task.py 53.4 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
7
import re
from collections.abc import Callable
from dataclasses import asdict, dataclass
8
from inspect import getsource
9
from typing import Any, List, Literal, Tuple, Union
10
11
12
13
14

import datasets
import numpy as np

from lm_eval import utils
15
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
16
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
17
from lm_eval.api.metrics import (
18
    bits_per_byte,
lintangsutawika's avatar
lintangsutawika committed
19
20
21
22
    mean,
    weighted_perplexity,
)
from lm_eval.api.registry import (
23
24
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
25
    get_aggregation,
26
    get_metric,
27
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
28
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
29
)
30
31
32
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

33

34
35
36
37
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
38
    "generate_until",
39
40
]

41
eval_logger = logging.getLogger("lm-eval")
42

lintangsutawika's avatar
lintangsutawika committed
43

lintangsutawika's avatar
lintangsutawika committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
@dataclass
class GroupConfig(dict):
    group: str = None
    task: Union[str, list] = None
    weight_by_size: bool = False

    def __getitem__(self, item):
        return getattr(self, item)

    def __setitem__(self, item, value):
        return setattr(self, item, value)

    def to_dict(self):
        return asdict(self)

lintangsutawika's avatar
lintangsutawika committed
59

60
61
@dataclass
class TaskConfig(dict):
62
    # task naming/registry
63
    task: str = None
lintangsutawika's avatar
lintangsutawika committed
64
    task_alias: str = None
65
    group: Union[str, list] = None
lintangsutawika's avatar
lintangsutawika committed
66
    group_alias: Union[str, list] = None
67
68
69
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
70
71
    dataset_path: str = None
    dataset_name: str = None
72
    dataset_kwargs: dict = None
73
74
75
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
76
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
77
78
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
79
    process_docs: Callable = None
80
81
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
82
    doc_to_choice: Union[Callable, str, dict, list] = None
lintangsutawika's avatar
lintangsutawika committed
83
    process_results: Union[Callable, str] = None
84
    use_prompt: str = None
85
    description: str = ""
86
87
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
haileyschoelkopf's avatar
haileyschoelkopf committed
88
    fewshot_config: dict = None
89
    # runtime configuration options
90
    num_fewshot: int = None
91
    # scoring options
92
    metric_list: list = None
93
94
95
96
97
98
    output_type: Literal[
        "loglikelihood",
        "loglikelihood_rolling",
        "generate_until",
        "multiple_choice",
    ] = "generate_until"
99
    generation_kwargs: dict = None
100
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
101
    filter_list: Union[str, list] = None
102
103
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
104
    metadata: dict = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
105

Ethan Smith's avatar
Ethan Smith committed
106
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
107
        if self.generation_kwargs is not None:
108
            if self.output_type != "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
109
                eval_logger.warning(
110
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
111
                )
112
                assert self.output_type != "generate_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
113
114
115
116
117
118
119

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
120
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
121
        else:
122
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
123
124
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
125
                    "until": None
126
127
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
128
129
                    "do_sample": False,
                }
130

131
132
133
    def __getitem__(self, item):
        return getattr(self, item)

134
135
136
    def __setitem__(self, item, value):
        return setattr(self, item, value)

137
    def to_dict(self, keep_callable: bool = False) -> dict:
138
139
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
140
        Used for dumping results alongside full task configuration
141

haileyschoelkopf's avatar
haileyschoelkopf committed
142
143
144
145
146
147
148
149
150
151
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
152
153
154
155
156
157
158
159
160
161
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
162
        return cfg_dict
163

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

180
181
182
183
184
185
186
187
188
189
190
191

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
192

193
194
195
196
197
198
199
200
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
201

202
203
204
205
206
207
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
Ethan Smith's avatar
Ethan Smith committed
208
    ) -> None:
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

lintangsutawika's avatar
lintangsutawika committed
235
        self._config = TaskConfig({**config}) if config else TaskConfig()
236

lintangsutawika's avatar
lintangsutawika committed
237
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
238

