task.py 36.1 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
12
13
14

import datasets
import numpy as np

15
16
from typing import Union
from collections.abc import Callable
17

18
from lm_eval import utils
19
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
20
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
21
from lm_eval.api.filter import FilterEnsemble
22
23
24
25

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
26
27
28
29
30
31
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
32
33
34
35
    get_metric,
    get_aggregation,
    get_default_aggregation,
    is_higher_better,
36
37
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
38
39
    AGGREGATION_REGISTRY,
)
40

41
42
43
44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
    "greedy_until",
]

48
49
50

@dataclass
class TaskConfig(dict):
51
    # task naming/registry
52
    task: str = None
53
    group: Union[str, list] = None
54
55
56
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
57
58
    dataset_path: str = None
    dataset_name: str = None
59
    dataset_kwargs: dict = None
60
61
62
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
63
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
64
65
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
66
    template_aliases: str = None
67
68
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
69
    gold_alias: Union[Callable, str] = None
70
    use_prompt: str = None
71
    description: str = ""
72
73
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
74
    # runtime configuration options
75
76
    num_fewshot: int = 0
    batch_size: int = 1
77
    # scoring options
78
79
    metric_list: str = None
    output_type: str = "greedy_until"
80
    generation_kwargs: dict = None
81
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
82
    filter_list: Union[str, list] = None
83
84
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
85

lintangsutawika's avatar
lintangsutawika committed
86
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
87

88
89
90
91
    def __post_init__(self):
        # allow user-specified aliases so that users can
        # force prompt-compatibility for some prompt regardless of
        # field names in prompt
92
93
94
        if self.template_aliases is not None:
            if type(self.doc_to_text) == str:
                self.doc_to_text = self.template_aliases + self.doc_to_text
95

96
97
            if type(self.doc_to_target) == str:
                self.doc_to_target = self.template_aliases + self.doc_to_target
98

99
            if type(self.gold_alias) == str:
lintangsutawika's avatar
lintangsutawika committed
100
                self.gold_alias = self.template_aliases + self.gold_alias
101

Lintang Sutawika's avatar
Lintang Sutawika committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
        if self.generation_kwargs is not None:
            if self.output_type != "greedy_until":
                eval_logger.warning(
                    "passed `generation_kwargs`, but not using a generation request type!"
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
                self.generation_kwargs["until"] = [self.target_delimiter]
        else:
            if self.output_type == "greedy_until":
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
                    "until": None if self.target_delimiter is None else [self.target_delimiter],
                    "do_sample": False,
                    "temperature": 0.0,
                }
123

haileyschoelkopf's avatar
haileyschoelkopf committed
124
125
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

126
127
128
    def __getitem__(self, item):
        return getattr(self, item)

129
    def to_dict(self):
130
131
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
132
        Used for dumping results alongside full task configuration
133

haileyschoelkopf's avatar
haileyschoelkopf committed
134
135
136
137
138
139
140
141
142
143
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
144
145
146
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
147
        return cfg_dict
148

149
150
151
152
153
154
155
156
157
158
159
160

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
161

162
163
164
165
166
167
168
169
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
170

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
    ):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
205
        self._config = TaskConfig(**config) if config else TaskConfig()
206
207
208

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
209
            for name, components in self._config.get(
210
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
211
            ):
212
213
214
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
215
216
217
        self.sampler = samplers.Sampler(
            list(self.fewshot_docs()), self, rnd=random.Random()
        )  # TODO: pass the correct docs in here
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

    def download(self, data_dir=None, cache_dir=None, download_mode=None):
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
244
245
246
247
248
249
250
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

288
289
290
291
292
293
294
295
296
297
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
298
            eval_logger.warning(
299
                "has_training_docs and has_validation_docs are False"
300
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
301
            )
302
303
            return self.test_docs()

304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

    def doc_to_decontamination_query(self, doc):
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

