task.py 47.6 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3

4
import os
5
import re
6
import ast
lintangsutawika's avatar
lintangsutawika committed
7
import yaml
lintangsutawika's avatar
lintangsutawika committed
8
import logging
9
10
11
import evaluate
import random
import itertools
12
import functools
13
from tqdm import tqdm
14
15
16
17

import datasets
import numpy as np

baberabb's avatar
baberabb committed
18
from typing import Union, List, Any, Tuple, Literal
19
from collections.abc import Callable
20

21
from lm_eval import utils
22
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
23
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
24
from lm_eval.api.filter import FilterEnsemble
25
26
27

from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
28
29
30
31
32
33
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
34
35
    get_metric,
    is_higher_better,
36
    DEFAULT_METRIC_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
37
)
38

39
40
41
42
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
43
    "generate_until",
44
45
]

lintangsutawika's avatar
lintangsutawika committed
46

47
eval_logger = logging.getLogger("lm-eval")
48

lintangsutawika's avatar
lintangsutawika committed
49

50
51
@dataclass
class TaskConfig(dict):
52
    # task naming/registry
53
    task: str = None
lintangsutawika's avatar
lintangsutawika committed
54
    task_alias: str = None
55
    group: Union[str, list] = None
lintangsutawika's avatar
lintangsutawika committed
56
    group_alias: Union[str, list] = None
57
58
59
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
60
61
    dataset_path: str = None
    dataset_name: str = None
62
    dataset_kwargs: dict = None
63
64
65
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
66
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
67
68
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
69
    process_docs: Callable = None
70
71
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
72
    doc_to_choice: Union[Callable, str, dict, list] = None
lintangsutawika's avatar
lintangsutawika committed
73
    process_results: Union[Callable, str] = None
74
    use_prompt: str = None
75
    description: str = ""
76
77
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
haileyschoelkopf's avatar
haileyschoelkopf committed
78
    fewshot_config: dict = None
79
    # runtime configuration options
80
    num_fewshot: int = None
81
    # scoring options
82
    metric_list: list = None
83
    output_type: str = "generate_until"
84
    generation_kwargs: dict = None
85
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
86
    filter_list: Union[str, list] = None
87
88
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
89

lintangsutawika's avatar
lintangsutawika committed
90
91
92
    metadata: Union[
        str, list
    ] = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
93

Ethan Smith's avatar
Ethan Smith committed
94
    def __post_init__(self) -> None:
95
        if self.dataset_path and os.path.exists(os.path.dirname(self.dataset_path)):
lintangsutawika's avatar
lintangsutawika committed
96
97
            import inspect
            from importlib import import_module
lintangsutawika's avatar
format  
lintangsutawika committed
98

lintangsutawika's avatar
lintangsutawika committed
99
            self.dataset_path = inspect.getfile(import_module(self.dataset_path))
100

Lintang Sutawika's avatar
Lintang Sutawika committed
101
        if self.generation_kwargs is not None:
102
            if self.output_type != "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
103
                eval_logger.warning(
104
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
105
                )
106
                assert self.output_type != "generate_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
107
108
109
110
111
112
113

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
114
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
115
        else:
116
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
117
118
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
119
                    "until": None
120
121
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
122
123
                    "do_sample": False,
                }
124

haileyschoelkopf's avatar
haileyschoelkopf committed
125
126
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

127
128
129
    def __getitem__(self, item):
        return getattr(self, item)

130
131
132
    def __setitem__(self, item, value):
        return setattr(self, item, value)

133
    def to_dict(self):
134
135
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
136
        Used for dumping results alongside full task configuration
137

haileyschoelkopf's avatar
haileyschoelkopf committed
138
139
140
141
142
143
144
145
146
147
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
148
149
150
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
151
        return cfg_dict
152

153
154
155
156
157
158
159
160
161
162
163
164

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
165

166
167
168
169
170
171
172
173
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
174

