arguments.py 48.8 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Raul Puri's avatar
Raul Puri committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Megatron arguments."""
Raul Puri's avatar
Raul Puri committed
17
18
19
20

import argparse
import os

21
import torch
Raul Puri's avatar
Raul Puri committed
22

23
24
def parse_args(extra_args_provider=None, defaults={},
               ignore_unknown_args=False):
Mohammad's avatar
Mohammad committed
25
    """Parse all arguments."""
26
27
    parser = argparse.ArgumentParser(description='Megatron-LM Arguments',
                                     allow_abbrev=False)
Mohammad's avatar
Mohammad committed
28

Mohammad's avatar
Mohammad committed
29
30
31
32
33
34
35
36
37
38
39
40
    # Standard arguments.
    parser = _add_network_size_args(parser)
    parser = _add_regularization_args(parser)
    parser = _add_training_args(parser)
    parser = _add_initialization_args(parser)
    parser = _add_learning_rate_args(parser)
    parser = _add_checkpointing_args(parser)
    parser = _add_mixed_precision_args(parser)
    parser = _add_distributed_args(parser)
    parser = _add_validation_args(parser)
    parser = _add_data_args(parser)
    parser = _add_autoresume_args(parser)
Mostofa Patwary's avatar
Mostofa Patwary committed
41
    parser = _add_biencoder_args(parser)
42
    parser = _add_vision_args(parser)
43
    parser = _add_logging_args(parser)
mshoeybi's avatar
mshoeybi committed
44
    parser = _add_inference_args(parser)
Mohammad's avatar
Mohammad committed
45
46
47
48

    # Custom arguments.
    if extra_args_provider is not None:
        parser = extra_args_provider(parser)
Mohammad's avatar
Mohammad committed
49

Mohammad's avatar
Mohammad committed
50
    # Parse.
51
52
53
54
    if ignore_unknown_args:
        args, _ = parser.parse_known_args()
    else:
        args = parser.parse_args()
Mohammad's avatar
Mohammad committed
55

Mohammad's avatar
Mohammad committed
56
57
58
    # Distributed args.
    args.rank = int(os.getenv('RANK', '0'))
    args.world_size = int(os.getenv("WORLD_SIZE", '1'))
mohammad's avatar
mohammad committed
59
    # Tensor model parallel size.
60
61
    args.tensor_model_parallel_size = min(
        args.tensor_model_parallel_size, args.world_size)
mohammad's avatar
mohammad committed
62
63
64
65
    assert args.world_size % args.tensor_model_parallel_size == 0, 'world size'\
        ' ({}) is not divisible by tensor model parallel size ({})'.format(
            args.world_size, args.tensor_model_parallel_size)
    # Pipeline model parallel size.
66
67
68
    args.pipeline_model_parallel_size = min(
        args.pipeline_model_parallel_size,
        (args.world_size // args.tensor_model_parallel_size))
69
70
    args.transformer_pipeline_model_parallel_size = (
        args.pipeline_model_parallel_size - 1
71
        if args.standalone_embedding_stage else
72
73
        args.pipeline_model_parallel_size
    )
mohammad's avatar
mohammad committed
74
    # Checks.
75
76
77
    model_parallel_size = args.pipeline_model_parallel_size * \
                          args.tensor_model_parallel_size
    assert args.world_size % model_parallel_size == 0, 'world size is not'\
78
        ' divisible by tensor parallel size ({}) times pipeline parallel ' \
mohammad's avatar
mohammad committed
79
80
        'size ({})'.format(args.world_size, args.tensor_model_parallel_size,
                           args.pipeline_model_parallel_size)
81
    args.data_parallel_size = args.world_size // model_parallel_size
Mohammad's avatar
Mohammad committed
82
    if args.rank == 0:
mohammad's avatar
mohammad committed
83
84
85
86
87
88
        print('using world size: {}, data-parallel-size: {}, '
              'tensor-model-parallel size: {}, '
              'pipeline-model-parallel size: {} '.format(
                  args.world_size, args.data_parallel_size,
                  args.tensor_model_parallel_size,
                  args.pipeline_model_parallel_size), flush=True)
89
90
91
92
93
94
    if args.pipeline_model_parallel_size > 1:
        if args.pipeline_model_parallel_split_rank is not None:
            assert args.pipeline_model_parallel_split_rank < \
                    args.pipeline_model_parallel_size, 'split rank needs'\
                    ' to be less than pipeline model parallel size ({})'.format(
                            args.pipeline_model_parallel_size)
mohammad's avatar
mohammad committed
95

96
97
98
99
100
101
102
103
104
105
    # Deprecated arguments
    assert args.batch_size is None, '--batch-size argument is no longer ' \
        'valid, use --micro-batch-size instead'
    del args.batch_size
    assert args.warmup is None, '--warmup argument is no longer valid, use ' \
        '--lr-warmup-fraction instead'
    del args.warmup
    assert args.model_parallel_size is None, '--model-parallel-size is no ' \
        'longer valid, use --tensor-model-parallel-size instead'
    del args.model_parallel_size
106
107
    if args.checkpoint_activations:
        args.activations_checkpoint_method = 'uniform'
slym's avatar
slym committed
108
109
110
111
        if args.rank == 0:
            print('--checkpoint-activations is no longer valid, '
                  'use --activation-checkpoint-method instead. '
                  'Defaulting to activation-checkpoint-method=uniform.')
112
    del args.checkpoint_activations
113

Jared Casper's avatar
Jared Casper committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
    # Set input defaults.
    for key in defaults:
        # For default to be valid, it should not be provided in the
        # arguments that are passed to the program. We check this by
        # ensuring the arg is set to None.
        if getattr(args, key) is not None:
            if args.rank == 0:
                print('WARNING: overriding default arguments for {key}:{v} \
                       with {key}:{v2}'.format(key=key, v=defaults[key],
                                               v2=getattr(args, key)),
                                               flush=True)
        else:
            setattr(args, key, defaults[key])

mohammad's avatar
mohammad committed
128
129
130
131
132
133
134
135
136
    # Batch size.
    assert args.micro_batch_size is not None
    assert args.micro_batch_size > 0
    if args.global_batch_size is None:
        args.global_batch_size = args.micro_batch_size * args.data_parallel_size
        if args.rank == 0:
            print('setting global batch size to {}'.format(
                args.global_batch_size), flush=True)
    assert args.global_batch_size > 0
137
    if args.num_layers_per_virtual_pipeline_stage is not None:
Lawrence McAfee's avatar
Lawrence McAfee committed
138
139
140
        assert args.pipeline_model_parallel_size > 2, \
            'pipeline-model-parallel size should be greater than 2 with ' \
            'interleaved schedule'
141
142
143
144
        assert args.num_layers % args.num_layers_per_virtual_pipeline_stage == 0, \
            'number of layers is not divisible by number of layers per virtual ' \
            'pipeline stage'
        args.virtual_pipeline_model_parallel_size = \
Lawrence McAfee's avatar
Lawrence McAfee committed
145
            (args.num_layers // args.transformer_pipeline_model_parallel_size) // \
146
147
148
            args.num_layers_per_virtual_pipeline_stage
    else:
        args.virtual_pipeline_model_parallel_size = None
Mohammad's avatar
Mohammad committed
149

