"vscode:/vscode.git/clone" did not exist on "175afed370e2c527125de762c367105c7ea4a942"
task.py 47.5 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3

4
import os
5
import re
6
import ast
lintangsutawika's avatar
lintangsutawika committed
7
import yaml
lintangsutawika's avatar
lintangsutawika committed
8
import logging
9
10
11
import evaluate
import random
import itertools
12
import functools
13
from tqdm import tqdm
14
15
16
17

import datasets
import numpy as np

baberabb's avatar
baberabb committed
18
from typing import Union, List, Any, Tuple, Literal
19
from collections.abc import Callable
20

21
from lm_eval import utils
22
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
23
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
24
from lm_eval.api.filter import FilterEnsemble
25
26
27

from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
28
29
30
31
32
33
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
34
35
    get_metric,
    is_higher_better,
36
    DEFAULT_METRIC_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
37
)
38

39
40
41
42
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
43
    "generate_until",
44
45
]

lintangsutawika's avatar
lintangsutawika committed
46

47
eval_logger = logging.getLogger("lm-eval")
48

lintangsutawika's avatar
lintangsutawika committed
49

50
51
@dataclass
class TaskConfig(dict):
52
    # task naming/registry
53
    task: str = None
lintangsutawika's avatar
lintangsutawika committed
54
    task_alias: str = None
55
    group: Union[str, list] = None
lintangsutawika's avatar
lintangsutawika committed
56
    group_alias: Union[str, list] = None
57
58
59
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
60
61
    dataset_path: str = None
    dataset_name: str = None
62
    dataset_kwargs: dict = None
63
64
65
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
66
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
67
68
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
69
    process_docs: Callable = None
70
71
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
lintangsutawika's avatar
lintangsutawika committed
72
    doc_to_choice: Union[Callable, str, dict, list] = None
lintangsutawika's avatar
lintangsutawika committed
73
    process_results: Union[Callable, str] = None
74
    use_prompt: str = None
75
    description: str = ""
76
77
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
haileyschoelkopf's avatar
haileyschoelkopf committed
78
    fewshot_config: dict = None
79
    # runtime configuration options
80
    num_fewshot: int = None
81
    # scoring options
82
    metric_list: list = None
83
    output_type: str = "generate_until"
84
    generation_kwargs: dict = None
85
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
86
    filter_list: Union[str, list] = None
87
88
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
89

lintangsutawika's avatar
lintangsutawika committed
90
91
92
    metadata: Union[
        str, list
    ] = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
93

Ethan Smith's avatar
Ethan Smith committed
94
    def __post_init__(self) -> None:
95
        if self.dataset_path and os.path.exists(os.path.dirname(self.dataset_path)):
lintangsutawika's avatar
lintangsutawika committed
96
97
            import inspect
            from importlib import import_module
lintangsutawika's avatar
format  
lintangsutawika committed
98

lintangsutawika's avatar
lintangsutawika committed
99
            self.dataset_path = inspect.getfile(import_module(self.dataset_path))
100

Lintang Sutawika's avatar
Lintang Sutawika committed
101
        if self.generation_kwargs is not None:
102
            if self.output_type != "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
103
                eval_logger.warning(
104
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
105
                )
106
                assert self.output_type != "generate_until"
Lintang Sutawika's avatar
Lintang Sutawika committed
107
108
109
110
111
112
113

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
114
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
115
        else:
116
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
117
118
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
119
                    "until": None
120
121
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
122
123
                    "do_sample": False,
                }
124

haileyschoelkopf's avatar
haileyschoelkopf committed
125
126
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

127
128
129
    def __getitem__(self, item):
        return getattr(self, item)

130
131
132
    def __setitem__(self, item, value):
        return setattr(self, item, value)

133
    def to_dict(self):
134
135
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
136
        Used for dumping results alongside full task configuration
137

haileyschoelkopf's avatar
haileyschoelkopf committed
138
139
140
141
142
143
144
145
146
147
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
148
149
150
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
151
        return cfg_dict
152

153
154
155
156
157
158
159
160
161
162
163
164

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
165

166
167
168
169
170
171
172
173
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
174