175
176
177
178
179
180
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
Ethan Smith's avatar
Ethan Smith committed
181
    ) -> None:
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

lintangsutawika's avatar
lintangsutawika committed
208
        self._config = TaskConfig({**config}) if config else TaskConfig()
209

lintangsutawika's avatar
lintangsutawika committed
210
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
211

Ethan Smith's avatar
Ethan Smith committed
212
    def download(self, data_dir=None, cache_dir=None, download_mode=None) -> None:
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
237
238
239
240
241
242
243
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
244

245
246
247
248
249
    @property
    def config(self):
        """Returns the TaskConfig associated with this class."""
        return self._config

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

286
287
288
289
290
291
292
293
294
295
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
296
            eval_logger.warning(
297
                "has_training_docs and has_validation_docs are False"
298
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
299
            )
300
301
            return self.test_docs()

302
303
304
305
306
307
308
309
310
311
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
312

313
314
315
316
317
318
319
320
321
322
323
324
325
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Ethan Smith's avatar
Ethan Smith committed
326
    def doc_to_decontamination_query(self, doc) -> None:
327
328
329
330
331
332
333
334
335
336
337
338
339
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

Ethan Smith's avatar
Ethan Smith committed
340
    def build_all_requests(self, limit=None, rank=None, world_size=None) -> None:
341
342
343
344
345
346
347
348
349
350
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

351
        eval_logger.info(f"Building contexts for task on rank {rank}...")
352

353
        instances = []
354
355
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
356
        ):
357
            # sample fewshot context #TODO: need to offset doc_id by rank now!
358
            fewshot_ctx = self.fewshot_context(
359
                doc,
360
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
361
            )
362

363
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
364
365
366
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
367
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
368
            )
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
394
            The number of times each instance in a dataset is inferred on. Defaults to 1,
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
413
    def compute_metric(self):
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
430
431
432
433
434
435
436
437
438
439
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

440
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
441
    def fewshot_context(
442
443
444
445
446
        self,
        doc,
        num_fewshot,
        rnd=random.Random(1234),
        description=None,
lintangsutawika's avatar
lintangsutawika committed
447
    ):
448
449
450
451
452
453
454
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
455
456
457
458
459
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
460
461
462
        :returns: str
            The fewshot context.
        """
lintangsutawika's avatar
lintangsutawika committed
463
464
465
466
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

467
        description = description if description else ""
468
469

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
470
            labeled_examples = ""
471
        else:
lintangsutawika's avatar
lintangsutawika committed
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
496
            )
497
498

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
499
        return description + labeled_examples + example
500
501

    def apply_filters(self):
lintangsutawika's avatar
lintangsutawika committed
502
503
        if hasattr(self, "_filters"):
            for f in self._filters:
lintangsutawika's avatar
lintangsutawika committed
504
                f.apply(self._instances, None)
lintangsutawika's avatar
lintangsutawika committed
505
506
507
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
508

baberabb's avatar
baberabb committed
509
    def dump_config(self) -> dict:
510
        """Returns a dictionary representing the task's config.
511
512
513
514
515

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
516
        # (num_fewshot)
517
        return self.config.to_dict()
518

519
520

class ConfigurableTask(Task):
521
    VERSION = "Yaml"
522
    OUTPUT_TYPE = None
523
    CONFIG = None
524
525
526

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
Ethan Smith's avatar
Ethan Smith committed
527
    ) -> None:  # TODO no super() call here
528
        # Get pre-configured attributes
529
        self._config = self.CONFIG
530

531
        # Use new configurations if there was no preconfiguration
532
        if self.config is None:
533
            self._config = TaskConfig(**config)
534
535
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
536
            if config is not None:
537
                self._config.__dict__.update(config)
538

539
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
540
541
542
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
543

544
545
546
        if self.config.output_type is not None:
            assert self.config.output_type in ALL_OUTPUT_TYPES
            self.OUTPUT_TYPE = self.config.output_type
547

548
549
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
550

551
552
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
553

554
555
556
557
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
558

559
        if self.config.metric_list is None:
560
            # TODO: handle this in TaskConfig.__post_init__ ?
561
562
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