150
151
152
    # Parameters dtype.
    args.params_dtype = torch.float
    if args.fp16:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
153
        assert not args.bf16
154
        args.params_dtype = torch.half
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
155
156
157
    if args.bf16:
        assert not args.fp16
        args.params_dtype = torch.bfloat16
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
158
159
160
161
162
163
164
        # bfloat16 requires gradient accumulation and all-reduce to
        # be done in fp32.
        if not args.accumulate_allreduce_grads_in_fp32:
            args.accumulate_allreduce_grads_in_fp32 = True
            if args.rank == 0:
                print('accumulate and all-reduce gradients in fp32 for '
                      'bfloat16 data type.', flush=True)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
165

166
167
168
169
    if args.rank == 0:
        print('using {} for parameters ...'.format(args.params_dtype),
              flush=True)

170
171
    # If we do accumulation and all-reduces in fp32, we need to have local DDP
    # and we should make sure use-contiguous-buffers-in-local-ddp is not off.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
172
173
    if args.accumulate_allreduce_grads_in_fp32:
        assert args.DDP_impl == 'local'
174
        assert args.use_contiguous_buffers_in_local_ddp
Sangkug Lym's avatar
Sangkug Lym committed
175
176
177
178
179
180
181
182
    else:
        if args.gradient_accumulation_fusion:
            args.gradient_accumulation_fusion = False
            if args.rank == 0:
                print('Gradient accumulation fusion to linear layer weight '
                      'gradient computation is supported only with fp32 '
                      'gradient accumulation. Setting gradient_accumulation_fusion '
                      'to False', flush=True)
183

184
185
186
187
188
189
    # If we use the distributed optimizer, we need to have local DDP
    # and we should make sure use-contiguous-buffers-in-local-ddp is on.
    if args.use_distributed_optimizer:
        assert args.DDP_impl == 'local'
        assert args.use_contiguous_buffers_in_local_ddp

mshoeybi's avatar
mshoeybi committed
190
191
192
193
    # For torch DDP, we do not use contiguous buffer
    if args.DDP_impl == 'torch':
        args.use_contiguous_buffers_in_local_ddp = False

194
195
196
    if args.dataloader_type is None:
        args.dataloader_type = 'single'

197
198
199
    # Consumed tokens.
    args.consumed_train_samples = 0
    args.consumed_valid_samples = 0
200

201
202
203
204
205
206
207
208
209
    # Iteration-based training.
    if args.train_iters:
        # If we use iteration-based training, make sure the
        # sample-based options are off.
        assert args.train_samples is None, \
            'expected iteration-based training'
        assert args.lr_decay_samples is None, \
            'expected iteration-based learning rate decay'
        assert args.lr_warmup_samples == 0, \
210
            'expected iteration-based learning rate warmup'
211
212
        assert args.rampup_batch_size is None, \
            'expected no batch-size rampup for iteration-based training'
213
        if args.lr_warmup_fraction is not None:
214
            assert args.lr_warmup_iters == 0, \
215
                'can only specify one of lr-warmup-fraction and lr-warmup-iters'
216
217
218
219
220
221
222
223
224
225
226

    # Sample-based training.
    if args.train_samples:
        # If we use sample-based training, make sure the
        # iteration-based options are off.
        assert args.train_iters is None, \
            'expected sample-based training'
        assert args.lr_decay_iters is None, \
            'expected sample-based learning rate decay'
        assert args.lr_warmup_iters == 0, \
            'expected sample-based learnig rate warmup'
227
        if args.lr_warmup_fraction is not None:
228
            assert args.lr_warmup_samples == 0, \
229
230
                'can only specify one of lr-warmup-fraction ' \
                'and lr-warmup-samples'
231

232
    # Check required arguments.
Mohammad's avatar
Mohammad committed
233
234
    required_args = ['num_layers', 'hidden_size', 'num_attention_heads',
                     'max_position_embeddings']
235
    for req_arg in required_args:
Mohammad's avatar
Mohammad committed
236
        _check_arg_is_not_none(args, req_arg)
237

Mohammad's avatar
Mohammad committed
238
    # Checks.
239
240
241
242
243
244
245
246
247
248
249
250
251
    if args.ffn_hidden_size is None:
        args.ffn_hidden_size = 4 * args.hidden_size

    if args.kv_channels is None:
        assert args.hidden_size % args.num_attention_heads == 0
        args.kv_channels = args.hidden_size // args.num_attention_heads

    if args.seq_length is not None:
        assert args.encoder_seq_length is None
        args.encoder_seq_length = args.seq_length
    else:
        assert args.encoder_seq_length is not None
        args.seq_length = args.encoder_seq_length
252

Mohammad's avatar
Mohammad committed
253
254
    if args.seq_length is not None:
        assert args.max_position_embeddings >= args.seq_length
Jared Casper's avatar
Jared Casper committed
255
256
    if args.decoder_seq_length is not None:
        assert args.max_position_embeddings >= args.decoder_seq_length
Mohammad's avatar
Mohammad committed
257
258
    if args.lr is not None:
        assert args.min_lr <= args.lr
Mohammad's avatar
Mohammad committed
259
260
    if args.save is not None:
        assert args.save_interval is not None
mohammad's avatar
mohammad committed
261
262
263
    # Mixed precision checks.
    if args.fp16_lm_cross_entropy:
        assert args.fp16, 'lm cross entropy in fp16 only support in fp16 mode.'
264
    if args.fp32_residual_connection:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
265
266
        assert args.fp16 or args.bf16, \
            'residual connection in fp32 only supported when using fp16 or bf16.'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
267

Vijay Korthikanti's avatar
Vijay Korthikanti committed
268
269
270
271
272
    if args.weight_decay_incr_style == 'constant':
        assert args.start_weight_decay is None
        assert args.end_weight_decay is None
        args.start_weight_decay = args.weight_decay
        args.end_weight_decay = args.weight_decay
Vijay Korthikanti's avatar
Vijay Korthikanti committed
273
    else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
274
275
        assert args.start_weight_decay is not None
        assert args.end_weight_decay is not None
276

