
                       'rest without any recomputing at specified granularity'
                       'default) do not apply activations recompute to any layers')
    group.add_argument('--recompute-num-layers', type=int, default=1,
575
                       help='1) uniform: the number of Transformer layers in each '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
576
                       'uniformly divided recompute unit, '
577
                       '2) block: the number of individual Transformer layers '
Vijay Korthikanti's avatar
Vijay Korthikanti committed
578
                       'to recompute within each pipeline stage.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
579
580
581
582
583

    # deprecated
    group.add_argument('--checkpoint-activations', action='store_true',
                       help='Checkpoint activation to allow for training '
                       'with larger models, sequences, and batch sizes.')
Mohammad's avatar
Mohammad committed
584
    group.add_argument('--train-iters', type=int, default=None,
Mohammad's avatar
Mohammad committed
585
                       help='Total number of iterations to train over all '
586
587
588
589
590
591
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
    group.add_argument('--train-samples', type=int, default=None,
                       help='Total number of samples to train over all '
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
Mohammad's avatar
Mohammad committed
592
593
594
595
596
    group.add_argument('--log-interval', type=int, default=100,
                       help='Report loss and timing interval.')
    group.add_argument('--exit-interval', type=int, default=None,
                       help='Exit the program after the iteration is divisible '
                       'by this value.')
597
598
    group.add_argument('--exit-duration-in-mins', type=int, default=None,
                       help='Exit the program after this many minutes.')
599
600
601
    group.add_argument('--exit-signal-handler', action='store_true',
                       help='Dynamically save the checkpoint and shutdown the '
                       'training if SIGTERM is received')
Mohammad's avatar
Mohammad committed
602
603
    group.add_argument('--tensorboard-dir', type=str, default=None,
                       help='Write TensorBoard logs to this directory.')
604
    group.add_argument('--no-masked-softmax-fusion',
605
606
607
                       action='store_false',
                       help='Disable fusion of query_key_value scaling, '
                       'masking, and softmax.',
608
                       dest='masked_softmax_fusion')
609
610
611
612
613
614
    group.add_argument('--no-bias-gelu-fusion', action='store_false',
                       help='Disable bias and gelu fusion.',
                       dest='bias_gelu_fusion')
    group.add_argument('--no-bias-dropout-fusion', action='store_false',
                       help='Disable bias and dropout fusion.',
                       dest='bias_dropout_fusion')
615
616
617
    group.add_argument('--optimizer', type=str, default='adam',
                       choices=['adam', 'sgd'],
                       help='Optimizer function')
618
    group.add_argument('--dataloader-type', type=str, default=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
619
620
                       choices=['single', 'cyclic'],
                       help='Single pass vs multiple pass data loader')
slym's avatar
slym committed
621
    group.add_argument('--no-async-tensor-model-parallel-allreduce',
Sangkug Lym's avatar
Sangkug Lym committed
622
                       action='store_false',
slym's avatar
slym committed
623
624
                       help='Disable asynchronous execution of '
                       'tensor-model-parallel all-reduce with weight '
Sangkug Lym's avatar
Sangkug Lym committed
625
626
                       'gradient compuation of a column-linear layer.',
                       dest='async_tensor_model_parallel_allreduce')
Sangkug Lym's avatar
Sangkug Lym committed
627
628
629
630
631
    group.add_argument('--no-persist-layer-norm', action='store_true',
                       help='Disable using persistent fused layer norm kernel. '
                       'This kernel supports only a set of hidden sizes. Please '
                       'check persist_ln_hidden_sizes if your hidden '
                       'size is supported.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
632
    group.add_argument('--sequence-parallel', action='store_true',
Vijay Korthikanti's avatar
Vijay Korthikanti committed
633
                       help='Enable sequence parallel optimization.')
Sangkug Lym's avatar
Sangkug Lym committed
634
635
    group.add_argument('--no-gradient-accumulation-fusion',
                       action='store_false',
636
                       help='Disable fusing gradient accumulation to weight '
Sangkug Lym's avatar
Sangkug Lym committed
637
638
                       'gradient computation of linear layers',
                       dest='gradient_accumulation_fusion')
Mohammad's avatar
Mohammad committed
639
640
641
    return parser