175
176
177
178
179
180
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
Ethan Smith's avatar
Ethan Smith committed
181
    ) -> None:
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

lintangsutawika's avatar
lintangsutawika committed
208
        self._config = TaskConfig({**config}) if config else TaskConfig()
209

lintangsutawika's avatar
lintangsutawika committed
210
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
211

Ethan Smith's avatar
Ethan Smith committed
212
    def download(self, data_dir=None, cache_dir=None, download_mode=None) -> None:
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
237
238
239
240
241
242
243
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
244

245
246
247
248
249
    @property
    def config(self):
        """Returns the TaskConfig associated with this class."""
        return self._config

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

286
287
288
289
290
291
292
293
294
295
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
296
            eval_logger.warning(
297
                "has_training_docs and has_validation_docs are False"
298
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
299
            )
300
301
            return self.test_docs()

302
303
304
305
306
307
308
309
310
311
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
312

313
314
315
316
317
318
319
320
321
322
323
324
325
    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Ethan Smith's avatar
Ethan Smith committed
326
    def doc_to_decontamination_query(self, doc) -> None:
327
328
329
330
331
332
333
334
335
336
337
338
339
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

Ethan Smith's avatar
Ethan Smith committed
340
    def build_all_requests(self, limit=None, rank=None, world_size=None) -> None:
341
342
343
344
345
346
347
348
349
350
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

351
        eval_logger.info(f"Building contexts for task on rank {rank}...")
352

353
        instances = []
354
355
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
356
        ):
357
            # sample fewshot context #TODO: need to offset doc_id by rank now!
358
            fewshot_ctx = self.fewshot_context(
359
                doc,
360
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
361
            )
362

363
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
364
365
366
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
367
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
368
            )
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
394
            The number of times each instance in a dataset is inferred on. Defaults to 1,
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
413
    def compute_metric(self):
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
430
431
432
433
434
435
436
437
438
439
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

440
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
441
    def fewshot_context(
442
443
444
445
446
        self,
        doc,
        num_fewshot,
        rnd=random.Random(1234),
        description=None,
lintangsutawika's avatar
lintangsutawika committed
447
    ):
448
449
450
451
452
453
454
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
455
456
457
458
459
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
460
461
462
        :returns: str
            The fewshot context.
        """
lintangsutawika's avatar
lintangsutawika committed
463
464
465
466
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

467
        description = description if description else ""
468
469

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
470
            labeled_examples = ""
471
        else:
lintangsutawika's avatar
lintangsutawika committed
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
496
            )
497
498

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
499
        return description + labeled_examples + example
500
501

    def apply_filters(self):
lintangsutawika's avatar
lintangsutawika committed
502
503
        if hasattr(self, "_filters"):
            for f in self._filters:
lintangsutawika's avatar
lintangsutawika committed
504
                f.apply(self._instances, None)
lintangsutawika's avatar
lintangsutawika committed
505
506
507
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
508

baberabb's avatar
baberabb committed
509
    def dump_config(self) -> dict:
510
        """Returns a dictionary representing the task's config.
511
512
513
514
515

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
516
        # (num_fewshot)
517
        return self.config.to_dict()
518

519
520

class ConfigurableTask(Task):
521
    VERSION = "Yaml"
522
    OUTPUT_TYPE = None
523
    CONFIG = None
524
525
526

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
Ethan Smith's avatar
Ethan Smith committed
527
    ) -> None:  # TODO no super() call here
528
        # Get pre-configured attributes
529
        self._config = self.CONFIG
530

531
        # Use new configurations if there was no preconfiguration
532
        if self.config is None:
533
            self._config = TaskConfig(**config)
534
535
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
536
            if config is not None:
537
                self._config.__dict__.update(config)
538

539
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
540
541
542
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
543

544
545
546
        if self.config.output_type is not None:
            assert self.config.output_type in ALL_OUTPUT_TYPES
            self.OUTPUT_TYPE = self.config.output_type
547

548
549
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
550

551
552
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
553

554
555
556
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._higher_is_better = {}
557

558
        if self.config.metric_list is None:
559
            # TODO: handle this in TaskConfig.__post_init__ ?
560
561
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

