task.py 49.3 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3

4
import os
5
import re
6
import ast
lintangsutawika's avatar
lintangsutawika committed
7
import yaml
lintangsutawika's avatar
lintangsutawika committed
8
import logging
9
10
11
import evaluate
import random
import itertools
12
import functools
13
from tqdm import tqdm
14
15
16
17

import datasets
import numpy as np

baberabb's avatar
baberabb committed
18
from typing import Union, List, Any, Tuple, Literal
19
from collections.abc import Callable
20

21
from lm_eval import utils
22
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
23
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
24
from lm_eval.api.filter import FilterEnsemble
25
26
27

from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
28
29
30
31
32
33
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_metric,
35
36
37
    get_evaluate,
    get_aggregation,
    METRIC_REGISTRY,
38
    DEFAULT_METRIC_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
39
)
40

41
42
43
44
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
45
    "generate_until",
46
47
]

lintangsutawika's avatar
lintangsutawika committed
48

49
eval_logger = logging.getLogger("lm-eval")
50

lintangsutawika's avatar
lintangsutawika committed
51

52
53
@dataclass
class TaskConfig(dict):
54
    # task naming/registry
55
    task: str = None
lintangsutawika's avatar
lintangsutawika committed
56
    task_alias: str = None
57
    group: Union[str, list] = None
lintangsutawika's avatar
lintangsutawika committed
58
    group_alias: Union[str, list] = None
59
60
61
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
62
63
    dataset_path: str = None
    dataset_name: str = None
64
    dataset_kwargs: dict = None
65
66
67
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
68
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
69
70
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
71
    process_docs: Callable = None
72
73
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
74
    doc_to_choice: Union[Callable, str, dict, list] = None
lintangsutawika's avatar
lintangsutawika committed
75
    process_results: Union[Callable, str] = None
76
    use_prompt: str = None
77
    description: str = ""
78
79
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
haileyschoelkopf's avatar
haileyschoelkopf committed
80
    fewshot_config: dict = None
81
    # runtime configuration options
82
    num_fewshot: int = None
83
    # scoring options
84
    metric_list: list = None
85
    output_type: str = "generate_until"
86
    generation_kwargs: dict = None
87
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
88
    filter_list: Union[str, list] = None
89
90
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
91

lintangsutawika's avatar
lintangsutawika committed
92
93
94
    metadata: Union[
        str, list
    ] = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
95

Ethan Smith's avatar
Ethan Smith committed
96
    def __post_init__(self) -> None:
97
        if self.dataset_path and os.path.exists(os.path.dirname(self.dataset_path)):
lintangsutawika's avatar
lintangsutawika committed
98
99
            import inspect
            from importlib import import_module
lintangsutawika's avatar
format  
lintangsutawika committed
100

lintangsutawika's avatar
lintangsutawika committed
101
            self.dataset_path = inspect.getfile(import_module(self.dataset_path))
102

Lintang Sutawika's avatar
Lintang Sutawika committed
103
        if self.generation_kwargs is not None:
104
            if self.output_type != "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
105
                eval_logger.warning(
106
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
107
                )
108
                assert self.output_type != "generate_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
109
110
111
112
113
114
115

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
116
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
117
        else:
118
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
119
120
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
121
                    "until": None
122
123
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
124
125
                    "do_sample": False,
                }
126

haileyschoelkopf's avatar
haileyschoelkopf committed
127
128
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

129
130
131
    def __getitem__(self, item):
        return getattr(self, item)

132
133
134
    def __setitem__(self, item, value):
        return setattr(self, item, value)

135
    def to_dict(self):
136
137
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
138
        Used for dumping results alongside full task configuration
139

haileyschoelkopf's avatar
haileyschoelkopf committed
140
141
142
143
144
145
146
147
148
149
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
150
151
152
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
153
        return cfg_dict
154

155
156
157
158
159
160
161
162
163
164
165
166

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
167

168
169
170
171
172
173
174
175
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
176

177
178
179
180
181
182
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
Ethan Smith's avatar
Ethan Smith committed
183
    ) -> None:
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

lintangsutawika's avatar
lintangsutawika committed
210
        self._config = TaskConfig({**config}) if config else TaskConfig()
211

lintangsutawika's avatar
lintangsutawika committed
212
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
213