563
            for metric_name in _metric_list:
564
565
                metric = get_metric(metric_name)
                self._metric_fn_list[metric_name] = metric
lintangsutawika's avatar
lintangsutawika committed
566
                self._metric_fn_kwargs[metric_name] = {}
haileyschoelkopf's avatar
haileyschoelkopf committed
567
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
568
        else:
569
            for metric_config in self.config.metric_list:
570
571
572
573
574
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
575
576
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
577
                }
Chris's avatar
Chris committed
578
579
580
581
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
582

583
                if self.config.process_results is not None:
584
585
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
586
587
588
589
590
591
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
592
593
594
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
595
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
596

597
        self.download(self.config.dataset_kwargs)
598
599
600
        self._training_docs = None
        self._fewshot_docs = None

601
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
602
            self._filters = []
603
            for filter_config in self.config.filter_list:
lintangsutawika's avatar
lintangsutawika committed
604
605
606
607
608
609
610
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
611
612
613
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
614
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
615
        else:
616
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
617

618
619
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
620
            self.prompt = get_prompt(
621
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
622
            )
623
624
625
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
626
        if self.fewshot_docs() is not None:
haileyschoelkopf's avatar
haileyschoelkopf committed
627
            self.sampler = samplers.get_sampler(
haileyschoelkopf's avatar
haileyschoelkopf committed
628
629
630
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
haileyschoelkopf's avatar
haileyschoelkopf committed
631
            )(list(self.fewshot_docs()), self, rnd=random.Random(1234))
632

633
        if self.has_test_docs():
634
            self.task_docs = self.test_docs()
635
        elif self.has_validation_docs():
636
            self.task_docs = self.validation_docs()
637
638
639
640
641
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

642
        # Test One Doc
643
        self.features = list(self.task_docs.features.keys())
644
645
        self.multiple_input = 0
        self.multiple_target = 0
646
        test_doc = self.task_docs[0]
647
        test_text = self.doc_to_text(test_doc)
648
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
649

650
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
651
652
653
            test_choice = self.doc_to_choice(test_doc)
            if type(test_choice) is not list:
                eval_logger.error("doc_to_choice must return list")
654
655
            else:
                num_choice = len(test_choice)
656

657
658
            if type(test_text) is int:
                self.multiple_input = num_choice
659
660
        else:
            test_choice = None
661

662
        if type(test_target) is list:
663
            self.multiple_target = len(test_target)
664
        else:
lintangsutawika's avatar
lintangsutawika committed
665
            if (type(test_target) is int) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
666
                test_target = test_choice[test_target]
667
            else:
lintangsutawika's avatar
lintangsutawika committed
668
                test_target = str(test_target)
669

670
671
672
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
673
            check_choices = [test_target]
674
675
676
677
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
678
679
                    True
                    if self.config.target_delimiter.rstrip()
680
                    != self.config.target_delimiter
681
                    else False
682
                )
683

684
685
686
687
688
689
                if delimiter_has_whitespace and choice_has_whitespace:
                    eval_logger.warning(
                        f'Both target_delimiter and target choice: "{choice}" have whitespace'
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
                    eval_logger.warning(
690
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
691
692
                    )

Ethan Smith's avatar
Ethan Smith committed
693
    def download(self, dataset_kwargs=None) -> None:
694
695
696
697
698
699
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
700
    def has_training_docs(self) -> bool:
701
        if self.config.training_split is not None:
702
703
704
705
            return True
        else:
            return False

baberabb's avatar
baberabb committed
706
    def has_validation_docs(self) -> bool:
707
        if self.config.validation_split is not None:
708
709
710
711
            return True
        else:
            return False

baberabb's avatar
baberabb committed
712
    def has_test_docs(self) -> bool:
713
        if self.config.test_split is not None:
714
715
716
717
            return True
        else:
            return False

baberabb's avatar
baberabb committed
718
    def training_docs(self) -> datasets.Dataset:
719
        if self.has_training_docs():
720
721
722
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
723
                )
724
            return self.dataset[self.config.training_split]
725

baberabb's avatar
baberabb committed
726
    def validation_docs(self) -> datasets.Dataset:
727
        if self.has_validation_docs():
728
729
730
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
731
                )
732
            return self.dataset[self.config.validation_split]
733

baberabb's avatar
baberabb committed
734
    def test_docs(self) -> datasets.Dataset:
735
        if self.has_test_docs():
736
737
738
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
739