562
            for metric_name in _metric_list:
563
564
                metric = get_metric(metric_name)
                self._metric_fn_list[metric_name] = metric
lintangsutawika's avatar
lintangsutawika committed
565
                self._metric_fn_kwargs[metric_name] = {}
haileyschoelkopf's avatar
haileyschoelkopf committed
566
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
567
        else:
568
            for metric_config in self.config.metric_list:
569
570
571
572
573
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
574
575
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
576
                }
Chris's avatar
Chris committed
577
578
579
580
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
581

582
583
584
585
                # if self.config.process_results is not None:
                #     self._metric_fn_list[metric_name] = None
                #     self._metric_fn_kwargs[metric_name] = {}
                if callable(metric_name):
586
587
588
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                else:
589
                    metric_fn = get_metric(
590
                        metric_name, hf_evaluate_metric, **kwargs
Chris's avatar
Chris committed
591
                    )
592
593

                self._metric_fn_kwargs[metric_name] = kwargs
594
                self._metric_fn_list[metric_name] = metric_fn
lintangsutawika's avatar
lintangsutawika committed
595

596
        self.download(self.config.dataset_kwargs)
597
598
599
        self._training_docs = None
        self._fewshot_docs = None

600
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
601
            self._filters = []
602
            for filter_config in self.config.filter_list:
lintangsutawika's avatar
lintangsutawika committed
603
604
605
606
607
608
609
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
610
611
612
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
613
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
614
        else:
615
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
616

617
618
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
619
            self.prompt = get_prompt(
620
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
621
            )
622
623
624
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
625
        if self.fewshot_docs() is not None:
haileyschoelkopf's avatar
haileyschoelkopf committed
626
            self.sampler = samplers.get_sampler(
haileyschoelkopf's avatar
haileyschoelkopf committed
627
628
629
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
haileyschoelkopf's avatar
haileyschoelkopf committed
630
            )(list(self.fewshot_docs()), self, rnd=random.Random(1234))
631

632
        if self.has_test_docs():
633
            self.task_docs = self.test_docs()
634
        elif self.has_validation_docs():
635
            self.task_docs = self.validation_docs()
636
637
638
639
640
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

641
        # Test One Doc
642
        self.features = list(self.task_docs.features.keys())
643
644
        self.multiple_input = 0
        self.multiple_target = 0
645
        test_doc = self.task_docs[0]
646
        test_text = self.doc_to_text(test_doc)
647
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
648

649
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
650
651
652
            test_choice = self.doc_to_choice(test_doc)
            if type(test_choice) is not list:
                eval_logger.error("doc_to_choice must return list")
653
654
            else:
                num_choice = len(test_choice)
655

656
657
            if type(test_text) is int:
                self.multiple_input = num_choice
658
659
        else:
            test_choice = None
660

661
        if type(test_target) is list:
662
            self.multiple_target = len(test_target)
663
        else:
lintangsutawika's avatar
lintangsutawika committed
664
            if (type(test_target) is int) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
665
                test_target = test_choice[test_target]
666
            else:
lintangsutawika's avatar
lintangsutawika committed
667
                test_target = str(test_target)
668

669
670
671
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
672
            check_choices = [test_target]
673
674
675
676
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
677
678
                    True
                    if self.config.target_delimiter.rstrip()
679
                    != self.config.target_delimiter
680
                    else False
681
                )
682

683
684
685
686
687
688
                if delimiter_has_whitespace and choice_has_whitespace:
                    eval_logger.warning(
                        f'Both target_delimiter and target choice: "{choice}" have whitespace'
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
                    eval_logger.warning(
689
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
690
691
                    )