Mohammad's avatar
Mohammad committed
642
def _add_initialization_args(parser):
Mohammad's avatar
Mohammad committed
643
644
645
646
647
    group = parser.add_argument_group(title='initialization')

    group.add_argument('--seed', type=int, default=1234,
                       help='Random seed used for python, numpy, '
                       'pytorch, and cuda.')
648
649
650
    group.add_argument('--data-parallel-random-init', action='store_true',
                       help='Enable random initialization of params '
                       'across data parallel ranks')
Mohammad's avatar
Mohammad committed
651
652
653
    group.add_argument('--init-method-std', type=float, default=0.02,
                       help='Standard deviation of the zero mean normal '
                       'distribution used for weight initialization.')
654
655
    group.add_argument('--init-method-xavier-uniform', action='store_true',
                       help='Enable Xavier uniform parameter initialization')
Mohammad's avatar
Mohammad committed
656

Mohammad's avatar
Mohammad committed
657
658
659
    return parser


Mohammad's avatar
Mohammad committed
660
def _add_learning_rate_args(parser):
Mohammad's avatar
Mohammad committed
661
662
    group = parser.add_argument_group(title='learning rate')

Mohammad's avatar
Mohammad committed
663
    group.add_argument('--lr', type=float, default=None,
Mohammad's avatar
Mohammad committed
664
665
666
667
                       help='Initial learning rate. Depending on decay style '
                       'and initial warmup, the learing rate at each '
                       'iteration would be different.')
    group.add_argument('--lr-decay-style', type=str, default='linear',
668
                       choices=['constant', 'linear', 'cosine', 'inverse-square-root'],
Mohammad's avatar
Mohammad committed
669
670
671
672
                       help='Learning rate decay function.')
    group.add_argument('--lr-decay-iters', type=int, default=None,
                       help='number of iterations to decay learning rate over,'
                       ' If None defaults to `--train-iters`')
673
674
675
    group.add_argument('--lr-decay-samples', type=int, default=None,
                       help='number of samples to decay learning rate over,'
                       ' If None defaults to `--train-samples`')
676
677
678
    group.add_argument('--lr-warmup-fraction', type=float, default=None,
                       help='fraction of lr-warmup-(iters/samples) to use '
                       'for warmup (as a float)')
679
680
681
682
683
684
    group.add_argument('--lr-warmup-iters', type=int, default=0,
                       help='number of iterations to linearly warmup '
                       'learning rate over.')
    group.add_argument('--lr-warmup-samples', type=int, default=0,
                       help='number of samples to linearly warmup '
                       'learning rate over.')
685
    group.add_argument('--warmup', type=int, default=None,
686
                       help='Old lr warmup argument, do not use. Use one of the'
687
                       '--lr-warmup-* arguments above')
Mohammad's avatar
Mohammad committed
688
689
690
    group.add_argument('--min-lr', type=float, default=0.0,
                       help='Minumum value for learning rate. The scheduler'
                       'clip values below this threshold.')
691
    group.add_argument('--override-opt_param-scheduler', action='store_true',
Mohammad's avatar
Mohammad committed
692
693
694
695
696
                       help='Reset the values of the scheduler (learning rate,'
                       'warmup iterations, minimum learning rate, maximum '
                       'number of iterations, and decay style from input '
                       'arguments and ignore values from checkpoints. Note'
                       'that all the above values will be reset.')
697
    group.add_argument('--use-checkpoint-opt_param-scheduler', action='store_true',
Mohammad's avatar
Mohammad committed
698
699
700
701
702
703
704
705
                       help='Use checkpoint to set the values of the scheduler '
                       '(learning rate, warmup iterations, minimum learning '
                       'rate, maximum number of iterations, and decay style '
                       'from checkpoint and ignore input arguments.')

