"vscode:/vscode.git/clone" did not exist on "60545ab89931e2c592ad560039a9fb73142a7aaa"
task.py 49.2 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import os
5
import random
6
7
8
9
import re
from collections.abc import Callable
from dataclasses import asdict, dataclass
from typing import Any, List, Literal, Tuple, Union
10
11
12
13
14

import datasets
import numpy as np

from lm_eval import utils
15
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
16
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
17
from lm_eval.api.metrics import (
18
    bits_per_byte,
lintangsutawika's avatar
lintangsutawika committed
19
20
21
22
    mean,
    weighted_perplexity,
)
from lm_eval.api.registry import (
23
    DEFAULT_METRIC_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
24
    METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
25
    get_aggregation,
lintangsutawika's avatar
lintangsutawika committed
26
    get_evaluate,
27
    get_metric,
lintangsutawika's avatar
lintangsutawika committed
28
)
29
30
31
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

32

33
34
35
36
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
37
    "generate_until",
38
39
]

lintangsutawika's avatar
lintangsutawika committed
40

41
eval_logger = logging.getLogger("lm-eval")
42

lintangsutawika's avatar
lintangsutawika committed
43

44
45
@dataclass
class TaskConfig(dict):
46
    # task naming/registry
47
    task: str = None
lintangsutawika's avatar
lintangsutawika committed
48
    task_alias: str = None
49
    group: Union[str, list] = None
lintangsutawika's avatar
lintangsutawika committed
50
    group_alias: Union[str, list] = None
51
52
53
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
54
55
    dataset_path: str = None
    dataset_name: str = None
56
    dataset_kwargs: dict = None
57
58
59
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
60
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
61
62
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
63
    process_docs: Callable = None
64
65
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
66
    doc_to_choice: Union[Callable, str, dict, list] = None
lintangsutawika's avatar
lintangsutawika committed
67
    process_results: Union[Callable, str] = None
68
    use_prompt: str = None
69
    description: str = ""
70
71
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
haileyschoelkopf's avatar
haileyschoelkopf committed
72
    fewshot_config: dict = None
73
    # runtime configuration options
74
    num_fewshot: int = None
75
    # scoring options
76
    metric_list: list = None
77
    output_type: str = "generate_until"
78
    generation_kwargs: dict = None
79
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
80
    filter_list: Union[str, list] = None
81
82
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
83

lintangsutawika's avatar
lintangsutawika committed
84
85
86
    metadata: Union[
        str, list
    ] = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
87

Ethan Smith's avatar
Ethan Smith committed
88
    def __post_init__(self) -> None:
89
        if self.dataset_path and os.path.exists(os.path.dirname(self.dataset_path)):
lintangsutawika's avatar
lintangsutawika committed
90
91
            import inspect
            from importlib import import_module
lintangsutawika's avatar
format  
lintangsutawika committed
92

lintangsutawika's avatar
lintangsutawika committed
93
            self.dataset_path = inspect.getfile(import_module(self.dataset_path))
94

Lintang Sutawika's avatar
Lintang Sutawika committed
95
        if self.generation_kwargs is not None:
96
            if self.output_type != "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
97
                eval_logger.warning(
98
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
99
                )
100
                assert self.output_type != "generate_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
101
102
103
104
105
106
107

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
108
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
109
        else:
110
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
111
112
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
113
                    "until": None
114
115
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
116
117
                    "do_sample": False,
                }
118

haileyschoelkopf's avatar
haileyschoelkopf committed
119
120
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

121
122
123
    def __getitem__(self, item):
        return getattr(self, item)

124
125
126
    def __setitem__(self, item, value):
        return setattr(self, item, value)

127
    def to_dict(self):
128
129
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
130
        Used for dumping results alongside full task configuration
131

haileyschoelkopf's avatar
haileyschoelkopf committed
132
133
134
135
136
137
138
139
140
141
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
142
143
144
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
145
        return cfg_dict
146

147
148
149
150
151
152
153
154
155
156
157
158

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
159

160
161
162
163
164
165
166
167
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
168

169
170
171
172
173
174
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
Ethan Smith's avatar
Ethan Smith committed
175
    ) -> None:
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

lintangsutawika's avatar
lintangsutawika committed
202
        self._config = TaskConfig({**config}) if config else TaskConfig()
203

lintangsutawika's avatar
lintangsutawika committed
204
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
205