Sangkug Lym's avatar
Sangkug Lym committed
277
278
279
280
281
282
283
284
285
286
    TORCH_MAJOR = int(torch.__version__.split('.')[0])
    TORCH_MINOR = int(torch.__version__.split('.')[1])
    # Persistent fused layer norm.
    if TORCH_MAJOR < 1 or (TORCH_MAJOR == 1 and TORCH_MINOR < 11):
        args.no_persist_layer_norm = True
        if args.rank == 0:
            print('Persistent fused layer norm kernel is supported from '
                  'pytorch v1.11 (nvidia pytorch container paired with v1.11). '
                  'Defaulting to no_persist_layer_norm=True')

287
288
289
290
291
292
293
294
295
296
297
298
299
    # Activation checkpointing.
    if args.distribute_checkpointed_activations:
        assert args.tensor_model_parallel_size > 1, 'can distribute ' \
            'checkpointed activations only across tensor model ' \
            'parallel groups'
        assert args.activations_checkpoint_method is not None, \
            'for distributed checkpoint activations to work you '\
            'need to use a activation-checkpoint method '
        assert TORCH_MAJOR >= 1 and TORCH_MINOR >= 10, \
            'distributed checkpoint activations are supported for pytorch ' \
            'v1.10 and above (Nvidia Pytorch container >= 21.07). Current ' \
            'pytorch version is v%s.%s.' % (TORCH_MAJOR, TORCH_MINOR)

Mohammad's avatar
Mohammad committed
300
301
    _print_args(args)
    return args
Mohammad's avatar
Mohammad committed
302
303


Mohammad's avatar
Mohammad committed
304
305
306
def _print_args(args):
    """Print arguments."""
    if args.rank == 0:
mohammad's avatar
mohammad committed
307
308
        print('------------------------ arguments ------------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
309
310
        str_list = []
        for arg in vars(args):
mohammad's avatar
mohammad committed
311
            dots = '.' * (48 - len(arg))
Mohammad's avatar
Mohammad committed
312
313
314
            str_list.append('  {} {} {}'.format(arg, dots, getattr(args, arg)))
        for arg in sorted(str_list, key=lambda x: x.lower()):
            print(arg, flush=True)
mohammad's avatar
mohammad committed
315
316
        print('-------------------- end of arguments ---------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
317
318


319
320
321
322
def _check_arg_is_not_none(args, arg):
    assert getattr(args, arg) is not None, '{} argument is None'.format(arg)


mshoeybi's avatar
mshoeybi committed
323
324
325
326
327
328
329
330
331
332
333
334
def _add_inference_args(parser):
    group = parser.add_argument_group(title='inference')

    group.add_argument('--inference-batch-times-seqlen-threshold',
                       type=int, default=512,
                       help='During inference, if batch-size times '
                       'sequence-length is smaller than this threshold '
                       'then we will not use pipelining, otherwise we will.')

    return parser

    
Mohammad's avatar
Mohammad committed
335
def _add_network_size_args(parser):
Mohammad's avatar
Mohammad committed
336
    group = parser.add_argument_group(title='network size')
Mohammad's avatar
Mohammad committed
337

338
    group.add_argument('--num-layers', type=int, default=None,
Mohammad's avatar
Mohammad committed
339
                       help='Number of transformer layers.')
340
    group.add_argument('--hidden-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
341
                       help='Tansformer hidden size.')
342
    group.add_argument('--ffn-hidden-size', type=int, default=None,
343
344
                       help='Transformer Feed-Forward Network hidden size. '
                       'This is set to 4*hidden-size if not provided')
345
    group.add_argument('--num-attention-heads', type=int, default=None,
Mohammad's avatar
Mohammad committed
346
                       help='Number of transformer attention heads.')
347
    group.add_argument('--kv-channels', type=int, default=None,
348
349
350
351
                       help='Projection weights dimension in multi-head '
                       'attention. This is set to '
                       '   args.hidden_size // args.num_attention_heads '
                       'if not provided.')
352
    group.add_argument('--max-position-embeddings', type=int, default=None,
Mohammad's avatar
Mohammad committed
353
354
355
356
357
                       help='Maximum number of position embeddings to use. '
                       'This is the size of position embedding.')
    group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
                       help='Pad the vocab size to be divisible by this value.'
                       'This is added for computational efficieny reasons.')
Mohammad's avatar
Mohammad committed
358
359
    group.add_argument('--layernorm-epsilon', type=float, default=1e-5,
                       help='Layer norm epsilon.')
Mohammad's avatar
Mohammad committed
360
361
362
363
    group.add_argument('--apply-residual-connection-post-layernorm',
                       action='store_true',
                       help='If set, use original BERT residula connection '
                       'ordering.')
364
365
366
367
    group.add_argument('--openai-gelu', action='store_true',
                       help='Use OpenAIs GeLU implementation. This option'
                       'should not be used unless for backward compatibility'
                       'reasons.')
368
    group.add_argument('--onnx-safe', type=bool, required=False,
369
370
                       help='Use workarounds for known problems with '
                       'Torch ONNX exporter')
371
372
373
    group.add_argument('--bert-no-binary-head', action='store_false',
                       help='Disable BERT binary head.',
                       dest='bert_binary_head')
rprenger's avatar
rprenger committed
374
375
    group.add_argument('--num-experts', type=int, default=None,
                       help='Number of Experts in Switch Transformer (None means no Switch)')
Mohammad's avatar
Mohammad committed
376
377
378
    return parser


