task.py 49.6 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import os
5
import random
6
7
8
9
import re
from collections.abc import Callable
from dataclasses import asdict, dataclass
from typing import Any, List, Literal, Tuple, Union
10
11
12
13
14

import datasets
import numpy as np

from lm_eval import utils
15
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
16
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
17
from lm_eval.api.metrics import (
18
    bits_per_byte,
lintangsutawika's avatar
lintangsutawika committed
19
20
    mean,
    weighted_perplexity,
lintangsutawika's avatar
lintangsutawika committed
21
<<<<<<< HEAD
lintangsutawika's avatar
lintangsutawika committed
22
23
24
<<<<<<< HEAD
=======
>>>>>>> cda25fef4e1df2f4bc2dab3ec6668ae9f5bf7296
lintangsutawika's avatar
lintangsutawika committed
25
26
27
    bits_per_byte,
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
28
    get_metric,
29
30
31
    get_evaluate,
    get_aggregation,
    METRIC_REGISTRY,
32
    DEFAULT_METRIC_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
33
<<<<<<< HEAD
lintangsutawika's avatar
lintangsutawika committed
34
=======
lintangsutawika's avatar
lintangsutawika committed
35
36
)
from lm_eval.api.registry import (
37
38
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
39
    get_aggregation,
40
    get_metric,
41
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
42
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
43
>>>>>>> 4d10ad56b1ffe569467eee2297e2317c99313118
lintangsutawika's avatar
lintangsutawika committed
44
45
=======
>>>>>>> cda25fef4e1df2f4bc2dab3ec6668ae9f5bf7296
lintangsutawika's avatar
lintangsutawika committed
46
)
47
48
49
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

50

51
52
53
54
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
55
    "generate_until",
56
57
]

lintangsutawika's avatar
lintangsutawika committed
58

59
eval_logger = logging.getLogger("lm-eval")
60

lintangsutawika's avatar
lintangsutawika committed
61

62
63
@dataclass
class TaskConfig(dict):
64
    # task naming/registry
65
    task: str = None
lintangsutawika's avatar
lintangsutawika committed
66
    task_alias: str = None
67
    group: Union[str, list] = None
lintangsutawika's avatar
lintangsutawika committed
68
    group_alias: Union[str, list] = None
69
70
71
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
72
73
    dataset_path: str = None
    dataset_name: str = None
74
    dataset_kwargs: dict = None
75
76
77
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
78
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
79
80
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
81
    process_docs: Callable = None
82
83
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
84
    doc_to_choice: Union[Callable, str, dict, list] = None
lintangsutawika's avatar
lintangsutawika committed
85
    process_results: Union[Callable, str] = None
86
    use_prompt: str = None
87
    description: str = ""
88
89
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
haileyschoelkopf's avatar
haileyschoelkopf committed
90
    fewshot_config: dict = None
91
    # runtime configuration options
92
    num_fewshot: int = None
93
    # scoring options
94
    metric_list: list = None
95
    output_type: str = "generate_until"
96
    generation_kwargs: dict = None
97
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
98
    filter_list: Union[str, list] = None
99
100
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
101

lintangsutawika's avatar
lintangsutawika committed
102
103
104
    metadata: Union[
        str, list
    ] = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
105

Ethan Smith's avatar
Ethan Smith committed
106
    def __post_init__(self) -> None:
107
        if self.dataset_path and os.path.exists(os.path.dirname(self.dataset_path)):
lintangsutawika's avatar
lintangsutawika committed
108
109
            import inspect
            from importlib import import_module
lintangsutawika's avatar
format  
lintangsutawika committed
110

lintangsutawika's avatar
lintangsutawika committed
111
            self.dataset_path = inspect.getfile(import_module(self.dataset_path))
112

Lintang Sutawika's avatar
Lintang Sutawika committed
113
        if self.generation_kwargs is not None:
114
            if self.output_type != "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
115
                eval_logger.warning(
116
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
117
                )
118
                assert self.output_type != "generate_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
119
120
121
122
123
124
125