    return parser


Mohammad's avatar
Mohammad committed
706
def _add_checkpointing_args(parser):
Mohammad's avatar
Mohammad committed
707
708
709
710
711
712
    group = parser.add_argument_group(title='checkpointing')

    group.add_argument('--save', type=str, default=None,
                       help='Output directory to save checkpoints to.')
    group.add_argument('--save-interval', type=int, default=None,
                       help='Number of iterations between checkpoint saves.')
713
    group.add_argument('--no-save-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
714
                       help='Do not save current optimizer.')
715
    group.add_argument('--no-save-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
716
717
718
                       help='Do not save current rng state.')
    group.add_argument('--load', type=str, default=None,
                       help='Directory containing a model checkpoint.')
Jared Casper's avatar
Jared Casper committed
719
    group.add_argument('--no-load-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
720
                       help='Do not load optimizer when loading checkpoint.')
Jared Casper's avatar
Jared Casper committed
721
    group.add_argument('--no-load-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
722
723
724
725
726
                       help='Do not load rng state when loading checkpoint.')
    group.add_argument('--finetune', action='store_true',
                       help='Load model for finetuning. Do not load optimizer '
                       'or rng state from checkpoint and set iteration to 0. '
                       'Assumed when loading a release checkpoint.')
727
728
729
730
731
    group.add_argument('--no-initialization', action='store_false',
                       help='Do not perform initialization when building model, '
                       'can reduce startup time when definitely loading from a '
                       'checkpoint',
                       dest='perform_initialization')
732
733
734
    group.add_argument('--use-checkpoint-args', action='store_true',
                       help='Override any command line arguments with arguments '
                       'from the checkpoint')
Mohammad's avatar
Mohammad committed
735
736
737
738

    return parser


Mohammad's avatar
Mohammad committed
739
def _add_mixed_precision_args(parser):
Mohammad's avatar
Mohammad committed
740
741
742
743
    group = parser.add_argument_group(title='mixed precision')

    group.add_argument('--fp16', action='store_true',
                       help='Run model in fp16 mode.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
744
745
    group.add_argument('--bf16', action='store_true',
                       help='Run model in bfloat16 mode.')
mohammad's avatar
mohammad committed
746
747
748
749
750
751
752
753
754
755
756
757
    group.add_argument('--loss-scale', type=float, default=None,
                       help='Static loss scaling, positive power of 2 '
                       'values can improve fp16 convergence. If None, dynamic'
                       'loss scaling is used.')
    group.add_argument('--initial-loss-scale', type=float, default=2**32,
                       help='Initial loss-scale for dynamic loss scaling.')
    group.add_argument('--min-loss-scale', type=float, default=1.0,
                       help='Minimum loss scale for dynamic loss scale.')
    group.add_argument('--loss-scale-window', type=float, default=1000,
                       help='Window over which to raise/lower dynamic scale.')
    group.add_argument('--hysteresis', type=int, default=2,
                       help='hysteresis for dynamic loss scaling')
758
759
    group.add_argument('--fp32-residual-connection', action='store_true',
                       help='Move residual connections to fp32.')
760
761
762
    group.add_argument('--no-query-key-layer-scaling', action='store_false',
                       help='Do not scale Q * K^T by 1 / layer-number.',
                       dest='apply_query_key_layer_scaling')
Mohammad's avatar
Mohammad committed
763
    group.add_argument('--attention-softmax-in-fp32', action='store_true',
764
765
766
                       help='Run attention masking and softmax in fp32. '
                       'This flag is ignored unless '
                       '--no-query-key-layer-scaling is specified.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
767
768
769
    group.add_argument('--accumulate-allreduce-grads-in-fp32',
                       action='store_true',
                       help='Gradient accumulation and all-reduce in fp32.')
770
771
772
773
    group.add_argument('--fp16-lm-cross-entropy', action='store_true',
                       help='Move the cross entropy unreduced loss calculation'
                       'for lm head to fp16.')