379
380
381
382
383
def _add_logging_args(parser):
    group = parser.add_argument_group(title='logging')

    group.add_argument('--log-params-norm', action='store_true',
                       help='If set, calculate and log parameters norm.')
384
    group.add_argument('--log-num-zeros-in-grad', action='store_true',
Rewon Child's avatar
Rewon Child committed
385
                       help='If set, calculate and log the number of zeros in gradient.')
386
387
    group.add_argument('--tensorboard-log-interval', type=int, default=1,
                       help='Report to tensorboard interval.')
388
389
390
391
    group.add_argument('--tensorboard-queue-size', type=int, default=1000,
                       help='Size of the tensorboard queue for pending events '
                       'and summaries before one of the ‘add’ calls forces a '
                       'flush to disk.')
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
    group.add_argument('--log-timers-to-tensorboard', action='store_true',
                       help='If set, write timers to tensorboard.')
    group.add_argument('--log-batch-size-to-tensorboard', action='store_true',
                       help='If set, write batch-size to tensorboard.')
    group.add_argument('--no-log-learnig-rate-to-tensorboard',
                       action='store_false',
                       help='Disable learning rate logging to tensorboard.',
                       dest='log_learning_rate_to_tensorboard')
    group.add_argument('--no-log-loss-scale-to-tensorboard',
                       action='store_false',
                       help='Disable loss-scale logging to tensorboard.',
                       dest='log_loss_scale_to_tensorboard')
    group.add_argument('--log-validation-ppl-to-tensorboard',
                       action='store_true',
                       help='If set, write validation perplexity to '
                       'tensorboard.')
408
409
    group.add_argument('--log-memory-to-tensorboard',
                       action='store_true',
410
                       help='Enable memory logging to tensorboard.')
411
412
413
    group.add_argument('--log-world-size-to-tensorboard',
                       action='store_true',
                       help='Enable world size logging to tensorboard.')
414
415
416
417

    return parser


Mohammad's avatar
Mohammad committed
418
def _add_regularization_args(parser):
Mohammad's avatar
Mohammad committed
419
420
421
    group = parser.add_argument_group(title='regularization')

    group.add_argument('--attention-dropout', type=float, default=0.1,
422
                       help='Post attention dropout probability.')
Mohammad's avatar
Mohammad committed
423
424
425
426
    group.add_argument('--hidden-dropout', type=float, default=0.1,
                       help='Dropout probability for hidden state transformer.')
    group.add_argument('--weight-decay', type=float, default=0.01,
                       help='Weight decay coefficient for L2 regularization.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
427
    group.add_argument('--start-weight-decay', type=float,
428
                       help='Initial weight decay coefficient for L2 regularization.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
429
    group.add_argument('--end-weight-decay', type=float,
430
                       help='End of run weight decay coefficient for L2 regularization.')
Vijay Korthikanti's avatar
Vijay Korthikanti committed
431
    group.add_argument('--weight-decay-incr-style', type=str, default='constant',
432
433
                       choices=['constant', 'linear', 'cosine'],
                       help='Weight decay increment function.')
Mohammad's avatar
Mohammad committed
434
435
    group.add_argument('--clip-grad', type=float, default=1.0,
                       help='Gradient clipping based on global L2 norm.')
436
    group.add_argument('--adam-beta1', type=float, default=0.9,
437
438
                       help='First coefficient for computing running averages '
                       'of gradient and its square')
439
    group.add_argument('--adam-beta2', type=float, default=0.999,
440
441
                       help='Second coefficient for computing running averages '
                       'of gradient and its square')
442
    group.add_argument('--adam-eps', type=float, default=1e-08,
443
                       help='Term added to the denominator to improve'
444
                       'numerical stability')
445
446
    group.add_argument('--sgd-momentum', type=float, default=0.9,
                       help='Momentum factor for sgd')
Mohammad's avatar
Mohammad committed
447
448
449

    return parser

Mohammad's avatar
Mohammad committed
450
451

def _add_training_args(parser):
Mohammad's avatar
Mohammad committed
452
453
    group = parser.add_argument_group(title='training')

454
    group.add_argument('--micro-batch-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
455
456
                       help='Batch size per model instance (local batch size). '
                       'Global batch size is local batch size times data '
mohammad's avatar
mohammad committed
457
                       'parallel size times number of micro batches.')
458
459
460
    group.add_argument('--batch-size', type=int, default=None,
                       help='Old batch size parameter, do not use. '
                       'Use --micro-batch-size instead')
mohammad's avatar
mohammad committed
461
    group.add_argument('--global-batch-size', type=int, default=None,
mohammad's avatar
mohammad committed
462
463
464
                       help='Training batch size. If set, it should be a '
                       'multiple of micro-batch-size times data-parallel-size. '
                       'If this value is None, then '
mohammad's avatar
mohammad committed
465
                       'use micro-batch-size * data-parallel-size as the '
mohammad's avatar
mohammad committed
466
467
                       'global batch size. This choice will result in 1 for '
                       'number of micro-batches.')
mohammad's avatar
mohammad committed
468
469
470
471
472
473
474
475
476
477
478
479
    group.add_argument('--rampup-batch-size', nargs='*', default=None,
                       help='Batch size ramp up with the following values:'
                       '  --rampup-batch-size <start batch size> '
                       '                      <batch size incerement> '
                       '                      <ramp-up samples> '
                       'For example:'
                       '   --rampup-batch-size 16 8 300000 \ '
                       '   --global-batch-size 1024'
                       'will start with global batch size 16 and over '
                       ' (1024 - 16) / 8 = 126 intervals will increase'
                       'the batch size linearly to 1024. In each interval'
                       'we will use approximately 300000 / 126 = 2380 samples.')
Mohammad's avatar
Mohammad committed
480
481
482
    group.add_argument('--checkpoint-activations', action='store_true',
                       help='Checkpoint activation to allow for training '
                       'with larger models, sequences, and batch sizes.')
483
484
485
486
    group.add_argument('--distribute-checkpointed-activations',
                       action='store_true',
                       help='If set, distribute checkpointed activations '
                       'across model parallel group.')
487
488
489
490
491
    group.add_argument('--activations-checkpoint-method', type=str, default=None,
                       choices=['uniform', 'block'],
                       help='1) uniform: uniformly divide the total number of '
                       'Transformer layers and checkpoint the input activation of '
                       'each divided chunk, '
slym's avatar
slym committed
492
493
494
495
                       '2) checkpoint the input activations of only a set number of '
                       'individual Transformer layers per pipeline stage and do the '
                       'rest without any checkpointing'
                       'default) do not apply activations checkpoint to any layers')
496
497
498
499
500
    group.add_argument('--activations-checkpoint-num-layers', type=int, default=1,
                       help='1) uniform: the number of Transformer layers in each '
                       'uniformly divided checkpoint unit, '
                       '2) block: the number of individual Transformer layers '
                       'to checkpoint within each pipeline stage.')
Mohammad's avatar
Mohammad committed
501
    group.add_argument('--train-iters', type=int, default=None,
Mohammad's avatar
Mohammad committed
502
                       help='Total number of iterations to train over all '
503
504
505
506
507
508
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
    group.add_argument('--train-samples', type=int, default=None,
                       help='Total number of samples to train over all '
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
Mohammad's avatar
Mohammad committed
509
510
511
512
513
    group.add_argument('--log-interval', type=int, default=100,
                       help='Report loss and timing interval.')
    group.add_argument('--exit-interval', type=int, default=None,
                       help='Exit the program after the iteration is divisible '
                       'by this value.')
514
515
    group.add_argument('--exit-duration-in-mins', type=int, default=None,
                       help='Exit the program after this many minutes.')
516
517
518
    group.add_argument('--exit-signal-handler', action='store_true',
                       help='Dynamically save the checkpoint and shutdown the '
                       'training if SIGTERM is received')
Mohammad's avatar
Mohammad committed
519
520
    group.add_argument('--tensorboard-dir', type=str, default=None,
                       help='Write TensorBoard logs to this directory.')
521
    group.add_argument('--no-masked-softmax-fusion',
522
523
524
                       action='store_false',
                       help='Disable fusion of query_key_value scaling, '
                       'masking, and softmax.',
525
                       dest='masked_softmax_fusion')
526
527
528
529
530
531
    group.add_argument('--no-bias-gelu-fusion', action='store_false',
                       help='Disable bias and gelu fusion.',
                       dest='bias_gelu_fusion')
    group.add_argument('--no-bias-dropout-fusion', action='store_false',
                       help='Disable bias and dropout fusion.',
                       dest='bias_dropout_fusion')
532
533
534
    group.add_argument('--optimizer', type=str, default='adam',
                       choices=['adam', 'sgd'],
                       help='Optimizer function')
535
    group.add_argument('--dataloader-type', type=str, default=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
536
537
                       choices=['single', 'cyclic'],
                       help='Single pass vs multiple pass data loader')
slym's avatar
slym committed
538
    group.add_argument('--no-async-tensor-model-parallel-allreduce',
Sangkug Lym's avatar
Sangkug Lym committed
539
                       action='store_false',
slym's avatar
slym committed
540
541
                       help='Disable asynchronous execution of '
                       'tensor-model-parallel all-reduce with weight '
Sangkug Lym's avatar
Sangkug Lym committed
542
543
                       'gradient compuation of a column-linear layer.',
                       dest='async_tensor_model_parallel_allreduce')
Sangkug Lym's avatar
Sangkug Lym committed
544
545
546
547
548
    group.add_argument('--no-persist-layer-norm', action='store_true',
                       help='Disable using persistent fused layer norm kernel. '
                       'This kernel supports only a set of hidden sizes. Please '
                       'check persist_ln_hidden_sizes if your hidden '
                       'size is supported.')
Sangkug Lym's avatar
Sangkug Lym committed
549
550
    group.add_argument('--no-gradient-accumulation-fusion',
                       action='store_false',
551
                       help='Disable fusing gradient accumulation to weight '
Sangkug Lym's avatar
Sangkug Lym committed
552
553
                       'gradient computation of linear layers',
                       dest='gradient_accumulation_fusion')
Mohammad's avatar
Mohammad committed
554
555
556
    return parser


