"official/legacy/image_classification/callbacks.py" did not exist on "6e8f1284d3b911974b3762755da2c30b9c88ba00"
onnx.cpp 37.8 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34
35
36
37

    std::unordered_map<std::string, op_func> ops;

    onnx_parser()
    {
Shucai Xiao's avatar
Shucai Xiao committed
38
        add_generic_op("MatMul", op::dot{});
Khalique's avatar
Khalique committed
39
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
40
41
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
42
43
        add_generic_op("Exp", op::exp{});
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
44
45
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
46
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
47
48
49
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
50
51
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
52
        add_generic_op("Tanh", op::tanh{});
53
54
55
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
56

Khalique's avatar
Khalique committed
57
58
59
60
61
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
62
63
64
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
65

Khalique's avatar
Khalique committed
66
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
67
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
68
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
69
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
70
71
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
72
73
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
74
75
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
76
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
77
78
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
79
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
80
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
81
82
83
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
84
        add_mem_op("Concat", &onnx_parser::parse_concat);
85
86
87
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
Khalique's avatar
Khalique committed
88
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Khalique's avatar
Khalique committed
89
        add_mem_op("Pad", &onnx_parser::parse_pad);
Paul's avatar
Paul committed
90
91
92
93
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
94
95
96
97
98
99
100
101
102
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
103
104
105
106
107
108
109
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
110
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
111
112
113
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
114

Paul's avatar
Paul committed
115
    template <class T>
Khalique's avatar
Khalique committed
116
    void add_binary_op(std::string name, T x)
Paul's avatar
Paul committed
117
    {
Paul's avatar
Paul committed
118
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
119
            if(args.size() != 2)
Paul's avatar
Paul committed
120
                MIGRAPHX_THROW("binary operators should have 2 operands");
121
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
Paul's avatar
Paul committed
122
123
124
125
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
126
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Scott Thornton's avatar
Scott Thornton committed
127
128
                    auto l =
                        prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
Paul's avatar
Paul committed
129
130
                    return prog.add_instruction(x, args[0], l);
                }
131
                return prog.add_instruction(x, args);
Paul's avatar
Paul committed
132
            }
133
134
            else
            {
Khalique's avatar
Khalique committed
135
                return add_broadcastable_binary_op(args[0], args[1], x);
136
137
138
139
            }
        });
    }

Khalique's avatar
Khalique committed
140
141
142
143
144
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
        if(arg0->get_shape() != arg1->get_shape())
        {
Khalique's avatar
Khalique committed
145
146
147
148
149
150
151
152
153
154
155
156
157
            // Example:
            // s0 = (3,2,4,5) and s1 = (2,1,1)
            //
            // In this case we need to broadcast (:,1,1) portion of
            // s1 plus broadcast the 1st dimension of s1
            // giving output_lens = (3,2,4,5)
            //
            // Another example:
            // s0 = (3,2,1,5) and s1 = (2,7,5)
            // In this case we need to broadcast the (:,:,1:,:) axis
            // of s0 plus the 1st dimension of s1 giving
            // output_lens = (3,2,7,5)
            //
Khalique's avatar
Khalique committed
158
159
160
161
162
163
164
165
            // Get lengths for both arguments
            const std::vector<std::size_t>* s0 = &arg0->get_shape().lens();
            const std::vector<std::size_t>* s1 = &arg1->get_shape().lens();

            // Make sure s0 is the smaller size
            if(s0->size() > s1->size())
                std::swap(s0, s1);

Khalique's avatar
Khalique committed
166
            std::vector<std::size_t> output_lens(*s1);
Khalique's avatar
Khalique committed
167
168
            auto offset = s1->size() - s0->size();
            std::transform(s0->begin(),
Khalique's avatar
Khalique committed
169
170
171
172
                           s0->end(),
                           s1->begin() + offset,
                           output_lens.begin() + offset,
                           [](auto a, auto b) { return std::max(a, b); });
Khalique's avatar
Khalique committed
173
174
175
176
177
178
179
180
181

            auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
            auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
182
183
    }