Ethan Smith's avatar
Ethan Smith committed
239
    def download(self, data_dir=None, cache_dir=None, download_mode=None) -> None:
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
264
265
266
267
268
269
270
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
271

272
273
274
275
276
    @property
    def config(self):
        """Returns the TaskConfig associated with this class."""
        return self._config

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

313
314
315
316
317
318
319
320
321
322
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
323
            eval_logger.warning(
324
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
325
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
326
            )
327
328
            return self.test_docs()

329
330
331
332
333
334
335
336
337
338
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
339

340
341
342
343
344
345
346
347
348
349
350
351
352
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Ethan Smith's avatar
Ethan Smith committed
353
    def doc_to_decontamination_query(self, doc) -> None:
354
355
356
357
358
359
360
361
362
363
364
365
366
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

Ethan Smith's avatar
Ethan Smith committed
367
    def build_all_requests(self, limit=None, rank=None, world_size=None) -> None:
368
369
370
371
372
373
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
374
            assert False, f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
375

Baber Abbasi's avatar
Baber Abbasi committed
376
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
377

378
        instances = []
379
380
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
381
        ):
382
            # sample fewshot context #TODO: need to offset doc_id by rank now!
383
            fewshot_ctx = self.fewshot_context(
384
                doc,
385
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
386
            )
387

388
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
389
390
391
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
392
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
393
            )
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
419
            The number of times each instance in a dataset is inferred on. Defaults to 1,
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

455
456
457
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
458
459
460
461
462
463
464
465
466
467
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

468
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
469
    def fewshot_context(
470
471
472
473
474
        self,
        doc,
        num_fewshot,
        rnd=random.Random(1234),
        description=None,
lintangsutawika's avatar
lintangsutawika committed
475
    ):
476
477
478
479
480
481
482
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
483
484
485
486
487
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
488
489
490
        :returns: str
            The fewshot context.
        """
lintangsutawika's avatar
lintangsutawika committed
491
492
493
494
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

495
        description = description if description else ""
496
497

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
498
            labeled_examples = ""
499
        else:
lintangsutawika's avatar
lintangsutawika committed
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
524
            )
525
526

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
527
        return description + labeled_examples + example
528
529

    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
530
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
531
532
        if hasattr(self, "_filters"):
            for f in self._filters:
533
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
534
535
536
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
537

baberabb's avatar
baberabb committed
538
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
539
        """Returns the config as a dictionary."""
540
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
541
        # (num_fewshot)
542
        return self.config.to_dict()
543

Baber Abbasi's avatar
Baber Abbasi committed
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

584
585

class ConfigurableTask(Task):
586
    VERSION = "Yaml"
587
    OUTPUT_TYPE = None
588
    CONFIG = None
589
590
591

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
Ethan Smith's avatar
Ethan Smith committed
592
    ) -> None:  # TODO no super() call here
593
        # Get pre-configured attributes
594
        self._config = self.CONFIG
595

596
        # Use new configurations if there was no preconfiguration
597
        if self.config is None:
598
            self._config = TaskConfig(**config)
599
600
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
601
            if config is not None:
602
                self._config.__dict__.update(config)
603

604
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
605
606
607
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
608

609
610
611
612
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

613
614
615
        if self.config.output_type is not None:
            assert self.config.output_type in ALL_OUTPUT_TYPES
            self.OUTPUT_TYPE = self.config.output_type
616

617
618
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
619

620
621
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
622

623
624
625
626
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
627

628
        if self.config.metric_list is None:
629
            # TODO: handle this in TaskConfig.__post_init__ ?
630
631
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

632
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
633
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
634
                self._metric_fn_kwargs[metric_name] = {}
635
636
637
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
638
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
639
        else:
640
            for metric_config in self.config.metric_list:
641
642
643
644
645
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
646
647
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
648
                }
Chris's avatar
Chris committed
649
650
651
652
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
653