Mohammad's avatar
Mohammad committed
557
def _add_initialization_args(parser):
Mohammad's avatar
Mohammad committed
558
559
560
561
562
    group = parser.add_argument_group(title='initialization')

    group.add_argument('--seed', type=int, default=1234,
                       help='Random seed used for python, numpy, '
                       'pytorch, and cuda.')
563
564
565
    group.add_argument('--data-parallel-random-init', action='store_true',
                       help='Enable random initialization of params '
                       'across data parallel ranks')
Mohammad's avatar
Mohammad committed
566
567
568
    group.add_argument('--init-method-std', type=float, default=0.02,
                       help='Standard deviation of the zero mean normal '
                       'distribution used for weight initialization.')
569
570
    group.add_argument('--init-method-xavier-uniform', action='store_true',
                       help='Enable Xavier uniform parameter initialization')
Mohammad's avatar
Mohammad committed
571

Mohammad's avatar
Mohammad committed
572
573
574
    return parser


Mohammad's avatar
Mohammad committed
575
def _add_learning_rate_args(parser):
Mohammad's avatar
Mohammad committed
576
577
    group = parser.add_argument_group(title='learning rate')

Mohammad's avatar
Mohammad committed
578
    group.add_argument('--lr', type=float, default=None,
Mohammad's avatar
Mohammad committed
579
580
581
582
                       help='Initial learning rate. Depending on decay style '
                       'and initial warmup, the learing rate at each '
                       'iteration would be different.')
    group.add_argument('--lr-decay-style', type=str, default='linear',
mohammad's avatar
mohammad committed
583
                       choices=['constant', 'linear', 'cosine'],
Mohammad's avatar
Mohammad committed
584
585
586
587
                       help='Learning rate decay function.')
    group.add_argument('--lr-decay-iters', type=int, default=None,
                       help='number of iterations to decay learning rate over,'
                       ' If None defaults to `--train-iters`')
588
589
590
    group.add_argument('--lr-decay-samples', type=int, default=None,
                       help='number of samples to decay learning rate over,'
                       ' If None defaults to `--train-samples`')
591
592
593
    group.add_argument('--lr-warmup-fraction', type=float, default=None,
                       help='fraction of lr-warmup-(iters/samples) to use '
                       'for warmup (as a float)')
594
595
596
597
598
599
    group.add_argument('--lr-warmup-iters', type=int, default=0,
                       help='number of iterations to linearly warmup '
                       'learning rate over.')
    group.add_argument('--lr-warmup-samples', type=int, default=0,
                       help='number of samples to linearly warmup '
                       'learning rate over.')
600
    group.add_argument('--warmup', type=int, default=None,
601
                       help='Old lr warmup argument, do not use. Use one of the'
602
                       '--lr-warmup-* arguments above')
Mohammad's avatar
Mohammad committed
603
604
605
    group.add_argument('--min-lr', type=float, default=0.0,
                       help='Minumum value for learning rate. The scheduler'
                       'clip values below this threshold.')
606
    group.add_argument('--override-opt_param-scheduler', action='store_true',
Mohammad's avatar
Mohammad committed
607
608
609
610
611
                       help='Reset the values of the scheduler (learning rate,'
                       'warmup iterations, minimum learning rate, maximum '
                       'number of iterations, and decay style from input '
                       'arguments and ignore values from checkpoints. Note'
                       'that all the above values will be reset.')
612
    group.add_argument('--use-checkpoint-opt_param-scheduler', action='store_true',
Mohammad's avatar
Mohammad committed
613
614
615
616
617
618
619
620
                       help='Use checkpoint to set the values of the scheduler '
                       '(learning rate, warmup iterations, minimum learning '
                       'rate, maximum number of iterations, and decay style '
                       'from checkpoint and ignore input arguments.')

