onnx.cpp 27.3 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
#include <migraph/fallthrough.hpp>
#include <migraph/program.hpp>
#include <migraph/operators.hpp>
#include <migraph/ranges.hpp>
16
#include <migraph/instruction.hpp>
17
#include <migraph/config.hpp>
Paul's avatar
Paul committed
18

Paul's avatar
Paul committed
19
namespace migraph {
20
inline namespace MIGRAPH_INLINE_NS {
Paul's avatar
Paul committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
struct unknown
{
    std::string op;
    std::string name() const { return "unknown:" + op; }
    shape compute_shape(std::vector<shape> input) const
    {
        if(input.empty())
            return {};
        else
            return input.front();
    }
    friend std::ostream& operator<<(std::ostream& os, const unknown& x)
    {
        os << x.name();
        return os;
    }
};

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
43
    using op_func = std::function<instruction_ref(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
44
45
46
47
48
49
50
51
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
    program prog = program();

    std::unordered_map<std::string, op_func> ops;

    onnx_parser()
    {
Shucai Xiao's avatar
Shucai Xiao committed
52
        add_generic_op("MatMul", op::dot{});
Khalique's avatar
Khalique committed
53
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
54
55
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Paul's avatar
Paul committed
56

57
58
59
60
61
        add_broadcastable_binary_op("Add", op::add{});
        add_broadcastable_binary_op("Div", op::div{});
        add_broadcastable_binary_op("Mul", op::mul{});
        add_broadcastable_binary_op("Sub", op::sub{});
        add_broadcastable_binary_op("Sum", op::add{});
Paul's avatar
Paul committed
62

Khalique's avatar
Khalique committed
63
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
64
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
65
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Paul's avatar
Paul committed
66
67
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
68
69
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
70
71
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
72
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
73
74
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
75
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
76
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
77
78
79
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
80
        add_mem_op("Concat", &onnx_parser::parse_concat);
Khalique's avatar
Khalique committed
81
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Paul's avatar
Paul committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    }

    template <class F>
    void add_op(std::string name, F f)
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Paul's avatar
Paul committed
97
    template <class T>
98
    void add_broadcastable_binary_op(std::string name, T x)
Paul's avatar
Paul committed
99
100
    {
        ops.emplace(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
101
            if(args.size() != 2)
Paul's avatar
Paul committed
102
                MIGRAPH_THROW("binary operators should have 2 operands");
103
            if(contains(attributes, "broadcast"))
Paul's avatar
Paul committed
104
105
106
107
108
109
110
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
                    uint64_t axis = (contains(attributes, "axis"))
                                        ? parse_value(attributes.at("axis")).at<uint64_t>()
                                        : 0;
Scott Thornton's avatar
Scott Thornton committed
111
112
                    auto l =
                        prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
Paul's avatar
Paul committed
113
114
                    return prog.add_instruction(x, args[0], l);
                }
115
                return prog.add_instruction(x, args);
Paul's avatar
Paul committed
116
            }
117
118
119
120
121
            else
            {
                // Example:
                // s0 = (3,2,4,5) and s1 = (2,1,1)
                //
Scott Thornton's avatar
Scott Thornton committed
122
123
                // In this case we need to broadcast (:,1,1) portion of
                // s1 plus broadcast the 1st dimension of s1
124
125
126
127
128
129
130
131
132
                // giving output_lens = (3,2,4,5)
                //
                // Another example:
                // s0 = (3,2,1,5) and s1 = (2,7,5)
                // In this case we need to broadcast the (:,:,1:,:) axis
                // of s0 plus the 1st dimension of s1 giving
                // output_lens = (3,2,7,5)
                //
                // Get lengths for both arguments
Paul's avatar
Paul committed
133
134
135
136
137
138
                const std::vector<std::size_t>* s0 = &args[0]->get_shape().lens();
                const std::vector<std::size_t>* s1 = &args[1]->get_shape().lens();

                // Make sure s0 is the smaller size
                if(s0->size() > s1->size())
                    std::swap(s0, s1);
139
140

                // Copy the larger vector to output_lens
Paul's avatar
Paul committed
141
142
                std::vector<std::size_t> output_lens(s1->size());
                auto offset = s1->size() - s0->size();
Paul's avatar
Paul committed
143
144
145
146
147
148
                std::transform(s0->begin(),
                               s0->end(),
                               s1->begin() + offset,
                               output_lens.begin() + offset,
                               [](auto a, auto b) { return std::max(a, b); });

149
150
151
                auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, args[0]);
                auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, args[1]);
                return prog.add_instruction(x, l0, l1);
152
153
154
155
            }
        });
    }