Ethan Smith's avatar
Ethan Smith committed
214
    def download(self, data_dir=None, cache_dir=None, download_mode=None) -> None:
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
239
240
241
242
243
244
245
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
246

247
248
249
250
251
    @property
    def config(self):
        """Returns the TaskConfig associated with this class."""
        return self._config

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

288
289
290
291
292
293
294
295
296
297
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
298
            eval_logger.warning(
299
                "has_training_docs and has_validation_docs are False"
300
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
301
            )
302
303
            return self.test_docs()

304
305
306
307
308
309
310
311
312
313
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
314

315
316
317
318
319
320
321
322
323
324
325
326
327
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Ethan Smith's avatar
Ethan Smith committed
328
    def doc_to_decontamination_query(self, doc) -> None:
329
330
331
332
333
334
335
336
337
338
339
340
341
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

Ethan Smith's avatar
Ethan Smith committed
342
    def build_all_requests(self, limit=None, rank=None, world_size=None) -> None:
343
344
345
346
347
348
349
350
351
352
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

353
        eval_logger.info(f"Building contexts for task on rank {rank}...")
354

355
        instances = []
356
357
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
358
        ):
359
            # sample fewshot context #TODO: need to offset doc_id by rank now!
360
            fewshot_ctx = self.fewshot_context(
361
                doc,
362
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
363
            )
364

365
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
366
367
368
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
369
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
370
            )
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
396
            The number of times each instance in a dataset is inferred on. Defaults to 1,
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
415
    def aggregation(self):
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
432
433
434
435
436
437
438
439
440
441
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

442
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
443
    def fewshot_context(
444
445
446
447
448
        self,
        doc,
        num_fewshot,
        rnd=random.Random(1234),
        description=None,
lintangsutawika's avatar
lintangsutawika committed
449
    ):
450
451
452
453
454
455
456
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
457
458
459
460
461
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
462
463
464
        :returns: str
            The fewshot context.
        """
lintangsutawika's avatar
lintangsutawika committed
465
466
467
468
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

469
        description = description if description else ""
470
471

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
472
            labeled_examples = ""
473
        else:
lintangsutawika's avatar
lintangsutawika committed
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
498
            )
499
500

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
501
        return description + labeled_examples + example
502
503

    def apply_filters(self):
lintangsutawika's avatar
lintangsutawika committed
504
505
        if hasattr(self, "_filters"):
            for f in self._filters:
lintangsutawika's avatar
lintangsutawika committed
506
                f.apply(self._instances, None)
lintangsutawika's avatar
lintangsutawika committed
507
508
509
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
510

baberabb's avatar
baberabb committed
511
    def dump_config(self) -> dict:
512
        """Returns a dictionary representing the task's config.
513
514
515
516
517

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
518
        # (num_fewshot)
519
        return self.config.to_dict()
520

521
522

class ConfigurableTask(Task):
523
    VERSION = "Yaml"
524
    OUTPUT_TYPE = None
525
    CONFIG = None
526
527
528

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
Ethan Smith's avatar
Ethan Smith committed
529
    ) -> None:  # TODO no super() call here
530
        # Get pre-configured attributes
531
        self._config = self.CONFIG
532

533
        # Use new configurations if there was no preconfiguration
534
        if self.config is None:
535
            self._config = TaskConfig(**config)
536
537
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
538
            if config is not None:
539
                self._config.__dict__.update(config)
540

541
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
542
543
544
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
545

546
547
548
        if self.config.output_type is not None:
            assert self.config.output_type in ALL_OUTPUT_TYPES
            self.OUTPUT_TYPE = self.config.output_type
549

550
551
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
552

553
554
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
555

556
557
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
558
        self._aggregation_list = {}
559
        self._higher_is_better = {}
560

561
        if self.config.metric_list is None:
562
            # TODO: handle this in TaskConfig.__post_init__ ?
563
564
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