    return parser


Mohammad's avatar
Mohammad committed
621
def _add_checkpointing_args(parser):
Mohammad's avatar
Mohammad committed
622
623
624
625
626
627
    group = parser.add_argument_group(title='checkpointing')

    group.add_argument('--save', type=str, default=None,
                       help='Output directory to save checkpoints to.')
    group.add_argument('--save-interval', type=int, default=None,
                       help='Number of iterations between checkpoint saves.')
628
    group.add_argument('--no-save-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
629
                       help='Do not save current optimizer.')
630
    group.add_argument('--no-save-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
631
632
633
                       help='Do not save current rng state.')
    group.add_argument('--load', type=str, default=None,
                       help='Directory containing a model checkpoint.')
Jared Casper's avatar
Jared Casper committed
634
    group.add_argument('--no-load-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
635
                       help='Do not load optimizer when loading checkpoint.')
Jared Casper's avatar
Jared Casper committed
636
    group.add_argument('--no-load-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
637
638
639
640
641
642
643
644
645
                       help='Do not load rng state when loading checkpoint.')
    group.add_argument('--finetune', action='store_true',
                       help='Load model for finetuning. Do not load optimizer '
                       'or rng state from checkpoint and set iteration to 0. '
                       'Assumed when loading a release checkpoint.')

    return parser


Mohammad's avatar
Mohammad committed
646
def _add_mixed_precision_args(parser):
Mohammad's avatar
Mohammad committed
647
648
649
650
    group = parser.add_argument_group(title='mixed precision')

    group.add_argument('--fp16', action='store_true',
                       help='Run model in fp16 mode.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
651
652
    group.add_argument('--bf16', action='store_true',
                       help='Run model in bfloat16 mode.')
mohammad's avatar
mohammad committed
653
654
655
656
657
658
659
660
661
662
663
664
    group.add_argument('--loss-scale', type=float, default=None,
                       help='Static loss scaling, positive power of 2 '
                       'values can improve fp16 convergence. If None, dynamic'
                       'loss scaling is used.')
    group.add_argument('--initial-loss-scale', type=float, default=2**32,
                       help='Initial loss-scale for dynamic loss scaling.')
    group.add_argument('--min-loss-scale', type=float, default=1.0,
                       help='Minimum loss scale for dynamic loss scale.')
    group.add_argument('--loss-scale-window', type=float, default=1000,
                       help='Window over which to raise/lower dynamic scale.')
    group.add_argument('--hysteresis', type=int, default=2,
                       help='hysteresis for dynamic loss scaling')
665
666
    group.add_argument('--fp32-residual-connection', action='store_true',
                       help='Move residual connections to fp32.')
667
668
669
    group.add_argument('--no-query-key-layer-scaling', action='store_false',
                       help='Do not scale Q * K^T by 1 / layer-number.',
                       dest='apply_query_key_layer_scaling')
Mohammad's avatar
Mohammad committed
670
    group.add_argument('--attention-softmax-in-fp32', action='store_true',
671
672
673
                       help='Run attention masking and softmax in fp32. '
                       'This flag is ignored unless '
                       '--no-query-key-layer-scaling is specified.')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
674
675
676
    group.add_argument('--accumulate-allreduce-grads-in-fp32',
                       action='store_true',
                       help='Gradient accumulation and all-reduce in fp32.')
677
678
679
680
    group.add_argument('--fp16-lm-cross-entropy', action='store_true',
                       help='Move the cross entropy unreduced loss calculation'
                       'for lm head to fp16.')

Mohammad's avatar
Mohammad committed
681
682
683
    return parser


Mohammad's avatar
Mohammad committed
684
def _add_distributed_args(parser):
685
686
    group = parser.add_argument_group(title='distributed')

687
688
689
690
    group.add_argument('--tensor-model-parallel-size', type=int, default=1,
                       help='Degree of tensor model parallelism.')
    group.add_argument('--pipeline-model-parallel-size', type=int, default=1,
                       help='Degree of pipeline model parallelism.')
691
692
693
    group.add_argument('--pipeline-model-parallel-split-rank',
                       type=int, default=None,
                       help='Rank where encoder and decoder should be split.')
694
695
696
    group.add_argument('--model-parallel-size', type=int, default=None,
                       help='Old model parallel argument, do not use. Use '
                       '--tensor-model-parallel-size instead.')
697
698
    group.add_argument('--num-layers-per-virtual-pipeline-stage', type=int, default=None,
                       help='Number of layers per virtual pipeline stage')
Mohammad's avatar
Mohammad committed
699
700
701
702
    group.add_argument('--distributed-backend', default='nccl',
                       choices=['nccl', 'gloo'],
                       help='Which backend to use for distributed training.')
    group.add_argument('--DDP-impl', default='local',
Mohammad's avatar
Mohammad committed
703
                       choices=['local', 'torch'],
Mohammad's avatar
Mohammad committed
704
705
                       help='which DistributedDataParallel implementation '
                       'to use.')
706
707
708
709
    group.add_argument('--no-contiguous-buffers-in-local-ddp',
                       action='store_false', help='If set, dont use '
                       'contiguous buffer in local DDP.',
                       dest='use_contiguous_buffers_in_local_ddp')
710
711
712
    group.add_argument('--no-scatter-gather-tensors-in-pipeline', action='store_false',
                       help='Use scatter/gather to optimize communication of tensors in pipeline',
                       dest='scatter_gather_tensors_in_pipeline')
Mohammad's avatar
Mohammad committed
713
714
    group.add_argument('--local_rank', type=int, default=None,
                       help='local rank passed from distributed launcher.')
715
    group.add_argument('--lazy-mpu-init', type=bool, required=False,
716
717
718
719
720
721
722
723
                       help='If set to True, initialize_megatron() '
                       'skips DDP initialization and returns function to '
                       'complete it instead.Also turns on '
                       '--use-cpu-initialization flag. This is for '
                       'external DDP manager.' )
    group.add_argument('--use-cpu-initialization', action='store_true',
                       default=None, help='If set, affine parallel weights '
                       'initialization uses CPU' )
Lawrence McAfee's avatar
Lawrence McAfee committed
724
    group.add_argument('--empty-unused-memory-level', default=0, type=int,
725
726
727
728
                       choices=[0, 1, 2],
                       help='Call torch.cuda.empty_cache() each iteration '
                       '(training and eval), to reduce fragmentation.'
                       '0=off, 1=moderate, 2=aggressive.')
729
    group.add_argument('--standalone-embedding-stage', action='store_true',
Lawrence McAfee's avatar
Lawrence McAfee committed
730
731
                       default=False, help='If set, *input* embedding layer '
                       'is placed on its own pipeline stage, without any '
Lawrence McAfee's avatar
Lawrence McAfee committed
732
733
                       'transformer layers. (For T5, this flag currently only '
                       'affects the encoder embedding.)')
734
735
    group.add_argument('--use-distributed-optimizer', action='store_true',
                       help='Use distributed optimizer.')
736
    group.add_argument('--distrib-opt-comm-mem-savings', default=0., type=float,
737
738
739
                       help='Trade-off memory savings & iteration time, for '
                       'disributed optimizer\'s communication operations (i.e., '
                       '(reduce/gather). This value ranges from 0.0 (default, '
Lawrence McAfee's avatar
Lawrence McAfee committed
740
                       'no memory savings) to 1.0 (max memory savings, at the '
741
                       'expense of iteration time).')
742