Paul's avatar
Paul committed
156
    template <class T>
Paul's avatar
Paul committed
157
158
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
159
        ops.emplace(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
160
161
162
163
            return prog.add_instruction(x, args);
        });
    }

Paul's avatar
Paul committed
164
    instruction_ref
Paul's avatar
Paul committed
165
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
166
167
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
168
169
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
170
171
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
172
173
    }

Paul's avatar
Paul committed
174
    instruction_ref
Paul's avatar
Paul committed
175
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
176
    {
177
        op::convolution op;
Paul's avatar
Paul committed
178
179
180
        if(contains(attributes, "pads"))
        {
            copy(attributes["pads"].ints(), op.padding.begin());
Paul's avatar
Paul committed
181
        }
Paul's avatar
Paul committed
182
183
184
185
186
187
188
189
190
191
192
193
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Scott Thornton's avatar
Scott Thornton committed
194
            auto l2       = prog.add_instruction(op::broadcast{axis, l1->get_shape()}, args[2]);
195
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
196
        }
Paul's avatar
Paul committed
197
198
        return prog.add_instruction(op, args);
    }
Paul's avatar
Paul committed
199

Paul's avatar
Paul committed
200
201
202
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
203
    {
Khalique's avatar
Khalique committed
204
205
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
        if(starts_with(name, "Global"))
206
        {
Khalique's avatar
Khalique committed
207
208
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
209
        }
Paul's avatar
Paul committed
210
211
212
213
214
215
216
217
218
219
220
221
        if(contains(attributes, "pads"))
        {
            copy(attributes["pads"].ints(), op.padding.begin());
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Paul's avatar
Paul committed
222
        return prog.add_instruction(op, std::move(args));
Paul's avatar
Paul committed
223
224
    }

Paul's avatar
Paul committed
225
    instruction_ref
Paul's avatar
Paul committed
226
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
227
    {
228
        op::reshape op;
Paul's avatar
Paul committed
229
230
231
232
233
234
235
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
236
            literal s = args[1]->get_literal();
Paul's avatar
Paul committed
237
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
238
        }
Paul's avatar
Paul committed
239
240
241
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
242
    instruction_ref
Paul's avatar
Paul committed
243
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
244
245
    {
        uint64_t axis = 0;
Paul's avatar
Paul committed
246
247
248
249
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
250
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
251
252
    }

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
271
272
273
274
275
276
277
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
299
300
301
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
302
303
304
305
    {
        literal v = parse_value(attributes.at("value"));
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
306

Paul's avatar
Paul committed
307
    instruction_ref
Paul's avatar
Paul committed
308
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
    {
        float alpha = 1.0f;
        float beta  = 0.0f;
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
            alpha = parse_value(attributes.at("beta")).at<float>();
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
        std::vector<int64_t> perm = {1, 0};
331
332
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
333
334
335
        if(args.size() == 3)
        {
            uint64_t axis = 1;
Shucai Xiao's avatar
Shucai Xiao committed
336
            auto l3       = prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Scott Thornton's avatar
Scott Thornton committed
337
            auto l4       = prog.add_instruction(op::broadcast{axis, l3->get_shape()}, args[2]);
338
            return prog.add_instruction(op::add{}, l3, l4);
Paul's avatar
Paul committed
339
        }
Shucai Xiao's avatar
Shucai Xiao committed
340
        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
341
342
    }

343
    instruction_ref
Paul's avatar
Paul committed
344
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
345
    {
Scott Thornton's avatar
Scott Thornton committed
346
347
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
348
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
349
        bool is_test                                      = false;
350
351
352
353
354
355
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
356
            momentum = parse_value(attributes.at("momentum")).at<float>();
357
358
359
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
360
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
361
362
363
        }
        if(contains(attributes, "spatial"))
        {
364
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
365
366
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
367
        }
Paul's avatar
Paul committed
368
        (void)is_test;
Paul's avatar
Paul committed
369
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
370
        return prog.add_instruction(op, std::move(args));
371
372
    }

373
374
375
376
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
377
        float alpha = 0.01; // default alpha val for leaky relu
378
379
380
381
382
383
384
385
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
386
387
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
388
389
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
390
391
392
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
393
394
395
396
397
398
399
400
401
402
403
404
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
        auto input_shape = args.front()->get_shape();
Khalique's avatar
Khalique committed
422