Mohammad's avatar
Mohammad committed
774
775
776
    return parser


Mohammad's avatar
Mohammad committed
777
def _add_distributed_args(parser):
778
779
    group = parser.add_argument_group(title='distributed')

780
781
782
783
    group.add_argument('--tensor-model-parallel-size', type=int, default=1,
                       help='Degree of tensor model parallelism.')
    group.add_argument('--pipeline-model-parallel-size', type=int, default=1,
                       help='Degree of pipeline model parallelism.')
784
785
786
    group.add_argument('--pipeline-model-parallel-split-rank',
                       type=int, default=None,
                       help='Rank where encoder and decoder should be split.')
787
788
789
    group.add_argument('--model-parallel-size', type=int, default=None,
                       help='Old model parallel argument, do not use. Use '
                       '--tensor-model-parallel-size instead.')
790
791
    group.add_argument('--num-layers-per-virtual-pipeline-stage', type=int, default=None,
                       help='Number of layers per virtual pipeline stage')
Mohammad's avatar
Mohammad committed
792
793
794
795
    group.add_argument('--distributed-backend', default='nccl',
                       choices=['nccl', 'gloo'],
                       help='Which backend to use for distributed training.')
    group.add_argument('--DDP-impl', default='local',
Mohammad's avatar
Mohammad committed
796
                       choices=['local', 'torch'],
Mohammad's avatar
Mohammad committed
797
798
                       help='which DistributedDataParallel implementation '
                       'to use.')
799
800
801
802
    group.add_argument('--no-contiguous-buffers-in-local-ddp',
                       action='store_false', help='If set, dont use '
                       'contiguous buffer in local DDP.',
                       dest='use_contiguous_buffers_in_local_ddp')
803
804
805
    group.add_argument('--no-scatter-gather-tensors-in-pipeline', action='store_false',
                       help='Use scatter/gather to optimize communication of tensors in pipeline',
                       dest='scatter_gather_tensors_in_pipeline')
806
807
808
809
    group.add_argument('--use-ring-exchange-p2p', action='store_true',
                       default=False, help='If set, use custom-built ring exchange '
                       'for p2p communications. Note that this option will require '
                       'a custom built image that support ring-exchange p2p.')
Mohammad's avatar
Mohammad committed
810
811
    group.add_argument('--local_rank', type=int, default=None,
                       help='local rank passed from distributed launcher.')
812
    group.add_argument('--lazy-mpu-init', type=bool, required=False,
813
814
815
816
817
818
819
820
                       help='If set to True, initialize_megatron() '
                       'skips DDP initialization and returns function to '
                       'complete it instead.Also turns on '
                       '--use-cpu-initialization flag. This is for '
                       'external DDP manager.' )
    group.add_argument('--use-cpu-initialization', action='store_true',
                       default=None, help='If set, affine parallel weights '
                       'initialization uses CPU' )
Lawrence McAfee's avatar
Lawrence McAfee committed
821
    group.add_argument('--empty-unused-memory-level', default=0, type=int,
822
823
824
825
                       choices=[0, 1, 2],
                       help='Call torch.cuda.empty_cache() each iteration '
                       '(training and eval), to reduce fragmentation.'
                       '0=off, 1=moderate, 2=aggressive.')
826
    group.add_argument('--standalone-embedding-stage', action='store_true',
Lawrence McAfee's avatar
Lawrence McAfee committed
827
828
                       default=False, help='If set, *input* embedding layer '
                       'is placed on its own pipeline stage, without any '
Lawrence McAfee's avatar
Lawrence McAfee committed
829
830
                       'transformer layers. (For T5, this flag currently only '
                       'affects the encoder embedding.)')
831
832
    group.add_argument('--use-distributed-optimizer', action='store_true',
                       help='Use distributed optimizer.')
833

Mohammad's avatar
Mohammad committed
834
835
836
    return parser


Mohammad's avatar
Mohammad committed
837
def _add_validation_args(parser):
Mohammad's avatar
Mohammad committed
838
839
840
841
842
843
844
845
846
    group = parser.add_argument_group(title='validation')

    group.add_argument('--eval-iters', type=int, default=100,
                       help='Number of iterations to run for evaluation'
                       'validation/test for.')
    group.add_argument('--eval-interval', type=int, default=1000,
                       help='Interval between running evaluation on '
                       'validation set.')