Ethan Smith's avatar
Ethan Smith committed
206
    def download(self, data_dir=None, cache_dir=None, download_mode=None) -> None:
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
231
232
233
234
235
236
237
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
238

239
240
241
242
243
    @property
    def config(self):
        """Returns the TaskConfig associated with this class."""
        return self._config

244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

280
281
282
283
284
285
286
287
288
289
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
290
            eval_logger.warning(
291
                "has_training_docs and has_validation_docs are False"
292
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
293
            )
294
295
            return self.test_docs()

296
297
298
299
300
301
302
303
304
305
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
306

307
308
309
310
311
312
313
314
315
316
317
318
319
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Ethan Smith's avatar
Ethan Smith committed
320
    def doc_to_decontamination_query(self, doc) -> None:
321
322
323
324
325
326
327
328
329
330
331
332
333
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

Ethan Smith's avatar
Ethan Smith committed
334
    def build_all_requests(self, limit=None, rank=None, world_size=None) -> None:
335
336
337
338
339
340
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
341
            assert False, f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
342

343
        eval_logger.info(f"Building contexts for task on rank {rank}...")
344

345
        instances = []
346
347
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
348
        ):
349
            # sample fewshot context #TODO: need to offset doc_id by rank now!
350
            fewshot_ctx = self.fewshot_context(
351
                doc,
352
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
353
            )
354

355
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
356
357
358
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
359
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
360
            )
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
386
            The number of times each instance in a dataset is inferred on. Defaults to 1,
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
405
    def aggregation(self):
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
422
423
424
425
426
427
428
429
430
431
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

432
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
433
    def fewshot_context(
434
435
436
437
438
        self,
        doc,
        num_fewshot,
        rnd=random.Random(1234),
        description=None,
lintangsutawika's avatar
lintangsutawika committed
439
    ):
440
441
442
443
444
445
446
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
447
448
449
450
451
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
452
453
454
        :returns: str
            The fewshot context.
        """
lintangsutawika's avatar
lintangsutawika committed
455
456
457
458
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

459
        description = description if description else ""
460
461

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
462
            labeled_examples = ""
463
        else:
lintangsutawika's avatar
lintangsutawika committed
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
488
            )
489
490

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
491
        return description + labeled_examples + example
492
493

    def apply_filters(self):
lintangsutawika's avatar
lintangsutawika committed
494
495
        if hasattr(self, "_filters"):
            for f in self._filters:
lintangsutawika's avatar
lintangsutawika committed
496
                f.apply(self._instances, None)
lintangsutawika's avatar
lintangsutawika committed
497
498
499
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
500

baberabb's avatar
baberabb committed
501
    def dump_config(self) -> dict:
502
        """Returns a dictionary representing the task's config.
503
504
505
506
507

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
508
        # (num_fewshot)
509
        return self.config.to_dict()
510

511
512

class ConfigurableTask(Task):
513
    VERSION = "Yaml"
514
    OUTPUT_TYPE = None
515
    CONFIG = None
516
517
518

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
Ethan Smith's avatar
Ethan Smith committed
519
    ) -> None:  # TODO no super() call here
520
        # Get pre-configured attributes
521
        self._config = self.CONFIG
522

523
        # Use new configurations if there was no preconfiguration
524
        if self.config is None:
525
            self._config = TaskConfig(**config)
526
527
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
528
            if config is not None:
529
                self._config.__dict__.update(config)
530

531
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
532
533
534
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
535

536
537
538
        if self.config.output_type is not None:
            assert self.config.output_type in ALL_OUTPUT_TYPES
            self.OUTPUT_TYPE = self.config.output_type
539

540
541
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
542

543
544
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
545

546
547
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
548
        self._aggregation_list = {}
549
        self._higher_is_better = {}
550

551
        if self.config.metric_list is None:
552
            # TODO: handle this in TaskConfig.__post_init__ ?
553
554
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