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
126
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
127
        else:
128
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
129
130
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
131
                    "until": None
132
133
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
134
135
                    "do_sample": False,
                }
136

haileyschoelkopf's avatar
haileyschoelkopf committed
137
138
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

139
140
141
    def __getitem__(self, item):
        return getattr(self, item)

142
143
144
    def __setitem__(self, item, value):
        return setattr(self, item, value)

145
    def to_dict(self):
146
147
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
148
        Used for dumping results alongside full task configuration
149

haileyschoelkopf's avatar
haileyschoelkopf committed
150
151
152
153
154
155
156
157
158
159
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
160
161
162
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
163
        return cfg_dict
164

165
166
167
168
169
170
171
172
173
174
175
176

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
177

178
179
180
181
182
183
184
185
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
186

187
188
189
190
191
192
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
Ethan Smith's avatar
Ethan Smith committed
193
    ) -> None:
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

lintangsutawika's avatar
lintangsutawika committed
220
        self._config = TaskConfig({**config}) if config else TaskConfig()
221

lintangsutawika's avatar
lintangsutawika committed
222
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
223

Ethan Smith's avatar
Ethan Smith committed
224
    def download(self, data_dir=None, cache_dir=None, download_mode=None) -> None:
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
249
250
251
252
253
254
255
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
256

257
258
259
260
261
    @property
    def config(self):
        """Returns the TaskConfig associated with this class."""
        return self._config

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

298
299
300
301
302
303
304
305
306
307
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
308
            eval_logger.warning(
309
                "has_training_docs and has_validation_docs are False"
310
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
311
            )
312
313
            return self.test_docs()

314
315
316
317
318
319
320
321
322
323
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
324

325
326
327
328
329
330
331
332
333
334
335
336
337
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Ethan Smith's avatar
Ethan Smith committed
338
    def doc_to_decontamination_query(self, doc) -> None:
339
340
341
342
343
344
345
346
347
348
349
350
351
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

Ethan Smith's avatar
Ethan Smith committed
352
    def build_all_requests(self, limit=None, rank=None, world_size=None) -> None:
353
354
355
356
357
358
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
359
            assert False, f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
360

361
        eval_logger.info(f"Building contexts for task on rank {rank}...")
362

363
        instances = []
364
365
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
366
        ):
367
            # sample fewshot context #TODO: need to offset doc_id by rank now!
368
            fewshot_ctx = self.fewshot_context(
369
                doc,
370
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
371
            )
372

373
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
374
375
376
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
377
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
378
            )
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
404
            The number of times each instance in a dataset is inferred on. Defaults to 1,
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
423
    def aggregation(self):
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
440
441
442
443
444
445
446
447
448
449
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

450
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
451
    def fewshot_context(
452
453
454
455
456
        self,
        doc,
        num_fewshot,
        rnd=random.Random(1234),
        description=None,
lintangsutawika's avatar
lintangsutawika committed
457
    ):
458
459
460
461
462
463
464
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
465
466
467
468
469
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
470
471
472
        :returns: str
            The fewshot context.
        """
lintangsutawika's avatar
lintangsutawika committed
473
474
475
476
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

477
        description = description if description else ""
478
479

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
480
            labeled_examples = ""
481
        else:
lintangsutawika's avatar
lintangsutawika committed
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
506
            )
507
508

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
509
        return description + labeled_examples + example
510
511

    def apply_filters(self):
lintangsutawika's avatar
lintangsutawika committed
512
513
        if hasattr(self, "_filters"):
            for f in self._filters:
lintangsutawika's avatar
lintangsutawika committed
514
                f.apply(self._instances, None)
lintangsutawika's avatar
lintangsutawika committed
515
516
517
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
518

baberabb's avatar
baberabb committed
519
    def dump_config(self) -> dict:
520
        """Returns a dictionary representing the task's config.
521
522
523
524
525