Mohammad's avatar
Mohammad committed
847
848
849
    return parser


Mohammad's avatar
Mohammad committed
850
def _add_data_args(parser):
Mohammad's avatar
Mohammad committed
851
852
    group = parser.add_argument_group(title='data and dataloader')

mohammad's avatar
mohammad committed
853
    group.add_argument('--data-path', nargs='*', default=None,
mohammad's avatar
mohammad committed
854
855
856
                       help='Path to the training dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
857
858
859
860
                       'dataset2-path ... It is used with --split when a '
                       'single dataset used for all three: train, valid '
                       'and test. It is exclusive to the other '
                       '--*-data-path args')
Mohammad's avatar
Mohammad committed
861
    group.add_argument('--split', type=str, default='969, 30, 1',
Mohammad's avatar
Mohammad committed
862
863
                       help='Comma-separated list of proportions for training,'
                       ' validation, and test split. For example the split '
864
865
                       '`90,5,5` will use 90%% of data for training, 5%% for '
                       'validation and 5%% for test.')
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
    group.add_argument('--train-data-path', nargs='*', default=None,
                       help='Path to the training dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
    group.add_argument('--valid-data-path', nargs='*', default=None,
                       help='Path to the validation dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
    group.add_argument('--test-data-path', nargs='*', default=None,
                       help='Path to the test dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
881

Mohammad's avatar
Mohammad committed
882
    group.add_argument('--vocab-file', type=str, default=None,
Mohammad's avatar
Mohammad committed
883
                       help='Path to the vocab file.')
Mohammad's avatar
Mohammad committed
884
885
    group.add_argument('--merge-file', type=str, default=None,
                       help='Path to the BPE merge file.')
886
887
888
    group.add_argument('--vocab-extra-ids', type=int, default=0,
                       help='Number of additional vocabulary tokens. '
                            'They are used for span masking in the T5 model')
Mohammad's avatar
Mohammad committed
889
    group.add_argument('--seq-length', type=int, default=None,
890
                       help='Maximum sequence length to process.')
891
    group.add_argument('--encoder-seq-length', type=int, default=None,
892
893
                       help='Maximum encoder sequence length to process.'
                       'This should be exclusive of --seq-length')
894
895
    group.add_argument('--decoder-seq-length', type=int, default=None,
                       help="Maximum decoder sequence length to process.")
Mostofa Patwary's avatar
Mostofa Patwary committed
896
897
    group.add_argument('--retriever-seq-length', type=int, default=256,
                       help='Maximum sequence length for the biencoder model '
898
                       'for retriever')
899
900
901
    group.add_argument('--sample-rate', type=float, default=1.0,
                       help='sample rate for training data. Supposed to be 0 '
                            ' < sample_rate < 1')
Mohammad's avatar
Mohammad committed
902
903
904
905
906
907
908
909
    group.add_argument('--mask-prob', type=float, default=0.15,
                       help='Probability of replacing a token with mask.')
    group.add_argument('--short-seq-prob', type=float, default=0.1,
                       help='Probability of producing a short sequence.')
    group.add_argument('--mmap-warmup', action='store_true',
                       help='Warm up mmap files.')
    group.add_argument('--num-workers', type=int, default=2,
                       help="Dataloader number of workers.")
Mohammad's avatar
Mohammad committed
910
911
912
    group.add_argument('--tokenizer-type', type=str,
                       default=None,
                       choices=['BertWordPieceLowerCase',
Raul Puri's avatar
Raul Puri committed
913
                                'BertWordPieceCase',
914
915
                                'GPT2BPETokenizer',
                                'SentencePieceTokenizer'],
Mohammad's avatar
Mohammad committed
916
                       help='What type of tokenizer to use.')
917
    group.add_argument('--tokenizer-model', type=str, default=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
918
                       help='Sentencepiece tokenizer model.')
919
920
921
922
923
924
925
926
927
928
    group.add_argument('--data-impl', type=str, default='infer',
                       choices=['lazy', 'cached', 'mmap', 'infer'],
                       help='Implementation of indexed datasets.')
    group.add_argument('--reset-position-ids', action='store_true',
                       help='Reset posistion ids after end-of-document token.')
    group.add_argument('--reset-attention-mask', action='store_true',
                       help='Reset self attention maske after '
                       'end-of-document token.')
    group.add_argument('--eod-mask-loss', action='store_true',
                       help='Mask loss for the end of document tokens.')
Mohammad's avatar
Mohammad committed
929