555
            for metric_name in _metric_list:
556
                metric = get_metric(metric_name)
557
                self._metric_fn_list[metric_name] = metric["function"]
lintangsutawika's avatar
lintangsutawika committed
558
                self._metric_fn_kwargs[metric_name] = {}
559
560
                self._aggregation_list = metric["aggregation"]
                self._higher_is_better[metric_name] = metric["is_higher_better"]
561
        else:
562
            for metric_config in self.config.metric_list:
563
564
565
566
567
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
568
                    if key
569
570
571
572
573
574
                    not in [
                        "metric",
                        "aggregation",
                        "higher_is_better",
                        "use_hf_evaluate",
                    ]
575
                }
576
                use_hf_evaluate = (
lintangsutawika's avatar
lintangsutawika committed
577
578
                    "use_hf_evaluate" in metric_config
                    and metric_config["use_hf_evaluate"] is True
Chris's avatar
Chris committed
579
                )
580

lintangsutawika's avatar
lintangsutawika committed
581
582
583
584
                if self.config.process_results is not None:
                    metric_fn = None
                    kwargs = {}
                elif callable(metric_name):
585
586
587
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                else:
lintangsutawika's avatar
lintangsutawika committed
588
                    assert isinstance(metric_name, str)
589
590
591
592
593
                    if use_hf_evaluate:
                        metric_fn = get_evaluate(metric_name, **kwargs)
                    elif metric_name in METRIC_REGISTRY:
                        metric = get_metric(metric_name, **kwargs)
                        metric_fn = metric["function"]
594
595

                self._metric_fn_kwargs[metric_name] = kwargs
596
                self._metric_fn_list[metric_name] = metric_fn
lintangsutawika's avatar
lintangsutawika committed
597

598
599
600
601
602
                # Ignores aggregation if the metric set
                # is a registered metric
                # for backward compatibility
                if metric_name in METRIC_REGISTRY and ("aggregation" not in metric):
                    self._aggregation_list[metric_name] = metric_fn
603
                else:
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
                    if "aggregation" in metric_config:
                        agg_name = metric_config["aggregation"]
                        if isinstance(agg_name, str):
                            self._aggregation_list[metric_name] = get_aggregation(
                                agg_name
                            )
                        elif callable(agg_name):  # noqa: E721
                            self._aggregation_list[metric_name] = agg_name
                    else:
                        if use_hf_evaluate:
                            self._aggregation_list[metric_name] = metric_fn
                        elif (metric_name in METRIC_REGISTRY) and (
                            "aggregation" in metric
                        ):
                            self._aggregation_list[metric_name] = metric["aggregation"]
619
620
621
622
623
624

                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
lintangsutawika's avatar
lintangsutawika committed
625
                    self._higher_is_better[metric_name] = metric["higher_is_better"]
626

627
        self.download(self.config.dataset_kwargs)
628
629
630
        self._training_docs = None
        self._fewshot_docs = None

631
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
632
            self._filters = []
633
            for filter_config in self.config.filter_list:
lintangsutawika's avatar
lintangsutawika committed
634
635
636
637
638
639
640
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
641
642
643
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
644
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
645
        else:
646
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
647

648
649
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
650
            self.prompt = get_prompt(
651
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
652
            )
653
654
655
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
656
        if self.fewshot_docs() is not None:
haileyschoelkopf's avatar
haileyschoelkopf committed
657
            self.sampler = samplers.get_sampler(
haileyschoelkopf's avatar
haileyschoelkopf committed
658
659
660
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
haileyschoelkopf's avatar
haileyschoelkopf committed
661
            )(list(self.fewshot_docs()), self, rnd=random.Random(1234))
662

663
        if self.has_test_docs():
664
            self.task_docs = self.test_docs()
665
        elif self.has_validation_docs():
666
            self.task_docs = self.validation_docs()
667
        else:
668
            assert False, f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
669

670
        # Test One Doc
671
        self.features = list(self.task_docs.features.keys())
672
673
        self.multiple_input = 0
        self.multiple_target = 0
674
        test_doc = self.task_docs[0]
675
        test_text = self.doc_to_text(test_doc)
676
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
677

678
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
679
            test_choice = self.doc_to_choice(test_doc)
680
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
681
                eval_logger.error("doc_to_choice must return list")
682
683
            else:
                num_choice = len(test_choice)
684

685
            if isinstance(test_text, int):
686
                self.multiple_input = num_choice
687
688
        else:
            test_choice = None
689

690
        if isinstance(test_target, list):
691
            self.multiple_target = len(test_target)
692
        else:
693
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
694
                test_target = test_choice[test_target]
695
            else:
lintangsutawika's avatar
lintangsutawika committed
696
                test_target = str(test_target)
697

698
699
700
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
701
            check_choices = [test_target]
702
703
704
705
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
706
707
                    True
                    if self.config.target_delimiter.rstrip()
708
                    != self.config.target_delimiter
709
                    else False
710
                )
711

