task.py 59.8 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
29
30
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
31
from lm_eval.api.registry import (
32
33
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_aggregation,
35
    get_metric,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
38
)
39
from lm_eval.caching.cache import load_from_cache, save_to_cache
40
41
42
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

43

44
45
46
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
47
    "multiple_choice_gpt",
48
    "loglikelihood_rolling",
49
    "generate_until",
50
51
]

52
eval_logger = logging.getLogger("lm-eval")
53

lintangsutawika's avatar
lintangsutawika committed
54

55
56
@dataclass
class TaskConfig(dict):
57
    # task naming/registry
58
59
60
61
    task: Optional[str] = None
    task_alias: Optional[str] = None
    group: Optional[Union[str, list]] = None
    group_alias: Optional[Union[str, list]] = None
62
63
64
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
65
66
67
68
69
70
71
72
73
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
    fewshot_split: Optional[
        str
    ] = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
74
75
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
76
77
78
79
80
81
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
82
    description: str = ""
83
84
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
85
    fewshot_config: Optional[dict] = None
86
    # runtime configuration options
87
    num_fewshot: Optional[int] = None
88
    # scoring options
89
90
91
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
92
    repeats: int = 1
93
    filter_list: Optional[Union[str, list]] = None
94
    should_decontaminate: bool = False
95
96
97
98
    doc_to_decontamination_query: Optional[str] = None
    metadata: Optional[
        dict
    ] = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
99

Ethan Smith's avatar
Ethan Smith committed
100
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
101
        if self.generation_kwargs is not None:
102
            if self.output_type != "generate_until":
103
                eval_logger.warning(
104
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
105
106
107
108
109
110
111
112
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
113
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
114
        else:
115
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
116
117
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
118
119
120
121
122
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
123
124
                    "do_sample": False,
                }
125

126
127
128
    def __getitem__(self, item):
        return getattr(self, item)

129
130
131
    def __setitem__(self, item, value):
        return setattr(self, item, value)

132
    def to_dict(self, keep_callable: bool = False) -> dict:
133
134
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
135
        Used for dumping results alongside full task configuration
136

haileyschoelkopf's avatar
haileyschoelkopf committed
137
138
139
140
141
142
143
144
145
146
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
147
148
149
150
151
152
153
154
155
156
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
157
        return cfg_dict
158

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

175
176
177
178
179
180
181
182
183
184
185

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

186
    VERSION: Optional[Union[int, str]] = None
187

188
189
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
190
    DATASET_PATH: Optional[str] = None
191
192

    # The name of a subset within `DATASET_PATH`.
193
    DATASET_NAME: Optional[str] = None
194

195
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
196

197
198
    def __init__(
        self,
199
200
201
202
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
203
    ) -> None:
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
226
227
228
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
229

230
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
231

lintangsutawika's avatar
lintangsutawika committed
232
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
233
234
235
        self.fewshot_rnd: Optional[
            random.Random
        ] = None  # purposely induce errors in case of improper usage
236

237
238
239
240
241
242
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
267
268
269
270
271
272
273
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
274

275
    @property
276
    def config(self) -> TaskConfig:
277
278
279
        """Returns the TaskConfig associated with this class."""
        return self._config

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

295
    def training_docs(self) -> Iterable:
296
297
298
299
300
301
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

302
    def validation_docs(self) -> Iterable:
303
304
305
306
307
308
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

309
    def test_docs(self) -> Iterable:
310
311
312
313
314
315
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

316
    def fewshot_docs(self) -> Iterable:
317
318
319
320
321
322
323
324
325
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
326
            eval_logger.warning(
327
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
328
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
329
            )
330
331
            return self.test_docs()

332
    def _process_doc(self, doc: dict) -> dict:
333
334
335
336
337
338
339
340
341
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
342

343
    @property
344
    def instances(self) -> List[Instance]:
345
346
347
348
349
350
351
352
353
354
355
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

356
357
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
358
359
360
361
362
363
364
365
366
367
368
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

369
370
    def build_all_requests(
        self,
371
        *,
372
373
374
375
376
377
        limit=None,
        rank=None,
        world_size=None,
        cache_requests=False,
        rewrite_requests_cache=False,
    ) -> None:
378
        """Build a set of Instances for a task, and store them in task.instances"""
379
380
381
382