Khalique's avatar
Khalique committed
423
424
425
426
427
428
429
430
431
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
            migraph::literal{migraph::shape{migraph::shape::float_type, {bias.size()}}, bias});

        auto scale_tensor = prog.add_instruction(migraph::op::scalar{input_shape}, scale_val);
        auto img_scaled   = prog.add_instruction(migraph::op::mul{}, args.front(), scale_tensor);
        auto bias_bcast   = prog.add_instruction(migraph::op::broadcast{1, input_shape}, bias_vals);
        return prog.add_instruction(migraph::op::add{}, img_scaled, bias_bcast);
    }
Khalique's avatar
Khalique committed
432

Khalique's avatar
Khalique committed
433
434
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
435
436
437
438
439
440
441
442
443
444
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
        return prog.add_instruction(migraph::op::transpose{perm}, args.front());
    }

Paul's avatar
Paul committed
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
            throw std::runtime_error("Failed reading");
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
464
465
466
467
468
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
469
470
471
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
472
473
474
475
476
477
478
479
480
481
482
483
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
484
485
486
        }
        for(auto&& p : nodes)
        {
487
            this->parse_node(get_name(p.second));
Paul's avatar
Paul committed
488
489
490
        }
    }

Paul's avatar
Paul committed
491
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
492
    {
Paul's avatar
Paul committed
493
        if(name.empty())
Paul's avatar
Paul committed
494
            MIGRAPH_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
495
496
497
498
499
500
501
502
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
503
                    auto&& iname = get_name(nodes.at(input));
Paul's avatar
Paul committed
504
                    assert(name != iname);
Paul's avatar
Paul committed
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
                    this->parse_node(iname);
                    args.push_back(instructions.at(iname));
                }
                else
                {
                    args.push_back(instructions.at(input));
                }
            }
            if(ops.count(node.op_type()) == 0)
            {
                instructions[name] = prog.add_instruction(unknown{node.op_type()}, args);
            }
            else
            {
                instructions[name] = ops[node.op_type()](get_attributes(node), args);
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

534
535
536
537
538
    static std::string get_name(const onnx::NodeProto& node)
    {
        if(node.name().empty())
        {
            std::string generated = "migraph_unnamed_node";
Paul's avatar
Paul committed
539
540
541
542
            return std::accumulate(node.output().begin(),
                                   node.output().end(),
                                   generated,
                                   [](auto x, auto y) { return x + "_" + y; });
543
544
545
546
        }
        return node.name();
    }

Paul's avatar
Paul committed
547
548
549
550
551
    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
        for(auto&& node : graph.node())
        {
552
            result[get_name(node)] = node;
Paul's avatar
Paul committed
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
578
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
579
580
581
582
583
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
584
        MIGRAPH_THROW("Invalid attribute type");
Paul's avatar
Paul committed
585
586
587
588
589
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
590
591
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
592
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
593
594
595
596
597
598
599
600
601
602
603
604
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
            case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
            case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
            case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
            case onnx::TensorProto::STRING: throw std::runtime_error("");
            case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
Paul's avatar
Paul committed
605
            case onnx::TensorProto::FLOAT16: return literal{{shape::half_type, dims}, s.data()};
Scott Thornton's avatar
Scott Thornton committed
606
607
608
609
610
611
612
            case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
            MIGRAPH_THROW("Invalid tensor type");
613
        }
Paul's avatar
Paul committed
614
615
616
617
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Paul's avatar
Paul committed
618
            return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
619
620
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Paul's avatar
Paul committed
621
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
622
        case onnx::TensorProto::UINT16:
Paul's avatar
Paul committed
623
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
624
        case onnx::TensorProto::INT16:
Paul's avatar
Paul committed
625
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
626
        case onnx::TensorProto::INT32:
Paul's avatar
Paul committed
627
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
628
        case onnx::TensorProto::INT64:
Paul's avatar
Paul committed
629
            return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
Paul's avatar
Paul committed
630
631
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Paul's avatar
Paul committed
632
            return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
Paul's avatar
Paul committed
633
634
        case onnx::TensorProto::FLOAT16:
            return literal{{shape::half_type, dims}, t.float_data().begin(), t.float_data().end()};
Paul's avatar
Paul committed
635
636
637
638
639
640
641
642
        case onnx::TensorProto::DOUBLE:
            return literal{
                {shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
643
        MIGRAPH_THROW("Invalid tensor type");
Paul's avatar
Paul committed
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
    }

    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
665
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
666
667
668
669
670
671
672
673
674
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
675
        auto&& tensor_dims = t.tensor_type().shape().dim();
676
677
678
679
680
681
682
683
684
685
686
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
        return {shape_type, dims};
    }
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

712
} // namespace MIGRAPH_INLINE_NS
Paul's avatar
Paul committed
713
} // namespace migraph