712
713
714
715
716
717
                if delimiter_has_whitespace and choice_has_whitespace:
                    eval_logger.warning(
                        f'Both target_delimiter and target choice: "{choice}" have whitespace'
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
                    eval_logger.warning(
718
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
719
720
                    )

Ethan Smith's avatar
Ethan Smith committed
721
    def download(self, dataset_kwargs=None) -> None:
722
723
724
725
726
727
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
728
    def has_training_docs(self) -> bool:
729
        if self.config.training_split is not None:
730
731
732
733
            return True
        else:
            return False

baberabb's avatar
baberabb committed
734
    def has_validation_docs(self) -> bool:
735
        if self.config.validation_split is not None:
736
737
738
739
            return True
        else:
            return False

baberabb's avatar
baberabb committed
740
    def has_test_docs(self) -> bool:
741
        if self.config.test_split is not None:
742
743
744
745
            return True
        else:
            return False

baberabb's avatar
baberabb committed
746
    def training_docs(self) -> datasets.Dataset:
747
        if self.has_training_docs():
748
749
750
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
751
                )
752
            return self.dataset[self.config.training_split]
753

baberabb's avatar
baberabb committed
754
    def validation_docs(self) -> datasets.Dataset:
755
        if self.has_validation_docs():
756
757
758
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
759
                )
760
            return self.dataset[self.config.validation_split]
761

baberabb's avatar
baberabb committed
762
    def test_docs(self) -> datasets.Dataset:
763
        if self.has_test_docs():
764
765
766
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
767

768
    def fewshot_docs(self):
769
770
        if self.config.fewshot_split is not None:
            return self.dataset[self.config.fewshot_split]
771
        else:
772
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
773
                eval_logger.warning(
774
                    f"Task '{self.config.task}': "
775
776
777
778
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
779

lintangsutawika's avatar
lintangsutawika committed
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
            # always prepend the (possibly empty) task description
            labeled_examples = self.config.description
        else:
            labeled_examples = self.config.description + self.sampler.get_context(
                doc, num_fewshot
            )

        example = self.doc_to_text(doc)
802
        if isinstance(example, str):
lintangsutawika's avatar
lintangsutawika committed
803
            return labeled_examples + example
804
        elif isinstance(example, list):
lintangsutawika's avatar
lintangsutawika committed
805
            return [labeled_examples + ex for ex in example]
806
        elif isinstance(example, int):
lintangsutawika's avatar
lintangsutawika committed
807
808
809
810
811
812
            if self.config.doc_to_choice is not None:
                choices = self.doc_to_choice(doc)
                return labeled_examples + choices[example]
            else:
                return labeled_examples + str(example)

813
814
815
816
817
818
819
820
    def apply_filters(self):
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances, self.task_docs)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

821
    def should_decontaminate(self):
822
        return self.config.should_decontaminate
823
824

    def doc_to_decontamination_query(self, doc):
825
        if self.config.should_decontaminate:
826
827
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
828
            else:
829
830
831
832
833
834
835
836
837
838
839
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
840

841
842
843
844
845
846
847
848
849
850
851
852
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
853
854
        if self.prompt is not None:
            doc_to_text = self.prompt
855
        else:
856
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
857

858
        if isinstance(doc_to_text, int):
859
            return doc_to_text
860
        elif isinstance(doc_to_text, str):
861
            if doc_to_text in self.features:
862
                # if self.config.doc_to_choice is not None:
863
864
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
865
866
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
867
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
868
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
869
870
871
                    return ast.literal_eval(text_string)
                else:
                    return text_string
872
        elif callable(doc_to_text):
873
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
874
        # Used when applying a Promptsource template
875
        elif hasattr(doc_to_text, "apply"):
876
877
878
879
880
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
881
                return self.config.fewshot_delimiter
882
        else:
883
            print(type(doc_to_text))
884
            raise TypeError
885

886
    def doc_to_target(self, doc: dict) -> Union[int, str, list]:
887
888
        if self.prompt is not None:
            doc_to_target = self.prompt
889
        else:
890
            doc_to_target = self.config.doc_to_target
891