342
    def build_all_requests(self, limit=None, rank=None, world_size=None):
343
344
345
346
347
348
349
350
351
352
353
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

        instances = []
354
355
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
356
        ):
357
            # sample fewshot context #TODO: need to offset doc_id by rank now!
358
359
360
            fewshot_ctx = self.fewshot_context(
                doc, self._config.num_fewshot, rnd=random.Random()
            )
361

haileyschoelkopf's avatar
haileyschoelkopf committed
362
            # TODO: we should override self._config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
363
364
365
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
366
                metadata=(self._config["task"], doc_id, self._config.repeats),
lintangsutawika's avatar
lintangsutawika committed
367
            )
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
393
            The number of times each instance in a dataset is inferred on. Defaults to 1,
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
429
430
431
432
433
434
435
436
437
438
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot, rnd=None):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :returns: str
            The fewshot context.
        """
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

        if num_fewshot == 0:
459
460
            # always prepend the (possibly empty) task description
            labeled_examples = self._config.description
461
        else:
lintangsutawika's avatar
lintangsutawika committed
462
463
464
            labeled_examples = self._config.description + self.sampler.get_context(
                doc, num_fewshot
            )
465
466
467
468
469
470

        example = self.doc_to_text(doc)
        return labeled_examples + example

    def apply_filters(self):

lintangsutawika's avatar
lintangsutawika committed
471
472
473
474
475
476
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
477

478
    def dump_config(self):
479
        """Returns a dictionary representing the task's config.
480
481
482
483
484
485
486
487

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
        # (batch size, num_fewshot)
        return self._config.to_dict()

488
489
490

class ConfigurableTask(Task):

491
    VERSION = "Yaml"
492
    OUTPUT_TYPE = None
493
    CONFIG = None
494
495
496
497

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
    ):
498
        # Get pre-configured attributes
499
        self._config = self.CONFIG
500

501
502
        # Use new configurations if there was no preconfiguration
        if self._config is None:
503
            self._config = TaskConfig(**config)
504
505
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
506
            if config is not None:
507
                self._config.__dict__.update(config)
508

509
        if self._config is None:
lintangsutawika's avatar
lintangsutawika committed
510
511
512
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
513
514

        if self._config.output_type is not None:
515
            assert self._config.output_type in ALL_OUTPUT_TYPES
516
517
            self.OUTPUT_TYPE = self._config.output_type

518
519
520
521
522
523
        if self._config.dataset_path is not None:
            self.DATASET_PATH = self._config.dataset_path

        if self._config.dataset_name is not None:
            self.DATASET_NAME = self._config.dataset_name

524
525
526
527
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
528

529
        _metric_list = DEFAULT_METRIC_REGISTRY[self._config.output_type]
530
        if self._config.metric_list is None:
531
            # TODO: handle this in TaskConfig.__post_init__ ?
532
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
533
534
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._aggregation_list[metric_name] = get_default_aggregation(
lintangsutawika's avatar
lintangsutawika committed
535
                    metric_name
haileyschoelkopf's avatar
haileyschoelkopf committed
536
537
                )
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
538
539
540
541
542
543
544
545
546
        else:
            for metric_config in self._config.metric_list:
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key not in ["metric", "aggregation", "higher_is_better"]
                }
haileyschoelkopf's avatar
haileyschoelkopf committed
547
548
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
549

550
                if "aggregation" in metric_config:
551
                    agg_name = metric_config["aggregation"]
552
                    if type(agg_name) == str:
haileyschoelkopf's avatar
haileyschoelkopf committed
553
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
554
555
556
557
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
558
                else:
559
560

                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
haileyschoelkopf's avatar
haileyschoelkopf committed
561
                    metric_agg = get_default_aggregation(metric_name)
562
                    eval_logger.warning(
563
564
565
                        f"metric {metric_name} is defined, but aggregation is not. "
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
566
                    )
567
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
568

569
570
571
572
573
574
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
575
576
                        f"metric {metric_name} is defined, but higher_is_better is not. "
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
577
                        f"higher_is_better={is_higher_better(metric_name)}"
578
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
579
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
580

581
        self.download(self._config.dataset_kwargs)
582
583
584
        self._training_docs = None
        self._fewshot_docs = None

lintangsutawika's avatar
lintangsutawika committed
585
        if self._config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
586
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
587
588
589
590
591
592
593
594
            for filter_config in self._config.filter_list:
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
595
596
597
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
598
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
599
        else:
600
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
601
602

        if self._config.use_prompt is not None:
lintangsutawika's avatar
lintangsutawika committed
603
            eval_logger.info(f"loading prompt {self._config.use_prompt}")
604
            self.prompt = get_prompt(
lintangsutawika's avatar
lintangsutawika committed
605
606
                self._config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
            )
607
608
609
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
610
611
612
        if self.fewshot_docs() is not None:
            self.sampler = samplers.Sampler(
                list(self.fewshot_docs()), self, rnd=random.Random()
613
            )
614