565
            for metric_name in _metric_list:
566
                metric = get_metric(metric_name)
567
                self._metric_fn_list[metric_name] = metric["function"]
lintangsutawika's avatar
lintangsutawika committed
568
                self._metric_fn_kwargs[metric_name] = {}
569
570
                self._aggregation_list = metric["aggregation"]
                self._higher_is_better[metric_name] = metric["is_higher_better"]
571
        else:
572
            for metric_config in self.config.metric_list:
573
574
575
576
577
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
578
                    if key
579
580
581
582
583
584
                    not in [
                        "metric",
                        "aggregation",
                        "higher_is_better",
                        "use_hf_evaluate",
                    ]
585
                }
586
                use_hf_evaluate = (
lintangsutawika's avatar
lintangsutawika committed
587
588
                    "use_hf_evaluate" in metric_config
                    and metric_config["use_hf_evaluate"] is True
Chris's avatar
Chris committed
589
                )
590

lintangsutawika's avatar
lintangsutawika committed
591
592
593
594
                if self.config.process_results is not None:
                    metric_fn = None
                    kwargs = {}
                elif callable(metric_name):
595
596
597
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                else:
598
599
600
601
602
603
                    assert type(metric_name) == str
                    if use_hf_evaluate:
                        metric_fn = get_evaluate(metric_name, **kwargs)
                    elif metric_name in METRIC_REGISTRY:
                        metric = get_metric(metric_name, **kwargs)
                        metric_fn = metric["function"]
604
605

                self._metric_fn_kwargs[metric_name] = kwargs
606
                self._metric_fn_list[metric_name] = metric_fn
lintangsutawika's avatar
lintangsutawika committed
607

608
609
610
611
612
                # Ignores aggregation if the metric set
                # is a registered metric
                # for backward compatibility
                if metric_name in METRIC_REGISTRY and ("aggregation" not in metric):
                    self._aggregation_list[metric_name] = metric_fn
613
                else:
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
                    if "aggregation" in metric_config:

                        agg_name = metric_config["aggregation"]
                        if isinstance(agg_name, str):
                            self._aggregation_list[metric_name] = get_aggregation(
                                agg_name
                            )
                        elif callable(agg_name):  # noqa: E721
                            self._aggregation_list[metric_name] = agg_name
                    else:
                        if use_hf_evaluate:
                            self._aggregation_list[metric_name] = metric_fn
                        elif (metric_name in METRIC_REGISTRY) and (
                            "aggregation" in metric
                        ):
                            self._aggregation_list[metric_name] = metric["aggregation"]
630
631
632
633
634
635

                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
lintangsutawika's avatar
lintangsutawika committed
636
                    self._higher_is_better[metric_name] = metric["higher_is_better"]
637

638
        self.download(self.config.dataset_kwargs)
639
640
641
        self._training_docs = None
        self._fewshot_docs = None

642
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
643
            self._filters = []
644
            for filter_config in self.config.filter_list:
lintangsutawika's avatar
lintangsutawika committed
645
646
647
648
649
650
651
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
652
653
654
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
655
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
656
        else:
657
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
658

659
660
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
661
            self.prompt = get_prompt(
662
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
663
            )
664
665
666
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
667
        if self.fewshot_docs() is not None:
haileyschoelkopf's avatar
haileyschoelkopf committed
668
            self.sampler = samplers.get_sampler(
haileyschoelkopf's avatar
haileyschoelkopf committed
669
670
671
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
haileyschoelkopf's avatar
haileyschoelkopf committed
672
            )(list(self.fewshot_docs()), self, rnd=random.Random(1234))
673

674
        if self.has_test_docs():
675
            self.task_docs = self.test_docs()
676
        elif self.has_validation_docs():
677
            self.task_docs = self.validation_docs()
678
679
680
681
682
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

683
        # Test One Doc
684
        self.features = list(self.task_docs.features.keys())
685
686
        self.multiple_input = 0
        self.multiple_target = 0
687
        test_doc = self.task_docs[0]
688
        test_text = self.doc_to_text(test_doc)
689
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
690

691
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
692
693
694
            test_choice = self.doc_to_choice(test_doc)
            if type(test_choice) is not list:
                eval_logger.error("doc_to_choice must return list")
695
696
            else:
                num_choice = len(test_choice)
697

698
699
            if type(test_text) is int:
                self.multiple_input = num_choice
700
701
        else:
            test_choice = None
702

703
        if type(test_target) is list:
704
            self.multiple_target = len(test_target)
705
        else:
lintangsutawika's avatar
lintangsutawika committed
706
            if (type(test_target) is int) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
707
                test_target = test_choice[test_target]
708
            else:
lintangsutawika's avatar
lintangsutawika committed
709
                test_target = str(test_target)
710

711
712
713
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
714
            check_choices = [test_target]
715
716
717
718
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
719
720
                    True
                    if self.config.target_delimiter.rstrip()
721
                    != self.config.target_delimiter
722
                    else False
723
                )
724