Mohammad's avatar
Mohammad committed
743
744
745
    return parser


Mohammad's avatar
Mohammad committed
746
def _add_validation_args(parser):
Mohammad's avatar
Mohammad committed
747
748
749
750
751
752
753
754
755
    group = parser.add_argument_group(title='validation')

    group.add_argument('--eval-iters', type=int, default=100,
                       help='Number of iterations to run for evaluation'
                       'validation/test for.')
    group.add_argument('--eval-interval', type=int, default=1000,
                       help='Interval between running evaluation on '
                       'validation set.')

Mohammad's avatar
Mohammad committed
756
757
758
    return parser


Mohammad's avatar
Mohammad committed
759
def _add_data_args(parser):
Mohammad's avatar
Mohammad committed
760
761
    group = parser.add_argument_group(title='data and dataloader')

mohammad's avatar
mohammad committed
762
    group.add_argument('--data-path', nargs='*', default=None,
mohammad's avatar
mohammad committed
763
764
765
766
                       help='Path to the training dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
Mohammad's avatar
Mohammad committed
767
    group.add_argument('--split', type=str, default='969, 30, 1',
Mohammad's avatar
Mohammad committed
768
769
                       help='Comma-separated list of proportions for training,'
                       ' validation, and test split. For example the split '
770
771
                       '`90,5,5` will use 90%% of data for training, 5%% for '
                       'validation and 5%% for test.')
Mohammad's avatar
Mohammad committed
772
    group.add_argument('--vocab-file', type=str, default=None,
Mohammad's avatar
Mohammad committed
773
                       help='Path to the vocab file.')
Mohammad's avatar
Mohammad committed
774
775
    group.add_argument('--merge-file', type=str, default=None,
                       help='Path to the BPE merge file.')
776
777
778
    group.add_argument('--vocab-extra-ids', type=int, default=0,
                       help='Number of additional vocabulary tokens. '
                            'They are used for span masking in the T5 model')
Mohammad's avatar
Mohammad committed
779
    group.add_argument('--seq-length', type=int, default=None,
780
                       help='Maximum sequence length to process.')
781
    group.add_argument('--encoder-seq-length', type=int, default=None,
782
783
                       help='Maximum encoder sequence length to process.'
                       'This should be exclusive of --seq-length')
784
785
    group.add_argument('--decoder-seq-length', type=int, default=None,
                       help="Maximum decoder sequence length to process.")
Mostofa Patwary's avatar
Mostofa Patwary committed
786
787
    group.add_argument('--retriever-seq-length', type=int, default=256,
                       help='Maximum sequence length for the biencoder model '
Mostofa Patwary's avatar
Mostofa Patwary committed
788
                        ' for retriever')
789
790
791
    group.add_argument('--sample-rate', type=float, default=1.0,
                       help='sample rate for training data. Supposed to be 0 '
                            ' < sample_rate < 1')
Mohammad's avatar
Mohammad committed
792
793
794
795
796
797
798
799
    group.add_argument('--mask-prob', type=float, default=0.15,
                       help='Probability of replacing a token with mask.')
    group.add_argument('--short-seq-prob', type=float, default=0.1,
                       help='Probability of producing a short sequence.')
    group.add_argument('--mmap-warmup', action='store_true',
                       help='Warm up mmap files.')
    group.add_argument('--num-workers', type=int, default=2,
                       help="Dataloader number of workers.")
Mohammad's avatar
Mohammad committed
800
801
802
    group.add_argument('--tokenizer-type', type=str,
                       default=None,
                       choices=['BertWordPieceLowerCase',
Raul Puri's avatar
Raul Puri committed
803
                                'BertWordPieceCase',
Mohammad's avatar
Mohammad committed
804
805
                                'GPT2BPETokenizer'],
                       help='What type of tokenizer to use.')
806
807
808
809
810
811
812
813
814
815
    group.add_argument('--data-impl', type=str, default='infer',
                       choices=['lazy', 'cached', 'mmap', 'infer'],
                       help='Implementation of indexed datasets.')
    group.add_argument('--reset-position-ids', action='store_true',
                       help='Reset posistion ids after end-of-document token.')
    group.add_argument('--reset-attention-mask', action='store_true',
                       help='Reset self attention maske after '
                       'end-of-document token.')
    group.add_argument('--eod-mask-loss', action='store_true',
                       help='Mask loss for the end of document tokens.')
Mohammad's avatar
Mohammad committed
816

Mohammad's avatar
Mohammad committed
817
818
    return parser

Raul Puri's avatar
Raul Puri committed
819

Mohammad's avatar
Mohammad committed
820
821
def _add_autoresume_args(parser):
    group = parser.add_argument_group(title='autoresume')
Raul Puri's avatar
Raul Puri committed
822

Mohammad's avatar
Mohammad committed
823
824
825
826
827
    group.add_argument('--adlr-autoresume', action='store_true',
                       help='Enable autoresume on adlr cluster.')
    group.add_argument('--adlr-autoresume-interval', type=int, default=1000,
                       help='Intervals over which check for autoresume'
                       'termination signal')
Raul Puri's avatar
Raul Puri committed
828

Mohammad's avatar
Mohammad committed
829
    return parser
Neel Kant's avatar
Neel Kant committed
830
831


Mostofa Patwary's avatar
Mostofa Patwary committed
832
833
def _add_biencoder_args(parser):
    group = parser.add_argument_group(title='biencoder')
Neel Kant's avatar
Neel Kant committed
834
835
836