615
616
617
618
619
620
621
622
    def download(self, dataset_kwargs=None):

        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
    def has_training_docs(self):
        if self._config.training_split is not None:
            return True
        else:
            return False

    def has_validation_docs(self):
        if self._config.validation_split is not None:
            return True
        else:
            return False

    def has_test_docs(self):
        if self._config.test_split is not None:
            return True
        else:
            return False

    def training_docs(self):
        if self._config.training_split is not None:
            return self.dataset[self._config.training_split]

    def validation_docs(self):
        if self._config.validation_split is not None:
            return self.dataset[self._config.validation_split]

    def test_docs(self):
        if self._config.test_split is not None:
            return self.dataset[self._config.test_split]

653
    def fewshot_docs(self):
654
        if self._config.fewshot_split is not None:
655
            return self.dataset[self._config.fewshot_split]
656
657
658
        else:
            if self._config.num_fewshot > 0:
                eval_logger.warning(
haileyschoelkopf's avatar
haileyschoelkopf committed
659
                    f"Task '{self._config.task}': "
660
661
662
663
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
664

665
666
667
668
669
670
671
    def should_decontaminate(self):
        return self._config.should_decontaminate

    def doc_to_decontamination_query(self, doc):
        if self._config.should_decontaminate:
            return utils.apply_template(self._config.doc_to_decontamination_query, doc)

672
673
674
675
676
677
678
679
680
681
682
683
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
684
685
686

        if self.prompt is not None:
            doc_to_text = self.prompt
687
688
        else:
            doc_to_text = self._config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
689

690
691
        if type(doc_to_text) == str:
            return utils.apply_template(doc_to_text, doc)
692
        elif callable(doc_to_text):
693
694
695
            return doc_to_text(doc)
        if hasattr(doc_to_text, "apply"):
            return doc_to_text.apply(doc)[0]
696
        else:
697
            print(type(doc_to_text))
698
            raise TypeError
699
700

    def doc_to_target(self, doc):
701
702
703

        if self.prompt is not None:
            doc_to_target = self.prompt
704
705
706
        else:
            doc_to_target = self._config.doc_to_target

707
708
        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
709
        elif callable(doc_to_target):
710
711
712
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
713
714
        else:
            raise TypeError
715

716
    def gold_alias(self, doc):
717
718
719
720
721
        # returns a version of the gold target answer to a document,
        # which should be passed into metric for scoring as the ground truth.

        # in multiple_choice tasks, this should be castable to an int corresponding to the index
        # within the answer choices, while doc_to_target is the string version of {{answer_choices[gold]}}.
lintangsutawika's avatar
lintangsutawika committed
722
        if self._config.gold_alias is not None:
723
724
            doc_to_target = self._config.gold_alias
        else:
lintangsutawika's avatar
lintangsutawika committed
725
            return self.doc_to_target(doc)
726
727
728
729
730
731
732
733
734
735

        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
        elif callable(doc_to_target):
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
        else:
            raise TypeError

736
737
    def construct_requests(self, doc, ctx, **kwargs):

738
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
739
            arguments = (ctx, self.doc_to_target(doc))
740
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
741
            arguments = (self.doc_to_target(doc),)
742
        elif self.OUTPUT_TYPE == "multiple_choice":
743
744
            # we pass the user-defined answer_choices var (in aliases) and translate the result to a Python list.
            # TODO: any cleaner way to do this?
lintangsutawika's avatar
lintangsutawika committed
745
746
747
748
749
            choices = ast.literal_eval(
                utils.apply_template(
                    self._config.template_aliases + "{{answer_choices}}", doc
                )
            )
750
            request_list = [
751
752
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
753
                    doc=doc,
754
                    arguments=(ctx, " {}".format(choice)),
755
                    idx=i,
756
757
                    **kwargs,
                )
lintangsutawika's avatar
lintangsutawika committed
758
                for i, choice in enumerate(choices)
759
            ]
760
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
761
            if "acc_mutual_info" in self._metric_fn_list.keys():
762
763
764
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
765
                # here mutual info refers to calculating
766
767
768
769
770
771
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
772
                            doc=doc,
773
774
775
776
                            arguments=("", "{}".format(choice)),
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
777
                        for i, choice in enumerate(choices)
778
779
780
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
781

782
        elif self.OUTPUT_TYPE == "greedy_until":
783
            arguments = (ctx, self._config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
784
785