Ethan Smith's avatar
Ethan Smith committed
692
    def download(self, dataset_kwargs=None) -> None:
693
694
695
696
697
698
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
699
    def has_training_docs(self) -> bool:
700
        if self.config.training_split is not None:
701
702
703
704
            return True
        else:
            return False

baberabb's avatar
baberabb committed
705
    def has_validation_docs(self) -> bool:
706
        if self.config.validation_split is not None:
707
708
709
710
            return True
        else:
            return False

baberabb's avatar
baberabb committed
711
    def has_test_docs(self) -> bool:
712
        if self.config.test_split is not None:
713
714
715
716
            return True
        else:
            return False

baberabb's avatar
baberabb committed
717
    def training_docs(self) -> datasets.Dataset:
718
        if self.has_training_docs():
719
720
721
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
722
                )
723
            return self.dataset[self.config.training_split]
724

baberabb's avatar
baberabb committed
725
    def validation_docs(self) -> datasets.Dataset:
726
        if self.has_validation_docs():
727
728
729
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
730
                )
731
            return self.dataset[self.config.validation_split]
732

baberabb's avatar
baberabb committed
733
    def test_docs(self) -> datasets.Dataset:
734
        if self.has_test_docs():
735
736
737
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
738

739
    def fewshot_docs(self):
740
741
        if self.config.fewshot_split is not None:
            return self.dataset[self.config.fewshot_split]
742
        else:
743
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
744
                eval_logger.warning(
745
                    f"Task '{self.config.task}': "
746
747
748
749
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
750

lintangsutawika's avatar
lintangsutawika committed
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """

        if num_fewshot == 0:
            # always prepend the (possibly empty) task description
            labeled_examples = self.config.description
        else:
            labeled_examples = self.config.description + self.sampler.get_context(
                doc, num_fewshot
            )

        example = self.doc_to_text(doc)
        if type(example) == str:
            return labeled_examples + example
        elif type(example) == list:
            return [labeled_examples + ex for ex in example]
        elif type(example) == int:
            if self.config.doc_to_choice is not None:
                choices = self.doc_to_choice(doc)
                return labeled_examples + choices[example]
            else:
                return labeled_examples + str(example)

784
785
786
787
788
789
790
791
    def apply_filters(self):
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances, self.task_docs)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

792
    def should_decontaminate(self):
793
        return self.config.should_decontaminate
794
795

    def doc_to_decontamination_query(self, doc):
796
        if self.config.should_decontaminate:
797
798
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
799
            else:
800
801
802
803
804
805
806
807
808
809
810
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
811

812
813
814
815
816
817
818
819
820
821
822
823
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
824
825
        if self.prompt is not None:
            doc_to_text = self.prompt
826
        else:
827
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
828

829
830
831
        if type(doc_to_text) == int:
            return doc_to_text
        elif type(doc_to_text) == str:
832
            if doc_to_text in self.features:
833
                # if self.config.doc_to_choice is not None:
834
835
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
836
837
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
838
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
839
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
840
841
842
                    return ast.literal_eval(text_string)
                else:
                    return text_string
843
        elif callable(doc_to_text):
844
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
845
        # Used when applying a Promptsource template
846
        elif hasattr(doc_to_text, "apply"):
847
848
849
850
851
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
852
                return self.config.fewshot_delimiter
853
        else:
854
            print(type(doc_to_text))
855
            raise TypeError
856

857
    def doc_to_target(self, doc: dict) -> Union[int, str, list]:
858
859
        if self.prompt is not None:
            doc_to_target = self.prompt
860
        else:
861
            doc_to_target = self.config.doc_to_target
862

863
864
865
        if type(doc_to_target) == int:
            return doc_to_target
        elif type(doc_to_target) == str:
866
            if doc_to_target in self.features:
867
                # if self.config.doc_to_choice is not None:
868
869
870
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
871
            else:
lintangsutawika's avatar
lintangsutawika committed
872
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
873
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
874
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
875
876
877
878
879
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
880
881
882
883
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
884
885
                else:
                    return target_string
886
887
        elif type(doc_to_target) == list:
            return doc_to_target
888
        elif callable(doc_to_target):
889
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
890
        # Used when applying a Promptsource template
891
        elif hasattr(doc_to_target, "apply"):
892
            applied_prompt = doc_to_target.apply(doc)
893
894
895
896
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
897
                return self.config.fewshot_delimiter
898
899
        else:
            raise TypeError
900