        # used with caching
        og_limit = limit

383
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398

        cached_instances = load_from_cache(file_name=cache_key)

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
399
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
400

401
        instances = []
402
403
404
405
406
407
408
409
410
411

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
412
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
413
414
415
416
417
418
419
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
420
        ):
421
            # sample fewshot context #TODO: need to offset doc_id by rank now!
422
            fewshot_ctx = self.fewshot_context(
423
                doc,
424
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
425
            )
426

427
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
428
429
430
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
431
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
432
            )
433
434
435
436

            if not isinstance(inst, list):
                inst = [inst]

437
438
439
440
441
442
443
444
445
446
447
448
449
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
450

451
452
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
453

454
455
456
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
473
            The number of times each instance in a dataset is inferred on. Defaults to 1,
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

509
510
511
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
512
513
514
515
516
517
518
519
520
521
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

522
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
523
    def fewshot_context(
524
525
526
        self,
        doc,
        num_fewshot,
527
        rnd=None,
528
        description=None,
lintangsutawika's avatar
lintangsutawika committed
529
    ):
530
531
532
533
534
535
536
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
537
538
539
540
541
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
542
543
544
        :returns: str
            The fewshot context.
        """
545
        if rnd is None:
546
547
548
549
550
551
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
552

553
        description = description if description else ""
554
555

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
556
            labeled_examples = ""
557
        else:
lintangsutawika's avatar
lintangsutawika committed
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
582
            )
583
584

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
585
        return description + labeled_examples + example
586

587
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
588
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
589
590
        if hasattr(self, "_filters"):
            for f in self._filters:
591
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
592
593
594
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
595

baberabb's avatar
baberabb committed
596
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
597
        """Returns the config as a dictionary."""
598
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
599
        # (num_fewshot)
600
        return self.config.to_dict()
601

Baber Abbasi's avatar
Baber Abbasi committed
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

642
643
644
645
646
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

647
648
649
650
651
652
653
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
654
655
656
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
657
658
659
660
661
662
663
664
665
666
667
668
669

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

670
671

class ConfigurableTask(Task):
672
    VERSION = "Yaml"
673
    OUTPUT_TYPE = None
674
    CONFIG = None
675
676

    def __init__(
677
678
679
680
681
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
682
    ) -> None:  # TODO no super() call here
683
        # Get pre-configured attributes
684
        self._config = self.CONFIG
685

686
        # Use new configurations if there was no preconfiguration
687
        if self.config is None:
688
            self._config = TaskConfig(**config)
689
690
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
691
            if config is not None:
692
                self._config.__dict__.update(config)
693

694
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
695
696
697
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
698

699
700
701
702
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

703
        if self.config.output_type is not None:
704
705
706
707
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
708
            self.OUTPUT_TYPE = self.config.output_type
709

710
711
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
712

713
714
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
715

716
717
718
719
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
720

721
        if self.config.metric_list is None:
722
            # TODO: handle this in TaskConfig.__post_init__ ?
723
724
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

725
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
726
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
727
                self._metric_fn_kwargs[metric_name] = {}
728
729
730
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
731
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
732
        else:
733
            for metric_config in self.config.metric_list:
734
735
736
737
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
738
739
740
741
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
742
743
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
744
                }
Chris's avatar
Chris committed
745
746
747
748
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
749

750
                if self.config.process_results is not None:
751
752
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
753
754
755
756
757
758
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
759
760
761
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
762
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
763

764
                if "aggregation" in metric_config:
765
                    agg_name = metric_config["aggregation"]
766
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
767
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
768
                    elif callable(agg_name):  # noqa: E721
769
770
771
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
772
                else:
773
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
774
                    metric_agg = get_metric_aggregation(metric_name)
775
                    eval_logger.warning(
776
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
777
778
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
779
                    )
780
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
781

782
783
784
785
786
787
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
788
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
789
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
790
                        f"higher_is_better={is_higher_better(metric_name)}"
791
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
792
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
793