740
    def fewshot_docs(self):
741
742
        if self.config.fewshot_split is not None:
            return self.dataset[self.config.fewshot_split]
743
        else:
744
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
745
                eval_logger.warning(
746
                    f"Task '{self.config.task}': "
747
748
749
750
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
751

lintangsutawika's avatar
lintangsutawika committed
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
            # always prepend the (possibly empty) task description
            labeled_examples = self.config.description
        else:
            labeled_examples = self.config.description + self.sampler.get_context(
                doc, num_fewshot
            )

        example = self.doc_to_text(doc)
        if type(example) == str:
            return labeled_examples + example
        elif type(example) == list:
            return [labeled_examples + ex for ex in example]
        elif type(example) == int:
            if self.config.doc_to_choice is not None:
                choices = self.doc_to_choice(doc)
                return labeled_examples + choices[example]
            else:
                return labeled_examples + str(example)

785
786
787
788
789
790
791
792
    def apply_filters(self):
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances, self.task_docs)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

793
    def should_decontaminate(self):
794
        return self.config.should_decontaminate
795
796

    def doc_to_decontamination_query(self, doc):
797
        if self.config.should_decontaminate:
798
799
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
800
            else:
801
802
803
804
805
806
807
808
809
810
811
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
812

813
814
815
816
817
818
819
820
821
822
823
824
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
825
826
        if self.prompt is not None:
            doc_to_text = self.prompt
827
        else:
828
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
829

830
831
832
        if type(doc_to_text) == int:
            return doc_to_text
        elif type(doc_to_text) == str:
833
            if doc_to_text in self.features:
834
                # if self.config.doc_to_choice is not None:
835
836
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
837
838
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
839
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
840
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
841
842
843
                    return ast.literal_eval(text_string)
                else:
                    return text_string
844
        elif callable(doc_to_text):
845
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
846
        # Used when applying a Promptsource template
847
        elif hasattr(doc_to_text, "apply"):
848
849
850
851
852
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
853
                return self.config.fewshot_delimiter
854
        else:
855
            print(type(doc_to_text))
856
            raise TypeError
857

858
    def doc_to_target(self, doc: dict) -> Union[int, str, list]:
859
860
        if self.prompt is not None:
            doc_to_target = self.prompt
861
        else:
862
            doc_to_target = self.config.doc_to_target
863

864
865
866
        if type(doc_to_target) == int:
            return doc_to_target
        elif type(doc_to_target) == str:
867
            if doc_to_target in self.features:
868
                # if self.config.doc_to_choice is not None:
869
870
871
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
872
            else:
lintangsutawika's avatar
lintangsutawika committed
873
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
874
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
875
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
876
877
878
879
880
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
881
882
883
884
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
885
886
                else:
                    return target_string
887
888
        elif type(doc_to_target) == list:
            return doc_to_target
889
        elif callable(doc_to_target):
890
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
891
        # Used when applying a Promptsource template
892
        elif hasattr(doc_to_target, "apply"):
893
            applied_prompt = doc_to_target.apply(doc)
894
895
896
897
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
898
                return self.config.fewshot_delimiter
899
900
        else:
            raise TypeError
901

baberabb's avatar
baberabb committed
902
    def doc_to_choice(self, doc: Any) -> List[str]:
903
904
        if self.prompt is not None:
            doc_to_choice = self.prompt
905
        elif self.config.doc_to_choice is None:
906
907
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
908
            doc_to_choice = self.config.doc_to_choice
909
910