    # network size
    group.add_argument('--ict-head-size', type=int, default=None,
837
                       help='Size of block embeddings to be used in ICT and '
Mostofa Patwary's avatar
Mostofa Patwary committed
838
                        'REALM (paper default: 128)')
839
    group.add_argument('--biencoder-projection-dim', type=int, default=0,
Mostofa Patwary's avatar
Mostofa Patwary committed
840
841
                       help='Size of projection head used in biencoder (paper'
                        ' default: 128)')
842
    group.add_argument('--biencoder-shared-query-context-model', action='store_true',
Mostofa Patwary's avatar
Mostofa Patwary committed
843
844
                        help='Whether to share the parameters of the query '
                        'and context models or not')
Neel Kant's avatar
Neel Kant committed
845
846
847
848
849

    # checkpointing
    group.add_argument('--ict-load', type=str, default=None,
                       help='Directory containing an ICTBertModel checkpoint')
    group.add_argument('--bert-load', type=str, default=None,
850
851
                       help='Directory containing an BertModel checkpoint '
                       '(needed to start ICT and REALM)')
Neel Kant's avatar
Neel Kant committed
852
853
854
855
856

    # data
    group.add_argument('--titles-data-path', type=str, default=None,
                       help='Path to titles dataset used for ICT')
    group.add_argument('--query-in-block-prob', type=float, default=0.1,
857
858
                       help='Probability of keeping query in block for '
                       'ICT dataset')
Neel Kant's avatar
Neel Kant committed
859
    group.add_argument('--use-one-sent-docs', action='store_true',
Neel Kant's avatar
Neel Kant committed
860
                       help='Whether to use one sentence documents in ICT')
861
862
    group.add_argument('--evidence-data-path', type=str, default=None,
                       help='Path to Wikipedia Evidence frm DPR paper')
Neel Kant's avatar
Neel Kant committed
863

864
    # training
865
    group.add_argument('--retriever-report-topk-accuracies', nargs='+', type=int,
Mostofa Patwary's avatar
Mostofa Patwary committed
866
867
                        default=[], help="Which top-k accuracies to report "
                        "(e.g. '1 5 20')")
Mostofa Patwary's avatar
Mostofa Patwary committed
868
    group.add_argument('--retriever-score-scaling', action='store_true',
Mostofa Patwary's avatar
Mostofa Patwary committed
869
870
                       help='Whether to scale retriever scores by inverse '
                        'square root of hidden size')
871

Neel Kant's avatar
Neel Kant committed
872
    # faiss index
Neel Kant's avatar
Neel Kant committed
873
    group.add_argument('--block-data-path', type=str, default=None,
Neel Kant's avatar
Neel Kant committed
874
                       help='Where to save/load BlockData to/from')
Mostofa Patwary's avatar
Mostofa Patwary committed
875
876
877
    group.add_argument('--embedding-path', type=str, default=None,
                       help='Where to save/load Open-Retrieval Embedding'
                        ' data to/from')
Neel Kant's avatar
Neel Kant committed
878
879
880

    # indexer
    group.add_argument('--indexer-batch-size', type=int, default=128,
881
882
                       help='How large of batches to use when doing indexing '
                       'jobs')
Neel Kant's avatar
Neel Kant committed
883
    group.add_argument('--indexer-log-interval', type=int, default=1000,
884
885
                       help='After how many batches should the indexer '
                       'report progress')
Neel Kant's avatar
Neel Kant committed
886
    return parser
887
888


889
890
def _add_vision_args(parser):
    group = parser.add_argument_group(title="vision")
891

892
    # general vision arguements
893
894
    group.add_argument('--num-classes', type=int, default=1000,
                       help='num of classes in vision classificaiton task')
895
896
897
898
    group.add_argument('--img-h', type=int, default=224,
                       help='Image height for vision classification task')
    group.add_argument('--img-w', type=int, default=224,
                       help='Image height for vision classification task')
899
900
901
    group.add_argument('--num-channels', type=int, default=3,
                       help='Number of channels in input image data')
    group.add_argument('--patch-dim', type=int, default=16,
902
                       help='patch dimension')
903
904
905
906
907
908
909
    group.add_argument('--classes-fraction', type=float, default=1.0,
                       help='training with fraction of classes.')
    group.add_argument('--data-per-class-fraction', type=float, default=1.0,
                       help='training with fraction of data per class.')
    group.add_argument('--no-data-sharding', action='store_false',
                       help='Disable data sharding.',
                       dest='data_sharding')
910
911
912
913
    group.add_argument('--head-lr-mult', type=float, default=1.0,
                       help='learning rate multiplier for head during finetuning')

    # pretraining type and backbone selection`
Vijay Korthikanti's avatar
Vijay Korthikanti committed
914
915
    group.add_argument('--vision-pretraining', action='store_true',
                       help='flag to indicate vision pretraining')
916
    group.add_argument('--vision-pretraining-type', type=str, default='classify',
Vijay Korthikanti's avatar
Vijay Korthikanti committed
917
                       choices=['classify', 'inpaint', 'dino'],
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
                       help='pretraining objectives')
    group.add_argument('--vision-backbone-type', type=str, default='vit',
                       choices=['vit', 'mit', 'swin'],
                       help='backbone types types')
    group.add_argument('--swin-backbone-type', type=str, default='tiny',
                       choices=['tiny', 'base', 'h3'],
                       help='pretraining objectives')
    
    # inpainting arguments
    group.add_argument('--mask-type', type=str, default='random',
                       choices=['random', 'row'],
                       help='mask types')
    group.add_argument('--mask-factor', type=float, default=1.0,
                       help='mask size scaling parameter')
 
    # dino arguments
    group.add_argument('--iter-per-epoch', type=int, default=1250,
                       help='iterations per epoch')
    group.add_argument('--dino-local-img-size', type=int, default=96,
                       help='Image size for vision classification task')
    group.add_argument('--dino-local-crops-number', type=int, default=10,
                       help='Number of local crops')
    group.add_argument('--dino-head-hidden-size', type=int, default=2048,
                       help='Hidden dimension size in dino head')
    group.add_argument('--dino-bottleneck-size', type=int, default=256,
                       help='Bottle neck dimension in dino head ')
    group.add_argument('--dino-freeze-last-layer', type=float, default=1,
                       help='Freezing last layer weights')
    group.add_argument('--dino-norm-last-layer', action='store_true',
                       help='Disable Norm in last layer.')
    group.add_argument('--dino-warmup-teacher-temp', type=float, default=0.04,
                       help='warump teacher temperature')
    group.add_argument('--dino-teacher-temp', type=float, default=0.07,
                       help='teacher temperature')
    group.add_argument('--dino-warmup-teacher-temp-epochs', type=int, default=30,
                       help='warmup teacher temperaure epochs')
954
955

    return parser