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
526
        # (num_fewshot)
527
        return self.config.to_dict()
528

529
530

class ConfigurableTask(Task):
531
    VERSION = "Yaml"
532
    OUTPUT_TYPE = None
533
    CONFIG = None
534
535
536

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
Ethan Smith's avatar
Ethan Smith committed
537
    ) -> None:  # TODO no super() call here
538
        # Get pre-configured attributes
539
        self._config = self.CONFIG
540

541
        # Use new configurations if there was no preconfiguration
542
        if self.config is None:
543
            self._config = TaskConfig(**config)
544
545
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
546
            if config is not None:
547
                self._config.__dict__.update(config)
548

549
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
550
551
552
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
553

554
555
556
        if self.config.output_type is not None:
            assert self.config.output_type in ALL_OUTPUT_TYPES
            self.OUTPUT_TYPE = self.config.output_type
557

558
559
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
560

561
562
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
563

564
565
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
566
        self._aggregation_list = {}
567
        self._higher_is_better = {}
568

569
        if self.config.metric_list is None:
570
            # TODO: handle this in TaskConfig.__post_init__ ?
571
572
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

573
            for metric_name in _metric_list:
574
                metric = get_metric(metric_name)
575
                self._metric_fn_list[metric_name] = metric["function"]
lintangsutawika's avatar
lintangsutawika committed
576
                self._metric_fn_kwargs[metric_name] = {}
577
578
                self._aggregation_list = metric["aggregation"]
                self._higher_is_better[metric_name] = metric["is_higher_better"]
579
        else:
580
            for metric_config in self.config.metric_list:
581
582
583
584
585
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
586
                    if key
587
588
589
590
591
592
                    not in [
                        "metric",
                        "aggregation",
                        "higher_is_better",
                        "use_hf_evaluate",
                    ]
593
                }
594
                use_hf_evaluate = (
lintangsutawika's avatar
lintangsutawika committed
595
596
                    "use_hf_evaluate" in metric_config
                    and metric_config["use_hf_evaluate"] is True
Chris's avatar
Chris committed
597
                )
598

lintangsutawika's avatar
lintangsutawika committed
599
600
601
602
                if self.config.process_results is not None:
                    metric_fn = None
                    kwargs = {}
                elif callable(metric_name):
603
604
605
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                else:
606
607
608
609
610
611
                    assert type(metric_name) == str
                    if use_hf_evaluate:
                        metric_fn = get_evaluate(metric_name, **kwargs)
                    elif metric_name in METRIC_REGISTRY:
                        metric = get_metric(metric_name, **kwargs)
                        metric_fn = metric["function"]
612
613

                self._metric_fn_kwargs[metric_name] = kwargs
614
                self._metric_fn_list[metric_name] = metric_fn
lintangsutawika's avatar
lintangsutawika committed
615

616
617
618
619
620
                # Ignores aggregation if the metric set
                # is a registered metric
                # for backward compatibility
                if metric_name in METRIC_REGISTRY and ("aggregation" not in metric):
                    self._aggregation_list[metric_name] = metric_fn
621
                else:
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
                    if "aggregation" in metric_config:

                        agg_name = metric_config["aggregation"]
                        if isinstance(agg_name, str):
                            self._aggregation_list[metric_name] = get_aggregation(
                                agg_name
                            )
                        elif callable(agg_name):  # noqa: E721
                            self._aggregation_list[metric_name] = agg_name
                    else:
                        if use_hf_evaluate:
                            self._aggregation_list[metric_name] = metric_fn
                        elif (metric_name in METRIC_REGISTRY) and (
                            "aggregation" in metric
                        ):
                            self._aggregation_list[metric_name] = metric["aggregation"]
638
639
640
641
642
643

                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
lintangsutawika's avatar
lintangsutawika committed
644
                    self._higher_is_better[metric_name] = metric["higher_is_better"]
645