654
                if self.config.process_results is not None:
655
656
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
657
658
659
660
661
662
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
663
664
665
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
666
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
667

668
                if "aggregation" in metric_config:
669
                    agg_name = metric_config["aggregation"]
670
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
671
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
672
                    elif callable(agg_name):  # noqa: E721
673
674
675
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
676
                else:
677
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
678
                    metric_agg = get_metric_aggregation(metric_name)
679
                    eval_logger.warning(
680
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
681
682
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
683
                    )
684
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
685

686
687
688
689
690
691
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
692
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
693
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
694
                        f"higher_is_better={is_higher_better(metric_name)}"
695
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
696
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
697

698
        self.download(self.config.dataset_kwargs)
699
700
701
        self._training_docs = None
        self._fewshot_docs = None

702
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
703
            self._filters = []
704
            for filter_config in self.config.filter_list:
705
706
707
708
709
710
711
712
713
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
714
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
715
        else:
716
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
717

718
719
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
720
            self.prompt = get_prompt(
721
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
722
            )
723
724
725
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
726
        if self.fewshot_docs() is not None:
haileyschoelkopf's avatar
haileyschoelkopf committed
727
            self.sampler = samplers.get_sampler(
haileyschoelkopf's avatar
haileyschoelkopf committed
728
729
730
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
haileyschoelkopf's avatar
haileyschoelkopf committed
731
            )(list(self.fewshot_docs()), self, rnd=random.Random(1234))
732

733
        if self.has_test_docs():
734
            self.task_docs = self.test_docs()
735
        elif self.has_validation_docs():
736
            self.task_docs = self.validation_docs()
737
        else:
738
            assert False, f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
739

740
        # Test One Doc
741
        self.features = list(self.task_docs.features.keys())
742
743
        self.multiple_input = 0
        self.multiple_target = 0
744
        test_doc = self.task_docs[0]
745
        test_text = self.doc_to_text(test_doc)
746
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
747

748
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
749
            test_choice = self.doc_to_choice(test_doc)
750
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
751
                eval_logger.error("doc_to_choice must return list")
752
753
            else:
                num_choice = len(test_choice)
754

755
            if isinstance(test_text, int):
756
                self.multiple_input = num_choice
757
758
        else:
            test_choice = None
759

760
        if isinstance(test_target, list):
761
            self.multiple_target = len(test_target)
762
        else:
763
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
764
                test_target = test_choice[test_target]
765
            else:
lintangsutawika's avatar
lintangsutawika committed
766
                test_target = str(test_target)
767

768
769
770
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
771
            check_choices = [test_target]
772
773
774
775
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
776
777
                    True
                    if self.config.target_delimiter.rstrip()
778
                    != self.config.target_delimiter
779
                    else False
780
                )
781

782
                if delimiter_has_whitespace and choice_has_whitespace:
783
784
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
785
786
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
787
                    eval_logger.debug(
788
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
789
790
                    )

Ethan Smith's avatar
Ethan Smith committed
791
    def download(self, dataset_kwargs=None) -> None:
792
793
794
795
796
797
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
798
    def has_training_docs(self) -> bool:
799
        if self.config.training_split is not None:
800
801
802
803
            return True
        else:
            return False

baberabb's avatar
baberabb committed
804
    def has_validation_docs(self) -> bool:
805
        if self.config.validation_split is not None:
806
807
808
809
            return True
        else:
            return False

baberabb's avatar
baberabb committed
810
    def has_test_docs(self) -> bool:
811
        if self.config.test_split is not None:
812
813
814
815
            return True
        else:
            return False

baberabb's avatar
baberabb committed
816
    def training_docs(self) -> datasets.Dataset:
817
        if self.has_training_docs():
818
819
820
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
821
                )
822
            return self.dataset[self.config.training_split]
823

baberabb's avatar
baberabb committed
824
    def validation_docs(self) -> datasets.Dataset:
825
        if self.has_validation_docs():
826
827
828
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
829
                )
830
            return self.dataset[self.config.validation_split]
831

baberabb's avatar
baberabb committed
832
    def test_docs(self) -> datasets.Dataset:
833
        if self.has_test_docs():
834
835
836
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
837