Mohammad's avatar
Mohammad committed
930
931
    return parser

Raul Puri's avatar
Raul Puri committed
932

Mohammad's avatar
Mohammad committed
933
934
def _add_autoresume_args(parser):
    group = parser.add_argument_group(title='autoresume')
Raul Puri's avatar
Raul Puri committed
935

Mohammad's avatar
Mohammad committed
936
937
938
939
940
    group.add_argument('--adlr-autoresume', action='store_true',
                       help='Enable autoresume on adlr cluster.')
    group.add_argument('--adlr-autoresume-interval', type=int, default=1000,
                       help='Intervals over which check for autoresume'
                       'termination signal')
Raul Puri's avatar
Raul Puri committed
941

Mohammad's avatar
Mohammad committed
942
    return parser
Neel Kant's avatar
Neel Kant committed
943
944


Mostofa Patwary's avatar
Mostofa Patwary committed
945
946
def _add_biencoder_args(parser):
    group = parser.add_argument_group(title='biencoder')
Neel Kant's avatar
Neel Kant committed
947
948
949

    # network size
    group.add_argument('--ict-head-size', type=int, default=None,
950
                       help='Size of block embeddings to be used in ICT and '
Mostofa Patwary's avatar
Mostofa Patwary committed
951
                        'REALM (paper default: 128)')
952
    group.add_argument('--biencoder-projection-dim', type=int, default=0,
Mostofa Patwary's avatar
Mostofa Patwary committed
953
954
                       help='Size of projection head used in biencoder (paper'
                        ' default: 128)')
955
    group.add_argument('--biencoder-shared-query-context-model', action='store_true',
Mostofa Patwary's avatar
Mostofa Patwary committed
956
957
                        help='Whether to share the parameters of the query '
                        'and context models or not')
Neel Kant's avatar
Neel Kant committed
958
959
960
961
962

    # checkpointing
    group.add_argument('--ict-load', type=str, default=None,
                       help='Directory containing an ICTBertModel checkpoint')
    group.add_argument('--bert-load', type=str, default=None,
963
964
                       help='Directory containing an BertModel checkpoint '
                       '(needed to start ICT and REALM)')
Neel Kant's avatar
Neel Kant committed
965
966
967
968
969

    # data
    group.add_argument('--titles-data-path', type=str, default=None,
                       help='Path to titles dataset used for ICT')
    group.add_argument('--query-in-block-prob', type=float, default=0.1,
970
971
                       help='Probability of keeping query in block for '
                       'ICT dataset')
Neel Kant's avatar
Neel Kant committed
972
    group.add_argument('--use-one-sent-docs', action='store_true',
Neel Kant's avatar
Neel Kant committed
973
                       help='Whether to use one sentence documents in ICT')
974
975
    group.add_argument('--evidence-data-path', type=str, default=None,
                       help='Path to Wikipedia Evidence frm DPR paper')
Neel Kant's avatar
Neel Kant committed
976

977
    # training
978
    group.add_argument('--retriever-report-topk-accuracies', nargs='+', type=int,
Mostofa Patwary's avatar
Mostofa Patwary committed
979
980
                        default=[], help="Which top-k accuracies to report "
                        "(e.g. '1 5 20')")
Mostofa Patwary's avatar
Mostofa Patwary committed
981
    group.add_argument('--retriever-score-scaling', action='store_true',
Mostofa Patwary's avatar
Mostofa Patwary committed
982
983
                       help='Whether to scale retriever scores by inverse '
                        'square root of hidden size')
984