646
        self.download(self.config.dataset_kwargs)
647
648
649
        self._training_docs = None
        self._fewshot_docs = None

650
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
651
            self._filters = []
652
            for filter_config in self.config.filter_list:
lintangsutawika's avatar
lintangsutawika committed
653
654
655
656
657
658
659
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
660
661
662
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
663
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
664
        else:
665
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
666

667
668
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
669
            self.prompt = get_prompt(
670
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
671
            )
672
673
674
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
675
        if self.fewshot_docs() is not None:
haileyschoelkopf's avatar
haileyschoelkopf committed
676
            self.sampler = samplers.get_sampler(
haileyschoelkopf's avatar
haileyschoelkopf committed
677
678
679
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
haileyschoelkopf's avatar
haileyschoelkopf committed
680
            )(list(self.fewshot_docs()), self, rnd=random.Random(1234))
681

682
        if self.has_test_docs():
683
            self.task_docs = self.test_docs()
684
        elif self.has_validation_docs():
685
            self.task_docs = self.validation_docs()
686
        else:
687
            assert False, f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
688

689
        # Test One Doc
690
        self.features = list(self.task_docs.features.keys())
691
692
        self.multiple_input = 0
        self.multiple_target = 0
693
        test_doc = self.task_docs[0]
694
        test_text = self.doc_to_text(test_doc)
695
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
696

697
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
698
            test_choice = self.doc_to_choice(test_doc)
699
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
700
                eval_logger.error("doc_to_choice must return list")
701
702
            else:
                num_choice = len(test_choice)
703

704
            if isinstance(test_text, int):
705
                self.multiple_input = num_choice
706
707
        else:
            test_choice = None
708

709
        if isinstance(test_target, list):
710
            self.multiple_target = len(test_target)
711
        else:
712
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
713
                test_target = test_choice[test_target]
714
            else:
lintangsutawika's avatar
lintangsutawika committed
715
                test_target = str(test_target)
716

717
718
719
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
720
            check_choices = [test_target]
721
722
723
724
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
725
726
                    True
                    if self.config.target_delimiter.rstrip()
727
                    != self.config.target_delimiter
728
                    else False
729
                )
730

731
732
733
734
735
736
                if delimiter_has_whitespace and choice_has_whitespace:
                    eval_logger.warning(
                        f'Both target_delimiter and target choice: "{choice}" have whitespace'
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
                    eval_logger.warning(
737
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
738
739
                    )

Ethan Smith's avatar
Ethan Smith committed
740
    def download(self, dataset_kwargs=None) -> None:
741
742
743
744
745
746
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
747
    def has_training_docs(self) -> bool:
748
        if self.config.training_split is not None:
749
750
751
752
            return True
        else:
            return False

baberabb's avatar
baberabb committed
753
    def has_validation_docs(self) -> bool:
754
        if self.config.validation_split is not None:
755
756
757
758
            return True
        else:
            return False

baberabb's avatar
baberabb committed
759
    def has_test_docs(self) -> bool:
760
        if self.config.test_split is not None:
761
762
763
764
            return True
        else:
            return False

baberabb's avatar
baberabb committed
765
    def training_docs(self) -> datasets.Dataset:
766
        if self.has_training_docs():
767
768
769
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
770
                )
771
            return self.dataset[self.config.training_split]
772

baberabb's avatar
baberabb committed
773
    def validation_docs(self) -> datasets.Dataset:
774
        if self.has_validation_docs():
775
776
777
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
778
                )
779
            return self.dataset[self.config.validation_split]
780

baberabb's avatar
baberabb committed
781
    def test_docs(self) -> datasets.Dataset:
782
        if self.has_test_docs():
783
784
785
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
786