794
        self.download(self.config.dataset_kwargs)
795
796
797
        self._training_docs = None
        self._fewshot_docs = None

798
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
799
            self._filters = []
800
            for filter_config in self.config.filter_list:
801
802
803
804
805
806
807
808
809
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
810
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
811
        else:
812
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
813

814
815
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
816
            self.prompt = get_prompt(
817
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
818
            )
819
820
821
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
822
        if self.fewshot_docs() is not None:
823
824
825
826
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
827
828
829
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
846

847
        self.task_docs = self.eval_docs
848

849
        # Test One Doc
850
        self.features = list(self.task_docs.features.keys())
851
852
        self.multiple_input = 0
        self.multiple_target = 0
853
        test_doc = self.task_docs[0]
854
        test_text = self.doc_to_text(test_doc)
855
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
856

857
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
858
            test_choice = self.doc_to_choice(test_doc)
859
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
860
                eval_logger.error("doc_to_choice must return list")
861
862
            else:
                num_choice = len(test_choice)
863

864
            if isinstance(test_text, int):
865
                self.multiple_input = num_choice
866
867
        else:
            test_choice = None
868

869
        if isinstance(test_target, list):
870
            self.multiple_target = len(test_target)
871
        else:
872
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
873
                test_target = test_choice[test_target]
874
            else:
lintangsutawika's avatar
lintangsutawika committed
875
                test_target = str(test_target)
876

877
878
879
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
880
            check_choices = [test_target]
881
882
883
884
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
885
886
                    True
                    if self.config.target_delimiter.rstrip()
887
                    != self.config.target_delimiter
888
                    else False
889
                )
890

891
                if delimiter_has_whitespace and choice_has_whitespace:
892
893
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
894
895
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
896
                    eval_logger.debug(
897
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
898
899
                    )

900
    def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
901
902
903
904
905
906
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
907
    def has_training_docs(self) -> bool:
908
        if self.config.training_split is not None:
909
910
911
912
            return True
        else:
            return False

baberabb's avatar
baberabb committed
913
    def has_validation_docs(self) -> bool:
914
        if self.config.validation_split is not None:
915
916
917
918
            return True
        else:
            return False

baberabb's avatar
baberabb committed
919
    def has_test_docs(self) -> bool:
920
        if self.config.test_split is not None:
921
922
923
924
            return True
        else:
            return False

baberabb's avatar
baberabb committed
925
    def training_docs(self) -> datasets.Dataset:
926
        if self.has_training_docs():
927
928
929
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
930
                )
931
            return self.dataset[self.config.training_split]
932

baberabb's avatar
baberabb committed
933
    def validation_docs(self) -> datasets.Dataset:
934
        if self.has_validation_docs():
935
936
937
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
938
                )
939
            return self.dataset[self.config.validation_split]
940

baberabb's avatar
baberabb committed
941
    def test_docs(self) -> datasets.Dataset:
942
        if self.has_test_docs():
943
944
945
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
946

947
    def fewshot_docs(self):
948
        if self.config.fewshot_split is not None:
949
950
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
951
            return self.dataset[self.config.fewshot_split]
952
        else:
953
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
954
                eval_logger.warning(
955
                    f"Task '{self.config.task}': "
956
957
958
959
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
960

lintangsutawika's avatar
lintangsutawika committed
961
    @utils.positional_deprecated
962
    def fewshot_context(self, doc: str, num_fewshot: int) -> str:
lintangsutawika's avatar
lintangsutawika committed
963
964
965
966
967
968
969
970
971
972
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """
973
974
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
975
976
977

        if num_fewshot == 0:
            # always prepend the (possibly empty) task description
978
            labeled_examples = description
lintangsutawika's avatar
lintangsutawika committed
979
        else:
980
            labeled_examples = description + self.sampler.get_context(doc, num_fewshot)
lintangsutawika's avatar
lintangsutawika committed
981
982

        example = self.doc_to_text(doc)
983
984
985
986
987
988
989
990
991
992
993
994
995
        if self.multiple_input:
            return labeled_examples
        else:
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
996