Neel Kant's avatar
Neel Kant committed
985
    # faiss index
Neel Kant's avatar
Neel Kant committed
986
    group.add_argument('--block-data-path', type=str, default=None,
Neel Kant's avatar
Neel Kant committed
987
                       help='Where to save/load BlockData to/from')
Mostofa Patwary's avatar
Mostofa Patwary committed
988
989
990
    group.add_argument('--embedding-path', type=str, default=None,
                       help='Where to save/load Open-Retrieval Embedding'
                        ' data to/from')
Neel Kant's avatar
Neel Kant committed
991
992
993

    # indexer
    group.add_argument('--indexer-batch-size', type=int, default=128,
994
995
                       help='How large of batches to use when doing indexing '
                       'jobs')
Neel Kant's avatar
Neel Kant committed
996
    group.add_argument('--indexer-log-interval', type=int, default=1000,
997
998
                       help='After how many batches should the indexer '
                       'report progress')
Neel Kant's avatar
Neel Kant committed
999
    return parser
1000
1001


1002
1003
def _add_vision_args(parser):
    group = parser.add_argument_group(title="vision")
1004

1005
    # general vision arguements
1006
1007
    group.add_argument('--num-classes', type=int, default=1000,
                       help='num of classes in vision classificaiton task')
1008
1009
1010
1011
    group.add_argument('--img-h', type=int, default=224,
                       help='Image height for vision classification task')
    group.add_argument('--img-w', type=int, default=224,
                       help='Image height for vision classification task')
1012
1013
1014
    group.add_argument('--num-channels', type=int, default=3,
                       help='Number of channels in input image data')
    group.add_argument('--patch-dim', type=int, default=16,
1015
                       help='patch dimension')
1016
1017
1018
1019
1020
1021
1022
    group.add_argument('--classes-fraction', type=float, default=1.0,
                       help='training with fraction of classes.')
    group.add_argument('--data-per-class-fraction', type=float, default=1.0,
                       help='training with fraction of data per class.')
    group.add_argument('--no-data-sharding', action='store_false',
                       help='Disable data sharding.',
                       dest='data_sharding')
1023
1024
1025
1026
    group.add_argument('--head-lr-mult', type=float, default=1.0,
                       help='learning rate multiplier for head during finetuning')

    # pretraining type and backbone selection`
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1027
1028
    group.add_argument('--vision-pretraining', action='store_true',
                       help='flag to indicate vision pretraining')
1029
    group.add_argument('--vision-pretraining-type', type=str, default='classify',
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1030
                       choices=['classify', 'inpaint', 'dino'],
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
                       help='pretraining objectives')
    group.add_argument('--vision-backbone-type', type=str, default='vit',
                       choices=['vit', 'mit', 'swin'],
                       help='backbone types types')
    group.add_argument('--swin-backbone-type', type=str, default='tiny',
                       choices=['tiny', 'base', 'h3'],
                       help='pretraining objectives')
    
    # inpainting arguments
    group.add_argument('--mask-type', type=str, default='random',
                       choices=['random', 'row'],
                       help='mask types')
    group.add_argument('--mask-factor', type=float, default=1.0,
                       help='mask size scaling parameter')
 
    # dino arguments
    group.add_argument('--iter-per-epoch', type=int, default=1250,
                       help='iterations per epoch')
    group.add_argument('--dino-local-img-size', type=int, default=96,
                       help='Image size for vision classification task')
    group.add_argument('--dino-local-crops-number', type=int, default=10,
                       help='Number of local crops')
    group.add_argument('--dino-head-hidden-size', type=int, default=2048,
                       help='Hidden dimension size in dino head')
    group.add_argument('--dino-bottleneck-size', type=int, default=256,
                       help='Bottle neck dimension in dino head ')
    group.add_argument('--dino-freeze-last-layer', type=float, default=1,
                       help='Freezing last layer weights')
    group.add_argument('--dino-norm-last-layer', action='store_true',
                       help='Disable Norm in last layer.')
    group.add_argument('--dino-warmup-teacher-temp', type=float, default=0.04,
                       help='warump teacher temperature')
    group.add_argument('--dino-teacher-temp', type=float, default=0.07,
                       help='teacher temperature')
    group.add_argument('--dino-warmup-teacher-temp-epochs', type=int, default=30,
                       help='warmup teacher temperaure epochs')
1067
1068

    return parser