787
    def fewshot_docs(self):
788
789
        if self.config.fewshot_split is not None:
            return self.dataset[self.config.fewshot_split]
790
        else:
791
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
792
                eval_logger.warning(
793
                    f"Task '{self.config.task}': "
794
795
796
797
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
798

lintangsutawika's avatar
lintangsutawika committed
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
            # always prepend the (possibly empty) task description
            labeled_examples = self.config.description
        else:
            labeled_examples = self.config.description + self.sampler.get_context(
                doc, num_fewshot
            )

        example = self.doc_to_text(doc)
821
        if isinstance(example, str):
lintangsutawika's avatar
lintangsutawika committed
822
            return labeled_examples + example
823
        elif isinstance(example, list):
lintangsutawika's avatar
lintangsutawika committed
824
            return [labeled_examples + ex for ex in example]
825
        elif isinstance(example, int):
lintangsutawika's avatar
lintangsutawika committed
826
827
828
829
830
831
            if self.config.doc_to_choice is not None:
                choices = self.doc_to_choice(doc)
                return labeled_examples + choices[example]
            else:
                return labeled_examples + str(example)

832
833
834
835
836
837
838
839
    def apply_filters(self):
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances, self.task_docs)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

840
    def should_decontaminate(self):
841
        return self.config.should_decontaminate
842
843

    def doc_to_decontamination_query(self, doc):
844
        if self.config.should_decontaminate:
845
846
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
847
            else:
848
849
850
851
852
853
854
855
856
857
858
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
859

860
861
862
863
864
865
866
867
868
869
870
871
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
872
873
        if self.prompt is not None:
            doc_to_text = self.prompt
874
        else:
875
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
876

877
        if isinstance(doc_to_text, int):
878
            return doc_to_text
879
        elif isinstance(doc_to_text, str):
880
            if doc_to_text in self.features:
881
                # if self.config.doc_to_choice is not None:
882
883
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
884
885
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
886
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
887
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
888
889
890
                    return ast.literal_eval(text_string)
                else:
                    return text_string
891
        elif callable(doc_to_text):
892
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
893
        # Used when applying a Promptsource template
894
        elif hasattr(doc_to_text, "apply"):
895
896
897
898
899
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
900
                return self.config.fewshot_delimiter
901
        else:
902
            print(type(doc_to_text))
903
            raise TypeError
904

905
    def doc_to_target(self, doc: dict) -> Union[int, str, list]:
906
907
        if self.prompt is not None:
            doc_to_target = self.prompt
908
        else:
909
            doc_to_target = self.config.doc_to_target
910

911
        if isinstance(doc_to_target, int):
912
            return doc_to_target
913
        elif isinstance(doc_to_target, str):
914
            if doc_to_target in self.features:
915
                # if self.config.doc_to_choice is not None:
916
917
918
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
919
            else:
lintangsutawika's avatar
lintangsutawika committed
920
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
921
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
922
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
923
924
925
926
927
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
928
929
930
931
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
932
933
                else:
                    return target_string
934
        elif isinstance(doc_to_target, list):
935
            return doc_to_target
936
        elif callable(doc_to_target):
937
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
938
        # Used when applying a Promptsource template
939
        elif hasattr(doc_to_target, "apply"):
940
            applied_prompt = doc_to_target.apply(doc)
941
942
943
944
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
945
                return self.config.fewshot_delimiter
946
947
        else:
            raise TypeError
948

baberabb's avatar
baberabb committed
949
    def doc_to_choice(self, doc: Any) -> List[str]:
950
951
        if self.prompt is not None:
            doc_to_choice = self.prompt
952
        elif self.config.doc_to_choice is None:
953
954
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
955
            doc_to_choice = self.config.doc_to_choice
956