725
726
727
728
729
730
                if delimiter_has_whitespace and choice_has_whitespace:
                    eval_logger.warning(
                        f'Both target_delimiter and target choice: "{choice}" have whitespace'
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
                    eval_logger.warning(
731
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
732
733
                    )

Ethan Smith's avatar
Ethan Smith committed
734
    def download(self, dataset_kwargs=None) -> None:
735
736
737
738
739
740
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
741
    def has_training_docs(self) -> bool:
742
        if self.config.training_split is not None:
743
744
745
746
            return True
        else:
            return False

baberabb's avatar
baberabb committed
747
    def has_validation_docs(self) -> bool:
748
        if self.config.validation_split is not None:
749
750
751
752
            return True
        else:
            return False

baberabb's avatar
baberabb committed
753
    def has_test_docs(self) -> bool:
754
        if self.config.test_split is not None:
755
756
757
758
            return True
        else:
            return False

baberabb's avatar
baberabb committed
759
    def training_docs(self) -> datasets.Dataset:
760
        if self.has_training_docs():
761
762
763
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
764
                )
765
            return self.dataset[self.config.training_split]
766

baberabb's avatar
baberabb committed
767
    def validation_docs(self) -> datasets.Dataset:
768
        if self.has_validation_docs():
769
770
771
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
772
                )
773
            return self.dataset[self.config.validation_split]
774

baberabb's avatar
baberabb committed
775
    def test_docs(self) -> datasets.Dataset:
776
        if self.has_test_docs():
777
778
779
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
780

781
    def fewshot_docs(self):
782
783
        if self.config.fewshot_split is not None:
            return self.dataset[self.config.fewshot_split]
784
        else:
785
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
786
                eval_logger.warning(
787
                    f"Task '{self.config.task}': "
788
789
790
791
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
792

lintangsutawika's avatar
lintangsutawika committed
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
            # always prepend the (possibly empty) task description
            labeled_examples = self.config.description
        else:
            labeled_examples = self.config.description + self.sampler.get_context(
                doc, num_fewshot
            )

        example = self.doc_to_text(doc)
        if type(example) == str:
            return labeled_examples + example
        elif type(example) == list:
            return [labeled_examples + ex for ex in example]
        elif type(example) == int:
            if self.config.doc_to_choice is not None:
                choices = self.doc_to_choice(doc)
                return labeled_examples + choices[example]
            else:
                return labeled_examples + str(example)

826
827
828
829
830
831
832
833
    def apply_filters(self):
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances, self.task_docs)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

834
    def should_decontaminate(self):
835
        return self.config.should_decontaminate
836
837

    def doc_to_decontamination_query(self, doc):
838
        if self.config.should_decontaminate:
839
840
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
841
            else:
842
843
844
845
846
847
848
849
850
851
852
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
853

854
855
856
857
858
859
860
861
862
863
864
865
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
866
867
        if self.prompt is not None:
            doc_to_text = self.prompt
868
        else:
869
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
870

871
872
873
        if type(doc_to_text) == int:
            return doc_to_text
        elif type(doc_to_text) == str:
874
            if doc_to_text in self.features:
875
                # if self.config.doc_to_choice is not None:
876
877
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
878
879
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
880
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
881
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
882
883
884
                    return ast.literal_eval(text_string)
                else:
                    return text_string
885
        elif callable(doc_to_text):
886
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
887
        # Used when applying a Promptsource template
888
        elif hasattr(doc_to_text, "apply"):
889
890
891
892
893
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
894
                return self.config.fewshot_delimiter
895
        else:
896
            print(type(doc_to_text))
897
            raise TypeError
898

899
    def doc_to_target(self, doc: dict) -> Union[int, str, list]:
900
901
        if self.prompt is not None:
            doc_to_target = self.prompt
902
        else:
903
            doc_to_target = self.config.doc_to_target
904