838
    def fewshot_docs(self):
839
        if self.config.fewshot_split is not None:
840
841
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
842
            return self.dataset[self.config.fewshot_split]
843
        else:
844
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
845
                eval_logger.warning(
846
                    f"Task '{self.config.task}': "
847
848
849
850
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
851

lintangsutawika's avatar
lintangsutawika committed
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
            # always prepend the (possibly empty) task description
            labeled_examples = self.config.description
        else:
            labeled_examples = self.config.description + self.sampler.get_context(
                doc, num_fewshot
            )

        example = self.doc_to_text(doc)
874
875
876
877
878
879
880
881
882
883
884
885
886
        if self.multiple_input:
            return labeled_examples
        else:
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
887

888
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
889
        """Iterates over FilterEnsembles and applies them to instances"""
890
891
        if hasattr(self, "_filters"):
            for f in self._filters:
892
                f.apply(self._instances)
893
894
895
896
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

897
    def should_decontaminate(self):
898
        return self.config.should_decontaminate
899
900

    def doc_to_decontamination_query(self, doc):
901
        if self.config.should_decontaminate:
902
903
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
904
            else:
905
906
907
908
909
910
911
912
913
914
915
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
916

917
918
919
920
921
922
923
924
925
926
927
928
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
929
930
        if self.prompt is not None:
            doc_to_text = self.prompt
931
        else:
932
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
933

934
        if isinstance(doc_to_text, int):
935
            return doc_to_text
936
        elif isinstance(doc_to_text, str):
937
            if doc_to_text in self.features:
938
                # if self.config.doc_to_choice is not None:
939
940
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
941
942
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
943
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
944
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
945
946
947
                    return ast.literal_eval(text_string)
                else:
                    return text_string
948
        elif callable(doc_to_text):
949
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
950
        # Used when applying a Promptsource template
951
        elif hasattr(doc_to_text, "apply"):
952
953
954
955
956
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
957
                return self.config.fewshot_delimiter
958
        else:
959
            print(type(doc_to_text))
960
            raise TypeError
961

962
    def doc_to_target(self, doc: dict) -> Union[int, str, list]:
963
964
        if self.prompt is not None:
            doc_to_target = self.prompt
965
        else:
966
            doc_to_target = self.config.doc_to_target
967

968
        if isinstance(doc_to_target, int):
969
            return doc_to_target
970
        elif isinstance(doc_to_target, str):
971
            if doc_to_target in self.features:
972
                # if self.config.doc_to_choice is not None:
973
974
975
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
976
            else:
lintangsutawika's avatar
lintangsutawika committed
977
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
978
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
979
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
980
981
982
983
984
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
985
986
987
988
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
989
990
                else:
                    return target_string
991
        elif isinstance(doc_to_target, list):
992
            return doc_to_target
993
        elif callable(doc_to_target):
994
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
995
        # Used when applying a Promptsource template
996
        elif hasattr(doc_to_target, "apply"):
997
            applied_prompt = doc_to_target.apply(doc)
998
999
1000
1001
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1002
                return self.config.fewshot_delimiter
1003
1004
        else:
            raise TypeError
1005

baberabb's avatar
baberabb committed
1006
    def doc_to_choice(self, doc: Any) -> List[str]:
1007
1008
        if self.prompt is not None:
            doc_to_choice = self.prompt
1009
        elif self.config.doc_to_choice is None:
1010
1011
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1012
            doc_to_choice = self.config.doc_to_choice
1013