957
        if isinstance(doc_to_choice, str):
958
959
960
961
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
962
        elif isinstance(doc_to_choice, list):
963
            return doc_to_choice
964
        elif isinstance(doc_to_choice, dict):
965
966
967
968
969
970
971
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
972

baberabb's avatar
baberabb committed
973
974
975
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
976
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
977
            arguments = (ctx, self.doc_to_target(doc))
978
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
979
            arguments = (self.doc_to_target(doc),)
980
        elif self.OUTPUT_TYPE == "multiple_choice":
981
            choices = self.doc_to_choice(doc)
982
            target_delimiter = self.config.target_delimiter
983
984
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
985
                cont = self.doc_to_target(doc)
986
                arguments = [(ctx, f"{target_delimiter}{cont}") for ctx in choices]
987
            else:
988
                # Otherwise they are placed in the continuation
989
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
990

991
            request_list = [
992
993
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
994
                    doc=doc,
995
                    arguments=arg,
996
                    idx=i,
997
998
                    **kwargs,
                )
999
                for i, arg in enumerate(arguments)
1000
            ]
1001
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1002
            if "acc_mutual_info" in self._metric_fn_list.keys():
1003
1004
1005
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1006
                # here mutual info refers to calculating
1007
1008
1009
1010
1011
1012
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1013
                            doc=doc,
1014
                            arguments=("", "{}".format(choice)),
1015
1016
1017
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1018
                        for i, choice in enumerate(choices)
1019
1020
1021
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1022

1023
        elif self.OUTPUT_TYPE == "generate_until":
1024
            arguments = (ctx, self.config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
1025
1026

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1027
1028
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1029
1030

    def process_results(self, doc, results):
1031
1032
1033
1034

        # Process results returns 1 of X things per doc/results
        # 1. A score
        # 2. Components to be processed later to obtained a score. such as gold and prediction
1035
1036
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1037

1038
        result_dict = {}
1039
        use_metric = list(self._metric_fn_list.keys())
1040
1041
1042
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1043
1044
1045
1046
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1047
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1048
            (loglikelihood,) = results
1049
1050
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
            return {
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
            }
1068
        elif self.OUTPUT_TYPE == "multiple_choice":
1069
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1070

1071
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1072
            choices = self.doc_to_choice(doc)
1073
1074
            completion_len = np.array([float(len(i)) for i in choices])

1075
1076
            if (
                2 * len(choices) == len(lls)
1077
                and "acc_mutual_info" in self._metric_fn_list.keys()
1078
1079
1080
1081
1082
1083
1084
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1085

1086
1087
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1088

1089
1090
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1091
            else:
1092
                gold = self.doc_to_target(doc)
1093
1094

            gold_index_error = False
1095
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1096
1097
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1098
1099
                    gold_index_error = True
            else:
1100
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1101
                    gold = gold if gold < len(choices) else -100
1102
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1103
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1104

Lintang Sutawika's avatar
Lintang Sutawika committed
1105
                if gold == -100:
1106
1107
1108
1109
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1110
                    f"Label index was not in within range of available choices,"
1111
1112
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1113

1114
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1115
1116
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1117
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1118
1119
1120
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1121
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1122
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1123

1124
            # gold, lls, is_greedy, completion_len
1125
            result_dict = {
1126
1127
                **({"acc": acc} if "acc" in use_metric else {}),
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1128
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
1129
1130
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1131
1132
            }

1133
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1134
1135
1136
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1137
1138
1139
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1140
        elif self.OUTPUT_TYPE == "generate_until":
1141
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1142
            result = results[0]
1143
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1144
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1145
                # it assumes that doc_to_target returns a number.
1146
1147
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1148
1149
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1150
                gold = list(gold)
Chris's avatar
Chris committed
1151
1152
1153
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1154