Paul's avatar
Paul committed
184
    template <class T>
Paul's avatar
Paul committed
185
186
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
187
        add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
188
189
190
191
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
192
    template <class T>
Khalique's avatar
Khalique committed
193
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
194
    {
Paul's avatar
Paul committed
195
        add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
196
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
197
198
199
200
201
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
202
        });
Khalique's avatar
Khalique committed
203
204
    }

Paul's avatar
Paul committed
205
    instruction_ref
Paul's avatar
Paul committed
206
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
207
208
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
209
210
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
211
212
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
213
214
    }

Paul's avatar
Paul committed
215
    instruction_ref
Paul's avatar
Paul committed
216
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
217
    {
218
        op::convolution op;
219
        auto l0 = args[0];
Paul's avatar
Paul committed
220
221
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
222
            if(contains(attributes, "auto_pad"))
223
            {
Paul's avatar
Paul committed
224
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
225
            }
226
227
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
228
            if(padding.size() != 4)
229
            {
Paul's avatar
Paul committed
230
                MIGRAPHX_THROW("padding should have 4 values");
231
            }
Scott Thornton's avatar
Scott Thornton committed
232
            if(padding[0] != padding[2] || padding[1] != padding[3])
233
            {
234
235
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
236
                l0      = prog.add_instruction(op::pad{padding}, l0);
237
            }
238
239
240
241
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
Khalique's avatar
Khalique committed
242
            }
Paul's avatar
Paul committed
243
        }
Paul's avatar
Paul committed
244
245
246
247
248
249
250
251
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
252
        if(contains(attributes, "auto_pad"))
253
254
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
255
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
256
            {
Paul's avatar
Paul committed
257
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
258
259
            }

wsttiger's avatar
fixes  
wsttiger committed
260
            if(s.find("SAME") != std::string::npos)
261
            {
262
                op.padding_mode = op::padding_mode_t::same;
263
264
            }
        }
Khalique's avatar
Khalique committed
265
266
267
268
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
269
270
271
272
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Scott Thornton's avatar
Scott Thornton committed
273
            auto l2       = prog.add_instruction(op::broadcast{axis, l1->get_shape()}, args[2]);
274
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
275
        }
276
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
277
    }
Paul's avatar
Paul committed
278

Paul's avatar
Paul committed
279
280
281
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
282
    {
Khalique's avatar
Khalique committed
283
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
284
        auto l0 = args[0];
Khalique's avatar
Khalique committed
285
        if(starts_with(name, "Global"))
286
        {
Khalique's avatar
Khalique committed
287
288
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
289
        }
Paul's avatar
Paul committed
290
291
        if(contains(attributes, "pads"))
        {
292
293
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
294
            if(padding.size() != 4)
295
            {
Paul's avatar
Paul committed
296
                MIGRAPHX_THROW("padding should have 4 values");
297
            }
Scott Thornton's avatar
Scott Thornton committed
298
            if(padding[0] != padding[2] || padding[1] != padding[3])
299
            {
300
301
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
302
                l0      = prog.add_instruction(op::pad{padding}, l0);
303
304
305
306
307
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
308
            }
Paul's avatar
Paul committed
309
310
311
312
313
314
315
316
317
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
318
        if(contains(attributes, "auto_pad"))
319
320
        {
            auto s = attributes["auto_pad"].s();
321
            if(s.find("SAME_UPPER") == std::string::npos)
322
            {
323
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
324
            }
325
            op.padding_mode = op::padding_mode_t::same;
326
327
        }

328
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
329
330
    }

Paul's avatar
Paul committed
331
    instruction_ref
Paul's avatar
Paul committed
332
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
333
    {
334
        op::reshape op;
Paul's avatar
Paul committed
335
336
337
338
339
340
341
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
342
            literal s = args[1]->get_literal();
Paul's avatar
Paul committed
343
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
344
        }
Paul's avatar
Paul committed
345
346
347
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
348
    instruction_ref
Paul's avatar
Paul committed
349
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
350
    {
351
        uint64_t axis = 1;
Paul's avatar
Paul committed
352
353
354
355
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
356
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
357
358
    }