892
        if isinstance(doc_to_target, int):
893
            return doc_to_target
894
        elif isinstance(doc_to_target, str):
895
            if doc_to_target in self.features:
896
                # if self.config.doc_to_choice is not None:
897
898
899
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
900
            else:
lintangsutawika's avatar
lintangsutawika committed
901
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
902
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
903
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
904
905
906
907
908
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
909
910
911
912
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
913
914
                else:
                    return target_string
915
        elif isinstance(doc_to_target, list):
916
            return doc_to_target
917
        elif callable(doc_to_target):
918
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
919
        # Used when applying a Promptsource template
920
        elif hasattr(doc_to_target, "apply"):
921
            applied_prompt = doc_to_target.apply(doc)
922
923
924
925
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
926
                return self.config.fewshot_delimiter
927
928
        else:
            raise TypeError
929

baberabb's avatar
baberabb committed
930
    def doc_to_choice(self, doc: Any) -> List[str]:
931
932
        if self.prompt is not None:
            doc_to_choice = self.prompt
933
        elif self.config.doc_to_choice is None:
934
935
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
936
            doc_to_choice = self.config.doc_to_choice
937

938
        if isinstance(doc_to_choice, str):
939
940
941
942
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
943
        elif isinstance(doc_to_choice, list):
944
            return doc_to_choice
945
        elif isinstance(doc_to_choice, dict):
946
947
948
949
950
951
952
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
953

baberabb's avatar
baberabb committed
954
955
956
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
957
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
958
            arguments = (ctx, self.doc_to_target(doc))
959
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
960
            arguments = (self.doc_to_target(doc),)
961
        elif self.OUTPUT_TYPE == "multiple_choice":
962
            choices = self.doc_to_choice(doc)
963
            target_delimiter = self.config.target_delimiter
964
965
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
966
                cont = self.doc_to_target(doc)
967
                arguments = [(ctx, f"{target_delimiter}{cont}") for ctx in choices]
968
            else:
969
                # Otherwise they are placed in the continuation
970
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
971

972
            request_list = [
973
974
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
975
                    doc=doc,
976
                    arguments=arg,
977
                    idx=i,
978
979
                    **kwargs,
                )
980
                for i, arg in enumerate(arguments)
981
            ]
982
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
983
            if "acc_mutual_info" in self._metric_fn_list.keys():
984
985
986
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
987
                # here mutual info refers to calculating
988
989
990
991
992
993
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
994
                            doc=doc,
995
                            arguments=("", "{}".format(choice)),
996
997
998
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
999
                        for i, choice in enumerate(choices)
1000
1001
1002
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1003

1004
        elif self.OUTPUT_TYPE == "generate_until":
1005
            arguments = (ctx, self.config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
1006
1007

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1008
1009
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1010
1011

    def process_results(self, doc, results):
1012
1013
1014
        # Process results returns 1 of X things per doc/results
        # 1. A score
        # 2. Components to be processed later to obtained a score. such as gold and prediction
1015
1016
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1017

1018
        result_dict = {}
1019
        use_metric = list(self._metric_fn_list.keys())
1020
1021
1022
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1023
1024
1025
1026
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1027
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1028
            (loglikelihood,) = results
1029
1030
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
            return {
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
            }
1048
        elif self.OUTPUT_TYPE == "multiple_choice":
1049
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1050

1051
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1052
            choices = self.doc_to_choice(doc)
1053
1054
            completion_len = np.array([float(len(i)) for i in choices])

1055
1056
            if (
                2 * len(choices) == len(lls)
1057
                and "acc_mutual_info" in self._metric_fn_list.keys()
1058
1059
1060
1061
1062
1063
1064
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1065

1066
1067
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1068

1069
1070
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1071
            else:
1072
                gold = self.doc_to_target(doc)
1073
1074

            gold_index_error = False
1075
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1076
1077
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1078
1079
                    gold_index_error = True
            else:
1080
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1081
                    gold = gold if gold < len(choices) else -100
1082
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1083
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1084

Lintang Sutawika's avatar
Lintang Sutawika committed
1085
                if gold == -100:
1086
1087
1088
1089
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1090
                    f"Label index was not in within range of available choices,"
1091
1092
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1093

1094
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1095
1096
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1097
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1098
1099
1100
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1101
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1102
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1103

1104
            # gold, lls, is_greedy, completion_len
1105
            result_dict = {
1106
1107
                **({"acc": acc} if "acc" in use_metric else {}),
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1108
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
1109
1110
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1111
1112
            }