lintangsutawika's avatar
lintangsutawika committed
1155
            for metric in self._metric_fn_list.keys():
1156
1157
                result_dict[metric] = (gold, result)
                continue
haileyschoelkopf's avatar
haileyschoelkopf committed
1158
1159
1160
1161
1162
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1163
1164
1165
1166
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
haileyschoelkopf's avatar
haileyschoelkopf committed
1167
                    for gold_option in gold:
1168
                        try:
1169
                            result_score = self._metric_fn_list[metric](
1170
1171
                                references=[gold_option],
                                predictions=[result],
1172
                                **self._metric_fn_kwargs[metric],
1173
                            )
baberabb's avatar
baberabb committed
1174
1175
1176
                        except (
                            TypeError
                        ):  # TODO: this is hacky and I don't want to do it
1177
                            result_score = self._metric_fn_list[metric](
haileyschoelkopf's avatar
haileyschoelkopf committed
1178
1179
1180
                                [gold_option, result]
                            )
                        if isinstance(result_score, dict):
haileyschoelkopf's avatar
haileyschoelkopf committed
1181
                            # TODO: this handles the case where HF evaluate returns a dict.
1182
                            result_score = result_score[metric]
haileyschoelkopf's avatar
haileyschoelkopf committed
1183
                        scores.append(result_score)
haileyschoelkopf's avatar
haileyschoelkopf committed
1184
                    if any(scores):
1185
                        result_score = 1.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1186
                    else:
1187
                        result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1188
                else:
1189
                    try:
1190
                        result_score = self._metric_fn_list[metric](
1191
1192
                            references=[gold],
                            predictions=[result],
lintangsutawika's avatar
revert  
lintangsutawika committed
1193
                            **self._metric_fn_kwargs[metric],
1194
                        )
1195
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1196
                        result_score = self._metric_fn_list[metric]([gold, result])
1197
1198
1199
1200
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1201
        else:
lintangsutawika's avatar
lintangsutawika committed
1202
1203
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1204
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1205
            )
1206
1207
1208

        return result_dict

1209
1210
    def aggregation(self):
        return self._aggregation_list
1211
1212

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
1213
        return self._higher_is_better
1214
1215
1216
1217
1218


class MultipleChoiceTask(Task):
    OUTPUT_TYPE: str = "loglikelihood"

baberabb's avatar
baberabb committed
1219
    def doc_to_target(self, doc: dict) -> str:
1220
1221
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1222
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1223
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1224
1225
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1226
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1227
                doc=doc,
1228
                arguments=(ctx, " {}".format(choice)),
1229
                idx=i,
1230
1231
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1232
1233
            for i, choice in enumerate(doc["choices"])
        ]
1234

baberabb's avatar
baberabb committed
1235
    def process_results(self, doc: dict, results: List[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1236
1237
1238
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1250
    def higher_is_better(self) -> dict:
1251
1252
1253
1254
1255
        return {
            "acc": True,
            "acc_norm": True,
        }

1256
    def aggregation(self) -> dict:
1257
1258
1259
1260
1261
1262
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1263
class PerplexityTask(Task):
1264
1265
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1266
    def has_training_docs(self) -> bool:
1267
1268
        return False

baberabb's avatar
baberabb committed
1269
    def fewshot_examples(self, k: int, rnd) -> List:
1270
1271
1272
        assert k == 0
        return []

baberabb's avatar
baberabb committed
1273
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1274
1275
1276
1277
1278
1279
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

baberabb's avatar
baberabb committed
1280
    def higher_is_better(self) -> dict:
1281
1282
1283
1284
1285
1286
1287
1288
1289
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1290
    def doc_to_text(self, doc) -> str:
1291
1292
1293
1294
1295
        return ""

    def doc_to_target(self, doc):
        return doc

baberabb's avatar
baberabb committed
1296
    def construct_requests(self, doc: dict, ctx: Union[str, None], **kwargs):
1297
1298
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1299
1300
1301
1302
1303
1304
1305
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1306

baberabb's avatar
baberabb committed
1307
    def process_results(self, doc: dict, results: float) -> dict:
1308
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1309
1310
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1311
1312
1313
1314
1315
1316
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

1317
    def aggregation(self) -> dict:
1318
1319
1320
1321
1322
1323
1324
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1325
    def count_bytes(cls, doc) -> int:
1326
1327
1328
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1329
    def count_words(cls, doc) -> int:
1330
1331
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))