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
786
787
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
788
789
790

    def process_results(self, doc, results):

lintangsutawika's avatar
lintangsutawika committed
791
792
793
        # if callable(self._config.process_results):
        #     return self._config.process_results(doc, results)

794
        result_dict = {}
795
        use_metric = list(self._metric_fn_list.keys())
796
797
798
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
799
800
801
802
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
803
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
804
            (loglikelihood,) = results
805
806
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
807
            return {
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
823
            }
824
        elif self.OUTPUT_TYPE == "multiple_choice":
825
826

            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
827
828
829
830
831
            if self._config.gold_alias is not None:
                gold = int(self.gold_alias(doc))
            else:
                gold = int(self.doc_to_target(doc))

832
            # retrieve choices in List[str] form, to compute choice lengths, etc.
lintangsutawika's avatar
lintangsutawika committed
833
834
835
836
837
            choices = ast.literal_eval(
                utils.apply_template(
                    self._config.template_aliases + "{{answer_choices}}", doc
                )
            )
838
839
            if (
                2 * len(choices) == len(lls)
840
                and "acc_mutual_info" in self._metric_fn_list.keys()
841
842
843
844
845
846
847
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
848

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
849
850
            pred = np.argmax(lls)

851
            acc = 1.0 if np.argmax(lls) == gold else 0.0
852
853
            completion_len = np.array([float(len(i)) for i in choices])
            acc_norm = 1.0 if np.argmax(lls / completion_len) == gold else 0.0
854
855

            result_dict = {
856
                **({"acc": acc} if "acc" in use_metric else {}),
haileyschoelkopf's avatar
haileyschoelkopf committed
857
858
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
859
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
860
861
            }

862
            if "exact_match" in self._metric_fn_list.keys():
863
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
lintangsutawika's avatar
lintangsutawika committed
864
                is_greedy = is_greedy[gold]  # take value for the gold answer
865
866
                result_dict["exact_match"] = int(is_greedy)

867
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
868
869
870
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
871
872
873
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

874
875
876
        elif self.OUTPUT_TYPE == "greedy_until":

            if self._config.gold_alias is not None:
877
                gold = self.gold_alias(doc)
878
879
880
            else:
                gold = self.doc_to_target(doc)

881
            for key, result in zip(self._metric_fn_list.keys(), results):
haileyschoelkopf's avatar
haileyschoelkopf committed
882
                _dict = self._metric_fn_list[key](
haileyschoelkopf's avatar
haileyschoelkopf committed
883
884
885
                    references=[gold],
                    predictions=[result],
                    **self._metric_fn_kwargs[key],
886
                )
887

lintangsutawika's avatar
lintangsutawika committed
888
                result_dict = {**result_dict, **_dict}
889
        else:
lintangsutawika's avatar
lintangsutawika committed
890
891
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
892
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until', or 'multiple_choice'",
893
            )
894
895
896
897
898
899
900

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
901
        return self._higher_is_better
902
903
904
905
906
907
908
909
910
911


class MultipleChoiceTask(Task):

    OUTPUT_TYPE: str = "loglikelihood"

    def doc_to_target(self, doc):
        return " " + doc["choices"][doc["gold"]]

    def construct_requests(self, doc, ctx, **kwargs):
912
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
913
914
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
915
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
916
                doc=doc,
917
                arguments=(ctx, " {}".format(choice)),
918
                idx=i,
919
920
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
921
922
            for i, choice in enumerate(doc["choices"])
        ]
923
924

    def process_results(self, doc, results):
lintangsutawika's avatar
lintangsutawika committed
925
926
927
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "acc_norm": True,
        }

    def aggregation(self):
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
952
class PerplexityTask(Task):
953
954
955
956
957
958
959
960
961
962

    OUTPUT_TYPE = "loglikelihood_rolling"

    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

lintangsutawika's avatar
lintangsutawika committed
963
    def fewshot_context(self, doc, num_fewshot, rnd=None):
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`."

        return ""

    def higher_is_better(self):
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

    def doc_to_text(self, doc):
        return ""

    def doc_to_target(self, doc):
        return doc

    def construct_requests(self, doc, ctx, **kwargs):
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
992
993
994
995
996
997
998
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
999
1000
1001

    def process_results(self, doc, results):
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1002
1003
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

    def aggregation(self):
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
    def count_bytes(cls, doc):
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))