1113
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1114
1115
1116
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1117
1118
1119
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1120
        elif self.OUTPUT_TYPE == "generate_until":
1121
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1122
            result = results[0]
1123
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1124
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1125
                # it assumes that doc_to_target returns a number.
1126
1127
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1128
1129
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1130
                gold = list(gold)
Chris's avatar
Chris committed
1131
1132
1133
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1134

lintangsutawika's avatar
lintangsutawika committed
1135
            for metric in self._metric_fn_list.keys():
1136
1137
                result_dict[metric] = (gold, result)
                continue
haileyschoelkopf's avatar
haileyschoelkopf committed
1138
1139
1140
1141
1142
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1143
1144
1145
1146
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
haileyschoelkopf's avatar
haileyschoelkopf committed
1147
                    for gold_option in gold:
1148
                        try:
1149
                            result_score = self._metric_fn_list[metric](
1150
1151
                                references=[gold_option],
                                predictions=[result],
1152
                                **self._metric_fn_kwargs[metric],
1153
                            )
baberabb's avatar
baberabb committed
1154
1155
1156
                        except (
                            TypeError
                        ):  # TODO: this is hacky and I don't want to do it
1157
                            result_score = self._metric_fn_list[metric](
haileyschoelkopf's avatar
haileyschoelkopf committed
1158
1159
1160
                                [gold_option, result]
                            )
                        if isinstance(result_score, dict):
haileyschoelkopf's avatar
haileyschoelkopf committed
1161
                            # TODO: this handles the case where HF evaluate returns a dict.
1162
                            result_score = result_score[metric]
haileyschoelkopf's avatar
haileyschoelkopf committed
1163
                        scores.append(result_score)
haileyschoelkopf's avatar
haileyschoelkopf committed
1164
                    if any(scores):
1165
                        result_score = 1.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1166
                    else:
1167
                        result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1168
                else:
1169
                    try:
1170
                        result_score = self._metric_fn_list[metric](
1171
1172
                            references=[gold],
                            predictions=[result],
lintangsutawika's avatar
revert  
lintangsutawika committed
1173
                            **self._metric_fn_kwargs[metric],
1174
                        )
1175
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1176
                        result_score = self._metric_fn_list[metric]([gold, result])
1177
1178
1179
1180
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1181
        else:
lintangsutawika's avatar
lintangsutawika committed
1182
1183
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1184
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1185
            )
1186
1187
1188

        return result_dict

1189
1190
    def aggregation(self):
        return self._aggregation_list
1191
1192

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
1193
        return self._higher_is_better
1194
1195
1196
1197
1198


class MultipleChoiceTask(Task):
    OUTPUT_TYPE: str = "loglikelihood"

baberabb's avatar
baberabb committed
1199
    def doc_to_target(self, doc: dict) -> str:
1200
1201
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1202
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1203
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1204
1205
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1206
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1207
                doc=doc,
1208
                arguments=(ctx, " {}".format(choice)),
1209
                idx=i,
1210
1211
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1212
1213
            for i, choice in enumerate(doc["choices"])
        ]
1214

baberabb's avatar
baberabb committed
1215
    def process_results(self, doc: dict, results: List[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1216
1217
1218
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1230
    def higher_is_better(self) -> dict:
1231
1232
1233
1234
1235
        return {
            "acc": True,
            "acc_norm": True,
        }

1236
    def aggregation(self) -> dict:
1237
1238
1239
1240
1241
1242
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1243
class PerplexityTask(Task):
1244
1245
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1246
    def has_training_docs(self) -> bool:
1247
1248
        return False

baberabb's avatar
baberabb committed
1249
    def fewshot_examples(self, k: int, rnd) -> List:
1250
1251
1252
        assert k == 0
        return []

baberabb's avatar
baberabb committed
1253
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1254
1255
1256
1257
1258
1259
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

baberabb's avatar
baberabb committed
1260
    def higher_is_better(self) -> dict:
1261
1262
1263
1264
1265
1266
1267
1268
1269
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1270
    def doc_to_text(self, doc) -> str:
1271
1272
1273
1274
1275
        return ""

    def doc_to_target(self, doc):
        return doc

baberabb's avatar
baberabb committed
1276
    def construct_requests(self, doc: dict, ctx: Union[str, None], **kwargs):
1277
1278
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1279
1280
1281
1282
1283
1284
1285
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1286

baberabb's avatar
baberabb committed
1287
    def process_results(self, doc: dict, results: float) -> dict:
1288
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1289
1290
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1291
1292
1293
1294
1295
1296
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

1297
    def aggregation(self) -> dict:
1298
1299
1300
1301
1302
1303
1304
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1305
    def count_bytes(cls, doc) -> int:
1306
1307
1308
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1309
    def count_words(cls, doc) -> int:
1310
1311
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))