905
906
907
        if type(doc_to_target) == int:
            return doc_to_target
        elif type(doc_to_target) == str:
908
            if doc_to_target in self.features:
909
                # if self.config.doc_to_choice is not None:
910
911
912
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
913
            else:
lintangsutawika's avatar
lintangsutawika committed
914
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
915
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
916
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
917
918
919
920
921
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
922
923
924
925
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
926
927
                else:
                    return target_string
928
929
        elif type(doc_to_target) == list:
            return doc_to_target
930
        elif callable(doc_to_target):
931
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
932
        # Used when applying a Promptsource template
933
        elif hasattr(doc_to_target, "apply"):
934
            applied_prompt = doc_to_target.apply(doc)
935
936
937
938
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
939
                return self.config.fewshot_delimiter
940
941
        else:
            raise TypeError
942

baberabb's avatar
baberabb committed
943
    def doc_to_choice(self, doc: Any) -> List[str]:
944
945
        if self.prompt is not None:
            doc_to_choice = self.prompt
946
        elif self.config.doc_to_choice is None:
947
948
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
949
            doc_to_choice = self.config.doc_to_choice
950
951

        if type(doc_to_choice) == str:
952
953
954
955
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
956
957
958
959
960
961
962
963
964
965
        elif type(doc_to_choice) == list:
            return doc_to_choice
        elif type(doc_to_choice) == dict:
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
966

baberabb's avatar
baberabb committed
967
968
969
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
970
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
971
            arguments = (ctx, self.doc_to_target(doc))
972
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
973
            arguments = (self.doc_to_target(doc),)
974
        elif self.OUTPUT_TYPE == "multiple_choice":
975
            choices = self.doc_to_choice(doc)
976
            target_delimiter = self.config.target_delimiter
977
978
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
979
                cont = self.doc_to_target(doc)
980
                arguments = [(ctx, f"{target_delimiter}{cont}") for ctx in choices]
981
            else:
982
                # Otherwise they are placed in the continuation
983
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
984

985
            request_list = [
986
987
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
988
                    doc=doc,
989
                    arguments=arg,
990
                    idx=i,
991
992
                    **kwargs,
                )
993
                for i, arg in enumerate(arguments)
994
            ]
995
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
996
            if "acc_mutual_info" in self._metric_fn_list.keys():
997
998
999
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1000
                # here mutual info refers to calculating
1001
1002
1003
1004
1005
1006
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1007
                            doc=doc,
1008
                            arguments=("", "{}".format(choice)),
1009
1010
1011
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1012
                        for i, choice in enumerate(choices)
1013
1014
1015
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1016

1017
        elif self.OUTPUT_TYPE == "generate_until":
1018
            arguments = (ctx, self.config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
1019
1020

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1021
1022
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1023
1024

    def process_results(self, doc, results):
1025
1026
1027
1028

        # Process results returns 1 of X things per doc/results
        # 1. A score
        # 2. Components to be processed later to obtained a score. such as gold and prediction
1029
1030
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1031

1032
        result_dict = {}
1033
        use_metric = list(self._metric_fn_list.keys())
1034
1035
1036
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1037
1038
1039
1040
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1041
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1042
            (loglikelihood,) = results
1043
1044
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
            return {
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
            }
1062
        elif self.OUTPUT_TYPE == "multiple_choice":
1063
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1064

1065
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1066
            choices = self.doc_to_choice(doc)
1067
1068
            completion_len = np.array([float(len(i)) for i in choices])

1069
1070
            if (
                2 * len(choices) == len(lls)
1071
                and "acc_mutual_info" in self._metric_fn_list.keys()
1072
1073
1074
1075
1076
1077
1078
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1079

1080
1081
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1082

1083
1084
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1085
            else:
1086
                gold = self.doc_to_target(doc)
1087
1088

            gold_index_error = False
1089
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1090
1091
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1092
1093
                    gold_index_error = True
            else:
1094
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1095
                    gold = gold if gold < len(choices) else -100
1096
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1097
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1098

Lintang Sutawika's avatar
Lintang Sutawika committed
1099
                if gold == -100:
1100
1101
1102
1103
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1104
                    f"Label index was not in within range of available choices,"
1105
1106
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1107

1108
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1109
1110
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1111
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1112
1113
1114
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1115
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1116
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1117

1118
            # gold, lls, is_greedy, completion_len
1119
            result_dict = {
1120
1121
                **({"acc": acc} if "acc" in use_metric else {}),
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1122
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
1123
1124
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1125
1126
            }