        if type(doc_to_choice) == str:
911
912
913
914
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
915
916
917
918
919
920
921
922
923
924
        elif type(doc_to_choice) == list:
            return doc_to_choice
        elif type(doc_to_choice) == dict:
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
925

baberabb's avatar
baberabb committed
926
927
928
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
929
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
930
            arguments = (ctx, self.doc_to_target(doc))
931
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
932
            arguments = (self.doc_to_target(doc),)
933
        elif self.OUTPUT_TYPE == "multiple_choice":
934
            choices = self.doc_to_choice(doc)
935
            target_delimiter = self.config.target_delimiter
936
937
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
938
                cont = self.doc_to_target(doc)
939
                arguments = [(ctx, f"{target_delimiter}{cont}") for ctx in choices]
940
            else:
941
                # Otherwise they are placed in the continuation
942
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
943

944
            request_list = [
945
946
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
947
                    doc=doc,
948
                    arguments=arg,
949
                    idx=i,
950
951
                    **kwargs,
                )
952
                for i, arg in enumerate(arguments)
953
            ]
954
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
955
            if "acc_mutual_info" in self._metric_fn_list.keys():
956
957
958
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
959
                # here mutual info refers to calculating
960
961
962
963
964
965
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
966
                            doc=doc,
967
                            arguments=("", "{}".format(choice)),
968
969
970
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
971
                        for i, choice in enumerate(choices)
972
973
974
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
975

976
        elif self.OUTPUT_TYPE == "generate_until":
977
            arguments = (ctx, self.config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
978
979

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
980
981
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
982
983

    def process_results(self, doc, results):
984
985
986
987

        # Process results returns 1 of X things per doc/results
        # 1. A score
        # 2. Components to be processed later to obtained a score. such as gold and prediction
988
989
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
990

991
        result_dict = {}
992
        use_metric = list(self._metric_fn_list.keys())
993
994
995
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
996
997
998
999
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1000
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1001
            (loglikelihood,) = results
1002
1003
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
            return {
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
            }
1021
        elif self.OUTPUT_TYPE == "multiple_choice":
1022
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1023

1024
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1025
            choices = self.doc_to_choice(doc)
1026
1027
            completion_len = np.array([float(len(i)) for i in choices])

1028
1029
            if (
                2 * len(choices) == len(lls)
1030
                and "acc_mutual_info" in self._metric_fn_list.keys()
1031
1032
1033
1034
1035
1036
1037
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1038

1039
1040
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1041

1042
1043
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1044
            else:
1045
                gold = self.doc_to_target(doc)
1046
1047

            gold_index_error = False
1048
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1049
1050
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1051
1052
                    gold_index_error = True
            else:
1053
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1054
                    gold = gold if gold < len(choices) else -100
1055
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1056
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1057

Lintang Sutawika's avatar
Lintang Sutawika committed
1058
                if gold == -100:
1059
1060
1061
1062
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1063
                    f"Label index was not in within range of available choices,"
1064
1065
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1066

1067
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1068
1069
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1070
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1071
1072
1073
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1074
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1075
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1076

1077
            # gold, lls, is_greedy, completion_len
1078
            result_dict = {
1079
1080
                **({"acc": acc} if "acc" in use_metric else {}),
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1081
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
1082
1083
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1084
1085
            }

1086
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1087
1088
1089
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1090
1091
1092
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1093
        elif self.OUTPUT_TYPE == "generate_until":
1094
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1095
            result = results[0]
1096
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1097
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1098
                # it assumes that doc_to_target returns a number.
1099
1100
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1101
1102
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1103
                gold = list(gold)
Chris's avatar
Chris committed
1104
1105
1106
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1107