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
377
378
379
380
381
382
383
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
384

385
386
387
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
388
        int axis = 0;
389
390
391
392
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
393
        op::gather op{axis};
394
395
396
        return prog.add_instruction(op, std::move(args));
    }

397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
417
418
419
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
420
421
422
423
    {
        literal v = parse_value(attributes.at("value"));
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
424

Paul's avatar
Paul committed
425
    instruction_ref
Paul's avatar
Paul committed
426
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
427
428
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
429
        float beta  = 1.0f;
Paul's avatar
Paul committed
430
431
432
433
434
435
436
437
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
438
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
439
440
441
442
443
444
445
446
447
448
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
        std::vector<int64_t> perm = {1, 0};
449
450
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
451
452
        if(args.size() == 3)
        {
Khalique's avatar
Khalique committed
453
            if(beta != 0.f)
454
            {
Khalique's avatar
Khalique committed
455
                auto l3 = prog.add_instruction(op::dot{alpha}, l1, l2);
Khalique's avatar
Khalique committed
456
                auto l4 = args[2];
Khalique's avatar
Khalique committed
457
                if(l4->get_shape().scalar()) // ignore args[2] (no C value added to alpha*A*B)
Khalique's avatar
Khalique committed
458
                    return l3;
Khalique's avatar
Khalique committed
459
                if(beta != 1.f)
Khalique's avatar
Khalique committed
460
461
                {
                    auto beta_val = prog.add_literal(beta);
Khalique's avatar
Khalique committed
462
463
                    auto l5 = prog.add_instruction(op::scalar{args[2]->get_shape()}, beta_val);
                    l4      = prog.add_instruction(op::mul{}, args[2], l5);
Khalique's avatar
Khalique committed
464
465
                }
                return add_broadcastable_binary_op(l3, l4, op::add{});
466
            }
Paul's avatar
Paul committed
467
        }
Shucai Xiao's avatar
Shucai Xiao committed
468
        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
469
470
    }

471
    instruction_ref
Paul's avatar
Paul committed
472
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
473
    {
Scott Thornton's avatar
Scott Thornton committed
474
475
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
476
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
477
        bool is_test                                      = false;
478
479
480
481
482
483
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
484
            momentum = parse_value(attributes.at("momentum")).at<float>();
485
486
487
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
488
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
489
490
491
        }
        if(contains(attributes, "spatial"))
        {
492
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
493
494
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
495
        }
Paul's avatar
Paul committed
496
        (void)is_test;
Paul's avatar
Paul committed
497
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
498
        return prog.add_instruction(op, std::move(args));
499
500
    }

501
502
503
504
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
505
        float alpha = 0.01; // default alpha val for leaky relu
506
507
508
509
510
511
512
513
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
514
515
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
516
517
518
519
520
521
522
523
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
Khalique's avatar
Khalique committed
524
525
    }

Khalique's avatar
Khalique committed
526
527
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
528
529
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
530
531
532
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
533
534
535
536
537
538
539
540
541
542
543
544
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
        auto input_shape = args.front()->get_shape();
Khalique's avatar
Khalique committed
562

Khalique's avatar
Khalique committed
563
564
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
565
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
566

Paul's avatar
Paul committed
567
568
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_shape}, scale_val);
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Paul's avatar
Paul committed
569
        auto bias_bcast = prog.add_instruction(migraphx::op::broadcast{1, input_shape}, bias_vals);
Paul's avatar
Paul committed
570
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
571
    }
Khalique's avatar
Khalique committed
572

Khalique's avatar
Khalique committed
573
574
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
575
576
577
578
579
580
581
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
582
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
583
584
    }

Khalique's avatar
Khalique committed
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
607
608
609
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
610
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
611
612
    {
        if(args.size() != 1)
613
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