1014
        if isinstance(doc_to_choice, str):
1015
1016
1017
1018
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1019
        elif isinstance(doc_to_choice, list):
1020
            return doc_to_choice
1021
        elif isinstance(doc_to_choice, dict):
1022
1023
1024
1025
1026
1027
1028
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1029

baberabb's avatar
baberabb committed
1030
1031
1032
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1033
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1034
            arguments = (ctx, self.doc_to_target(doc))
1035
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1036
            arguments = (self.doc_to_target(doc),)
1037
        elif self.OUTPUT_TYPE == "multiple_choice":
1038
            choices = self.doc_to_choice(doc)
1039
            target_delimiter = self.config.target_delimiter
1040
1041
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1042
                cont = self.doc_to_target(doc)
1043
1044
1045
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1046
            else:
1047
                # Otherwise they are placed in the continuation
1048
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1049

1050
            request_list = [
1051
1052
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1053
                    doc=doc,
1054
                    arguments=arg,
1055
                    idx=i,
1056
1057
                    **kwargs,
                )
1058
                for i, arg in enumerate(arguments)
1059
            ]
1060
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1061
            if "acc_mutual_info" in self._metric_fn_list.keys():
1062
1063
1064
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1065
                # here mutual info refers to calculating
1066
1067
1068
1069
1070
1071
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1072
                            doc=doc,
1073
                            arguments=("", "{}".format(choice)),
1074
1075
1076
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1077
                        for i, choice in enumerate(choices)
1078
1079
1080
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1081

1082
        elif self.OUTPUT_TYPE == "generate_until":
1083
            arguments = (ctx, self.config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
1084
1085

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1086
1087
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1088
1089

    def process_results(self, doc, results):
1090
        if callable(self.config.process_results):
Lintang Sutawika's avatar
Lintang Sutawika committed
1091
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1092

1093
        result_dict = {}
1094
        use_metric = list(self._metric_fn_list.keys())
1095
1096
1097
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1098
1099
            prob_norm = np.exp(ll)

1100
1101
1102
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
1103
                **(
lintangsutawika's avatar
lintangsutawika committed
1104
                    {"brier_score": (0, [prob_norm])}  # Gold is Index 0
1105
1106
1107
                    if "brier_score" in use_metric
                    else {}
                ),
1108
            }
1109
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1110
            (loglikelihood,) = results
1111
1112
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1113
            return {
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1129
            }
1130
        elif self.OUTPUT_TYPE == "multiple_choice":
1131
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1132

1133
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1134
            choices = self.doc_to_choice(doc)
1135
1136
            completion_len = np.array([float(len(i)) for i in choices])

1137
1138
            if (
                2 * len(choices) == len(lls)
1139
                and "acc_mutual_info" in self._metric_fn_list.keys()
1140
1141
1142
1143
1144
1145
1146
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1147

1148
1149
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1150

1151
1152
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1153
            else:
1154
                gold = self.doc_to_target(doc)
1155
1156

            gold_index_error = False
1157
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1158
1159
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1160
1161
                    gold_index_error = True
            else:
1162
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1163
                    gold = gold if gold < len(choices) else -100
1164
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1165
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1166

Lintang Sutawika's avatar
Lintang Sutawika committed
1167
                if gold == -100:
1168
1169
1170
1171
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1172
                    f"Label index was not in within range of available choices,"
1173
1174
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1175

1176
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1177
1178
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1179
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1180
1181
1182
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1183
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1184
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1185

lintangsutawika's avatar
lintangsutawika committed
1186
            prob_norm = utils.softmax(lls)
lintangsutawika's avatar
lintangsutawika committed
1187

lintangsutawika's avatar
lintangsutawika committed
1188
            # TODO use keyword arguments to the metric?
lintangsutawika's avatar
format  
lintangsutawika committed
1189
            # gold, pred, norm stuff, the original lls,
1190
            result_dict = {
1191
                **({"acc": acc} if "acc" in use_metric else {}),
1192
1193
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1194
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1195
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
1196
                # {"brier_score": (gold, prob_norm)}
lintangsutawika's avatar
format  
lintangsutawika committed
1197
                **(
1198
                    {"brier_score": [np.eye(len(prob_norm))[gold], prob_norm]}
lintangsutawika's avatar
format  
lintangsutawika committed
1199
1200
1201
                    if "brier_score" in use_metric
                    else {}
                ),
1202
1203
            }