lintangsutawika's avatar
lintangsutawika committed
1108
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1109
1110
1111
1112
1113
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1114
1115
1116
1117
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
haileyschoelkopf's avatar
haileyschoelkopf committed
1118
                    for gold_option in gold:
1119
                        try:
1120
                            result_score = self._metric_fn_list[metric](
1121
1122
                                references=[gold_option],
                                predictions=[result],
1123
                                **self._metric_fn_kwargs[metric],
1124
                            )
baberabb's avatar
baberabb committed
1125
1126
1127
                        except (
                            TypeError
                        ):  # TODO: this is hacky and I don't want to do it
1128
                            result_score = self._metric_fn_list[metric](
haileyschoelkopf's avatar
haileyschoelkopf committed
1129
1130
1131
                                [gold_option, result]
                            )
                        if isinstance(result_score, dict):
haileyschoelkopf's avatar
haileyschoelkopf committed
1132
                            # TODO: this handles the case where HF evaluate returns a dict.
1133
                            result_score = result_score[metric]
haileyschoelkopf's avatar
haileyschoelkopf committed
1134
                        scores.append(result_score)
haileyschoelkopf's avatar
haileyschoelkopf committed
1135
                    if any(scores):
1136
                        result_score = 1.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1137
                    else:
1138
                        result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1139
                else:
1140
                    try:
1141
                        result_score = self._metric_fn_list[metric](
1142
1143
                            references=[gold],
                            predictions=[result],
1144
                            **self._metric_fn_kwargs[metric],
1145
                        )
1146
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1147
                        result_score = self._metric_fn_list[metric]([gold, result])
1148
1149
1150
1151
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1152
        else:
lintangsutawika's avatar
lintangsutawika committed
1153
1154
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1155
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1156
            )
1157
1158
1159

        return result_dict

1160
    def compute_metric(self):
1161
        return self._metric_fn_list
1162
1163

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
1164
        return self._higher_is_better
1165
1166
1167
1168
1169


class MultipleChoiceTask(Task):
    OUTPUT_TYPE: str = "loglikelihood"

baberabb's avatar
baberabb committed
1170
    def doc_to_target(self, doc: dict) -> str:
1171
1172
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1173
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1174
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1175
1176
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1177
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1178
                doc=doc,
1179
                arguments=(ctx, " {}".format(choice)),
1180
                idx=i,
1181
1182
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1183
1184
            for i, choice in enumerate(doc["choices"])
        ]
1185

baberabb's avatar
baberabb committed
1186
    def process_results(self, doc: dict, results: List[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1187
1188
1189
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1201
    def higher_is_better(self) -> dict:
1202
1203
1204
1205
1206
        return {
            "acc": True,
            "acc_norm": True,
        }

1207
    def compute_metric(self) -> dict:
1208
1209
1210
1211
1212
1213
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1214
class PerplexityTask(Task):
1215
1216
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1217
    def has_training_docs(self) -> bool:
1218
1219
        return False

baberabb's avatar
baberabb committed
1220
    def fewshot_examples(self, k: int, rnd) -> List:
1221
1222
1223
        assert k == 0
        return []

baberabb's avatar
baberabb committed
1224
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1225
1226
1227
1228
1229
1230
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

baberabb's avatar
baberabb committed
1231
    def higher_is_better(self) -> dict:
1232
1233
1234
1235
1236
1237
1238
1239
1240
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1241
    def doc_to_text(self, doc) -> str:
1242
1243
1244
1245
1246
        return ""

    def doc_to_target(self, doc):
        return doc

baberabb's avatar
baberabb committed
1247
    def construct_requests(self, doc: dict, ctx: Union[str, None], **kwargs):
1248
1249
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1250
1251
1252
1253
1254
1255
1256
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1257

baberabb's avatar
baberabb committed
1258
    def process_results(self, doc: dict, results: float) -> dict:
1259
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1260
1261
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1262
1263
1264
1265
1266
1267
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

1268
    def compute_metric(self) -> dict:
1269
1270
1271
1272
1273
1274
1275
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1276
    def count_bytes(cls, doc) -> int:
1277
1278
1279
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1280
    def count_words(cls, doc) -> int:
1281
1282
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))