Khalique's avatar
Khalique committed
645
646
647
648
649
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
650
651
        if(contains(attributes, "extra_shape"))
        {
652
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
653
654
        }

655
656
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
657
            if(args.size() != 1)
658
            {
659
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
660
661
            }

Shucai Xiao's avatar
Shucai Xiao committed
662
663
            if(contains(attributes, "shape"))
            {
664
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
665
                               "at the same time");
666
667
            }

668
669
670
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
671
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
672
            }
673

674
675
676
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
677
678
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
679
680
681
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
682
683
            if(!contains(attributes, "shape"))
            {
684
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
685
686
687
            }

            literal ls = parse_value(attributes.at("shape"));
688
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
689
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
690
            migraphx::shape s{type, dims};
691
692
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
693
694
695
        }
        else
        {
696
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
697
        }
Khalique's avatar
Khalique committed
698
699
    }

Paul's avatar
Paul committed
700
701
702
703
704
705
706
707
708
709
710
711
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
712
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
713
714
715
716
717
718
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
719
720
721
722
723
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
724
725
726
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
727
728
729
730
731
732
733
734
735
736
737
738
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
739
740
741
        }
        for(auto&& p : nodes)
        {
Paul's avatar
Paul committed
742
            this->parse_node(p.first);
Paul's avatar
Paul committed
743
744
745
        }
    }

Paul's avatar
Paul committed
746
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
747
    {
Paul's avatar
Paul committed
748
        if(name.empty())
Paul's avatar
Paul committed
749
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
750
751
752
753
754
755
756
757
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
758
759
760
                    assert(name != input);
                    this->parse_node(input);
                    args.push_back(instructions.at(input));
Paul's avatar
Paul committed
761
762
763
764
765
766
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
Paul's avatar
Paul committed
767
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
768
769
            if(ops.count(node.op_type()) == 0)
            {
Paul's avatar
Paul committed
770
                result.push_back(prog.add_instruction(unknown{node.op_type()}, args));
Paul's avatar
Paul committed
771
772
773
            }
            else
            {
Paul's avatar
Paul committed
774
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
775
            }
Paul's avatar
Paul committed
776
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
777
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
778
779
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
780
781
782
            }
            else
            {
Paul's avatar
Paul committed
783
784
785
786
787
788
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
806
        std::size_t n = 0;
Paul's avatar
Paul committed
807
808
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
809
            if(node.output().empty())
Paul's avatar
Paul committed
810
            {
Paul's avatar
Paul committed
811
                if(node.name().empty())
Paul's avatar
Paul committed
812
813
814
815
816
817
818
819
820
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
846
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
847
848
849
850
851
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
852
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
853
854
855
856
857
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
Khalique's avatar
Khalique committed
858
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
859
        if(dims.empty())
Khalique's avatar
Khalique committed
860
861
862
        {
            dims = {1};
        }
863
864
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
865
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
866
867
868
869
870
871
872
873
874
875
876
877
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
Paul's avatar
Paul committed
878
            case onnx::TensorProto::FLOAT16: return literal{{shape::half_type, dims}, s.data()};
Scott Thornton's avatar
Scott Thornton committed
879
880
881
882
883
884
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
885
            MIGRAPHX_THROW("Invalid tensor type");
886
        }
Paul's avatar
Paul committed
887
888
889
890
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
891
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
892
893
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
894
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
895
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
896
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
897
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
898
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
899
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
900
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
901
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
902
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
903
904
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
905
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
906
907
        case onnx::TensorProto::FLOAT16:
            return literal{{shape::half_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
908
909
910
911
912
913
914
915
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
916
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
938
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
939
940
941
942
943
944
945
946
947
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
948
        auto&& tensor_dims = t.tensor_type().shape().dim();
949
950
951
952
953
954
955
956
957
958
959
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
960
961
        return {shape_type, dims};
    }
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1007
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1008
} // namespace migraphx