baberabb's avatar
baberabb committed
901
    def doc_to_choice(self, doc: Any) -> List[str]:
902
903
        if self.prompt is not None:
            doc_to_choice = self.prompt
904
        elif self.config.doc_to_choice is None:
905
906
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
907
            doc_to_choice = self.config.doc_to_choice
908
909

        if type(doc_to_choice) == str:
910
911
912
913
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
914
915
916
917
918
919
920
921
922
923
        elif type(doc_to_choice) == list:
            return doc_to_choice
        elif type(doc_to_choice) == dict:
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
924

baberabb's avatar
baberabb committed
925
926
927
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
928
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
929
            arguments = (ctx, self.doc_to_target(doc))
930
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
931
            arguments = (self.doc_to_target(doc),)
932
        elif self.OUTPUT_TYPE == "multiple_choice":
933
            choices = self.doc_to_choice(doc)
934
            target_delimiter = self.config.target_delimiter
935
936
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
937
                cont = self.doc_to_target(doc)
938
                arguments = [(ctx, f"{target_delimiter}{cont}") for ctx in choices]
939
            else:
940
                # Otherwise they are placed in the continuation
941
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
942

943
            request_list = [
944
945
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
946
                    doc=doc,
947
                    arguments=arg,
948
                    idx=i,
949
950
                    **kwargs,
                )
951
                for i, arg in enumerate(arguments)
952
            ]
953
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
954
            if "acc_mutual_info" in self._metric_fn_list.keys():
955
956
957
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
958
                # here mutual info refers to calculating
959
960
961
962
963
964
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
965
                            doc=doc,
966
                            arguments=("", "{}".format(choice)),
967
968
969
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
970
                        for i, choice in enumerate(choices)
971
972
973
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
974

975
        elif self.OUTPUT_TYPE == "generate_until":
976
            arguments = (ctx, self.config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
977
978

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
979
980
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
981
982

    def process_results(self, doc, results):
983
984
985
986

        # Process results returns 1 of X things per doc/results
        # 1. A score
        # 2. Components to be processed later to obtained a score. such as gold and prediction
987
988
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
989

990
        result_dict = {}
991
        use_metric = list(self._metric_fn_list.keys())
992
993
994
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
995
996
997
998
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
999
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1000
            (loglikelihood,) = results
1001
1002
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
            return {
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
            }
1020
        elif self.OUTPUT_TYPE == "multiple_choice":
1021
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1022

1023
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1024
            choices = self.doc_to_choice(doc)
1025
1026
            completion_len = np.array([float(len(i)) for i in choices])

1027
1028
            if (
                2 * len(choices) == len(lls)
1029
                and "acc_mutual_info" in self._metric_fn_list.keys()
1030
1031
1032
1033
1034
1035
1036
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1037

1038
1039
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1040

1041
1042
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1043
            else:
1044
                gold = self.doc_to_target(doc)
1045
1046

            gold_index_error = False
1047
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1048
1049
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1050
1051
                    gold_index_error = True
            else:
1052
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1053
                    gold = gold if gold < len(choices) else -100
1054
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1055
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1056

Lintang Sutawika's avatar
Lintang Sutawika committed
1057
                if gold == -100:
1058
1059
1060
1061
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1062
                    f"Label index was not in within range of available choices,"
1063
1064
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1065

1066
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1067
1068
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1069
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1070
1071
1072
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1073
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1074
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1075

1076
            # gold, lls, is_greedy, completion_len
1077
            result_dict = {
1078
1079
                **({"acc": acc} if "acc" in use_metric else {}),
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1080
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
1081
1082
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1083
1084
            }