1204
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1205
1206
1207
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1208
1209
1210
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1211
        elif self.OUTPUT_TYPE == "generate_until":
1212
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1213
            result = results[0]
1214
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1215
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1216
                # it assumes that doc_to_target returns a number.
1217
1218
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1219
1220
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1221
                gold = list(gold)
Chris's avatar
Chris committed
1222
1223
1224
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1225

lintangsutawika's avatar
lintangsutawika committed
1226
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1227
1228
1229
1230
1231
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1232
1233
1234
1235
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1236
1237
1238
1239
1240
1241
1242
1243
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1244
                    else:
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1266
                else:
1267
                    try:
1268
                        result_score = self._metric_fn_list[metric](
1269
1270
                            references=[gold],
                            predictions=[result],
1271
                            **self._metric_fn_kwargs[metric],
1272
                        )
1273
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1274
                        result_score = self._metric_fn_list[metric]([gold, result])
1275
1276
1277
1278
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1279
        else:
lintangsutawika's avatar
lintangsutawika committed
1280
1281
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1282
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1283
            )
1284
1285
1286

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1287
    def aggregation(self) -> dict:
1288
1289
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1290
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1291
        return self._higher_is_better
1292

Baber Abbasi's avatar
Baber Abbasi committed
1293
1294
1295
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

1296
1297
1298
1299

class MultipleChoiceTask(Task):
    OUTPUT_TYPE: str = "loglikelihood"

baberabb's avatar
baberabb committed
1300
    def doc_to_target(self, doc: dict) -> str:
1301
1302
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1303
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1304
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1305
1306
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1307
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1308
                doc=doc,
1309
                arguments=(ctx, " {}".format(choice)),
1310
                idx=i,
1311
1312
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1313
1314
            for i, choice in enumerate(doc["choices"])
        ]
1315

baberabb's avatar
baberabb committed
1316
    def process_results(self, doc: dict, results: List[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1317
1318
1319
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1331
    def higher_is_better(self) -> dict:
1332
1333
1334
1335
1336
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1337
    def aggregation(self) -> dict:
1338
1339
1340
1341
1342
1343
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1344
class PerplexityTask(Task):
1345
1346
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1347
    def has_training_docs(self) -> bool:
1348
1349
        return False

baberabb's avatar
baberabb committed
1350
    def fewshot_examples(self, k: int, rnd) -> List:
1351
1352
1353
        assert k == 0
        return []

baberabb's avatar
baberabb committed
1354
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1355
1356
1357
1358
1359
1360
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

baberabb's avatar
baberabb committed
1361
    def higher_is_better(self) -> dict:
1362
1363
1364
1365
1366
1367
1368
1369
1370
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1371
    def doc_to_text(self, doc) -> str:
1372
1373
1374
1375
1376
        return ""

    def doc_to_target(self, doc):
        return doc

baberabb's avatar
baberabb committed
1377
    def construct_requests(self, doc: dict, ctx: Union[str, None], **kwargs):
1378
1379
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1380
1381
1382
1383
1384
1385
1386
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1387

baberabb's avatar
baberabb committed
1388
    def process_results(self, doc: dict, results: float) -> dict:
1389
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1390
1391
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1392
1393
1394
1395
1396
1397
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1398
    def aggregation(self) -> dict:
1399
1400
1401
1402
1403
1404
1405
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1406
    def count_bytes(cls, doc) -> int:
1407
1408
1409
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1410
    def count_words(cls, doc) -> int:
1411
1412
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))