1127
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1128
1129
1130
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1131
1132
1133
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1134
        elif self.OUTPUT_TYPE == "generate_until":
1135
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1136
            result = results[0]
1137
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1138
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1139
                # it assumes that doc_to_target returns a number.
1140
1141
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1142
1143
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1144
                gold = list(gold)
Chris's avatar
Chris committed
1145
1146
1147
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1148

lintangsutawika's avatar
lintangsutawika committed
1149
            for metric in self._metric_fn_list.keys():
1150
1151
                result_dict[metric] = (gold, result)
                continue
haileyschoelkopf's avatar
haileyschoelkopf committed
1152
1153
1154
1155
1156
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1157
1158
1159
1160
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
haileyschoelkopf's avatar
haileyschoelkopf committed
1161
                    for gold_option in gold:
1162
                        try:
1163
                            result_score = self._metric_fn_list[metric](
1164
1165
                                references=[gold_option],
                                predictions=[result],
1166
                                **self._metric_fn_kwargs[metric],
1167
                            )
baberabb's avatar
baberabb committed
1168
1169
1170
                        except (
                            TypeError
                        ):  # TODO: this is hacky and I don't want to do it
1171
                            result_score = self._metric_fn_list[metric](
haileyschoelkopf's avatar
haileyschoelkopf committed
1172
1173
1174
                                [gold_option, result]
                            )
                        if isinstance(result_score, dict):
haileyschoelkopf's avatar
haileyschoelkopf committed
1175
                            # TODO: this handles the case where HF evaluate returns a dict.
1176
                            result_score = result_score[metric]
haileyschoelkopf's avatar
haileyschoelkopf committed
1177
                        scores.append(result_score)
haileyschoelkopf's avatar
haileyschoelkopf committed
1178
                    if any(scores):
1179
                        result_score = 1.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1180
                    else:
1181
                        result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1182
                else:
1183
                    try:
1184
                        result_score = self._metric_fn_list[metric](
1185
1186
1187
                            references=[gold],
                            predictions=[result],
                        )
1188
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1189
                        result_score = self._metric_fn_list[metric]([gold, result])
1190
1191
1192
1193
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1194
        else:
lintangsutawika's avatar
lintangsutawika committed
1195
1196
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1197
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1198
            )
1199
1200
1201

        return result_dict

1202
1203
    def aggregation(self):
        return self._aggregation_list
1204
1205

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
1206
        return self._higher_is_better
1207
1208
1209
1210
1211


class MultipleChoiceTask(Task):
    OUTPUT_TYPE: str = "loglikelihood"

baberabb's avatar
baberabb committed
1212
    def doc_to_target(self, doc: dict) -> str:
1213
1214
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1215
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1216
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1217
1218
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1219
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1220
                doc=doc,
1221
                arguments=(ctx, " {}".format(choice)),
1222
                idx=i,
1223
1224
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1225
1226
            for i, choice in enumerate(doc["choices"])
        ]
1227

baberabb's avatar
baberabb committed
1228
    def process_results(self, doc: dict, results: List[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1229
1230
1231
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1243
    def higher_is_better(self) -> dict:
1244
1245
1246
1247
1248
        return {
            "acc": True,
            "acc_norm": True,
        }

1249
    def aggregation(self) -> dict:
1250
1251
1252
1253
1254
1255
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1256
class PerplexityTask(Task):
1257
1258
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1259
    def has_training_docs(self) -> bool:
1260
1261
        return False

baberabb's avatar
baberabb committed
1262
    def fewshot_examples(self, k: int, rnd) -> List:
1263
1264
1265
        assert k == 0
        return []

baberabb's avatar
baberabb committed
1266
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1267
1268
1269
1270
1271
1272
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

baberabb's avatar
baberabb committed
1273
    def higher_is_better(self) -> dict:
1274
1275
1276
1277
1278
1279
1280
1281
1282
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1283
    def doc_to_text(self, doc) -> str:
1284
1285
1286
1287
1288
        return ""

    def doc_to_target(self, doc):
        return doc

baberabb's avatar
baberabb committed
1289
    def construct_requests(self, doc: dict, ctx: Union[str, None], **kwargs):
1290
1291
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1292
1293
1294
1295
1296
1297
1298
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1299

baberabb's avatar
baberabb committed
1300
    def process_results(self, doc: dict, results: float) -> dict:
1301
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1302
1303
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1304
1305
1306
1307
1308
1309
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

1310
    def aggregation(self) -> dict:
1311
1312
1313
1314
1315
1316
1317
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1318
    def count_bytes(cls, doc) -> int:
1319
1320
1321
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1322
    def count_words(cls, doc) -> int:
1323
1324
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))