1085
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1086
1087
1088
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1089
1090
1091
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1092
        elif self.OUTPUT_TYPE == "generate_until":
1093
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1094
            result = results[0]
1095
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1096
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1097
                # it assumes that doc_to_target returns a number.
1098
1099
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1100
1101
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1102
                gold = list(gold)
Chris's avatar
Chris committed
1103
1104
1105
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1106

lintangsutawika's avatar
lintangsutawika committed
1107
            for metric in self._metric_fn_list.keys():
1108
1109
                result_dict[metric] = (gold, result)
                continue
haileyschoelkopf's avatar
haileyschoelkopf committed
1110
1111
1112
1113
1114
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1115
1116
1117
1118
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
haileyschoelkopf's avatar
haileyschoelkopf committed
1119
                    for gold_option in gold:
1120
                        try:
1121
                            result_score = self._metric_fn_list[metric](
1122
1123
                                references=[gold_option],
                                predictions=[result],
1124
                                **self._metric_fn_kwargs[metric],
1125
                            )
baberabb's avatar
baberabb committed
1126
1127
1128
                        except (
                            TypeError
                        ):  # TODO: this is hacky and I don't want to do it
1129
                            result_score = self._metric_fn_list[metric](
haileyschoelkopf's avatar
haileyschoelkopf committed
1130
1131
1132
                                [gold_option, result]
                            )
                        if isinstance(result_score, dict):
haileyschoelkopf's avatar
haileyschoelkopf committed
1133
                            # TODO: this handles the case where HF evaluate returns a dict.
1134
                            result_score = result_score[metric]
haileyschoelkopf's avatar
haileyschoelkopf committed
1135
                        scores.append(result_score)
haileyschoelkopf's avatar
haileyschoelkopf committed
1136
                    if any(scores):
1137
                        result_score = 1.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1138
                    else:
1139
                        result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1140
                else:
1141
                    try:
1142
                        result_score = self._metric_fn_list[metric](
1143
1144
1145
                            references=[gold],
                            predictions=[result],
                        )
1146
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1147
                        result_score = self._metric_fn_list[metric]([gold, result])
1148
1149
1150
1151
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1152
        else:
lintangsutawika's avatar
lintangsutawika committed
1153
1154
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1155
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1156
            )
1157
1158
1159

        return result_dict

1160
    def compute_metric(self):
1161
        return self._metric_fn_list
1162
1163

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
1164
        return self._higher_is_better
1165
1166
1167
1168
1169


class MultipleChoiceTask(Task):
    OUTPUT_TYPE: str = "loglikelihood"

baberabb's avatar
baberabb committed
1170
    def doc_to_target(self, doc: dict) -> str:
1171
1172
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1173
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1174
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1175
1176
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1177
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1178
                doc=doc,
1179
                arguments=(ctx, " {}".format(choice)),
1180
                idx=i,
1181
1182
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1183
1184
            for i, choice in enumerate(doc["choices"])
        ]
1185

baberabb's avatar
baberabb committed
1186
    def process_results(self, doc: dict, results: List[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1187
1188
1189
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1201
    def higher_is_better(self) -> dict:
1202
1203
1204
1205
1206
        return {
            "acc": True,
            "acc_norm": True,
        }

1207
    def compute_metric(self) -> dict:
1208
1209
1210
1211
1212
1213
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1214
class PerplexityTask(Task):
1215
1216
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1217
    def has_training_docs(self) -> bool:
1218
1219
        return False

baberabb's avatar
baberabb committed
1220
    def fewshot_examples(self, k: int, rnd) -> List:
1221
1222
1223
        assert k == 0
        return []

baberabb's avatar
baberabb committed
1224
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1225
1226
1227
1228
1229
1230
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."

        return ""

baberabb's avatar
baberabb committed
1231
    def higher_is_better(self) -> dict:
1232
1233
1234
1235
1236
1237
1238
1239
1240
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1241
    def doc_to_text(self, doc) -> str:
1242
1243
1244
1245
1246
        return ""

    def doc_to_target(self, doc):
        return doc

baberabb's avatar
baberabb committed
1247
    def construct_requests(self, doc: dict, ctx: Union[str, None], **kwargs):
1248
1249
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1250
1251
1252
1253
1254
1255
1256
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1257

baberabb's avatar
baberabb committed
1258
    def process_results(self, doc: dict, results: float) -> dict:
1259
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1260
1261
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1262
1263
1264
1265
1266
1267
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

1268
    def compute_metric(self) -> dict:
1269
1270
1271
1272
1273
1274
1275
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1276
    def count_bytes(cls, doc) -> int:
1277
1278
1279
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1280
    def count_words(cls, doc) -> int:
1281
1282
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))