997
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
998
        """Iterates over FilterEnsembles and applies them to instances"""
999
1000
        if hasattr(self, "_filters"):
            for f in self._filters:
1001
                f.apply(self._instances)
1002
1003
1004
1005
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1006
    def should_decontaminate(self):
1007
        return self.config.should_decontaminate
1008
1009

    def doc_to_decontamination_query(self, doc):
1010
        if self.config.should_decontaminate:
1011
1012
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1013
            else:
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1025

1026
    def _process_doc(self, doc: dict) -> dict:
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
1038
1039
        if self.prompt is not None:
            doc_to_text = self.prompt
1040
        else:
1041
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1042

1043
        if isinstance(doc_to_text, int):
1044
            return doc_to_text
1045
        elif isinstance(doc_to_text, str):
1046
            if doc_to_text in self.features:
1047
                # if self.config.doc_to_choice is not None:
1048
1049
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1050
1051
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1052
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1053
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1054
1055
1056
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1057
        elif callable(doc_to_text):
1058
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1059
        # Used when applying a Promptsource template
1060
        elif hasattr(doc_to_text, "apply"):
1061
1062
1063
1064
1065
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1066
                return self.config.fewshot_delimiter
1067
1068
        else:
            raise TypeError
1069

1070
    def doc_to_target(self, doc: Mapping) -> Union[int, str, list]:
1071
1072
        if self.prompt is not None:
            doc_to_target = self.prompt
1073
        else:
1074
            doc_to_target = self.config.doc_to_target
1075

1076
        if isinstance(doc_to_target, int):
1077
            return doc_to_target
1078
        elif isinstance(doc_to_target, str):
1079
            if doc_to_target in self.features:
1080
                # if self.config.doc_to_choice is not None:
1081
1082
1083
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1084
            else:
lintangsutawika's avatar
lintangsutawika committed
1085
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1086
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1087
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1088
1089
1090
1091
1092
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1093
1094
1095
1096
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1097
1098
                else:
                    return target_string
1099
        elif isinstance(doc_to_target, list):
1100
            return doc_to_target
1101
        elif callable(doc_to_target):
1102
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1103
        # Used when applying a Promptsource template
1104
        elif hasattr(doc_to_target, "apply"):
1105
            applied_prompt = doc_to_target.apply(doc)
1106
1107
1108
1109
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1110
                return self.config.fewshot_delimiter
1111
1112
        else:
            raise TypeError
1113

baberabb's avatar
baberabb committed
1114
    def doc_to_choice(self, doc: Any) -> List[str]:
1115
1116
        if self.prompt is not None:
            doc_to_choice = self.prompt
1117
        elif self.config.doc_to_choice is None:
1118
1119
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1120
            doc_to_choice = self.config.doc_to_choice
1121

1122
        if isinstance(doc_to_choice, str):
1123
1124
1125
1126
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1127
        elif isinstance(doc_to_choice, list):
1128
            return doc_to_choice
1129
        elif isinstance(doc_to_choice, dict):
1130
1131
1132
1133
1134
1135
1136
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1137

baberabb's avatar
baberabb committed
1138
1139
1140
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1141
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1142
            arguments = (ctx, self.doc_to_target(doc))
1143
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1144
            arguments = (self.doc_to_target(doc),)
1145
        elif "multiple_choice" in self.OUTPUT_TYPE:
1146
            choices = self.doc_to_choice(doc)
1147
            target_delimiter = self.config.target_delimiter
1148
1149
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1150
                cont = self.doc_to_target(doc)
1151
1152
1153
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1154
            else:
1155
                # Otherwise they are placed in the continuation
1156
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
            if self.OUTPUT_TYPE == "multiple_choice_gpt":
                request_list = [
                    Instance(
                        request_type="multiple_choice_gpt",
                        doc=doc,
                        arguments=arg,
                        idx=i,
                        **kwargs,
                    )
                    for i, arg in enumerate(arguments)
                ]
            else:
                request_list = [
                    Instance(
                        request_type="loglikelihood",
                        doc=doc,
                        arguments=arg,
                        idx=i,
                        **kwargs,
                    )
                    for i, arg in enumerate(arguments)
                ]
1179
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1180
            if "acc_mutual_info" in self._metric_fn_list.keys():
1181
1182
1183
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1184
                # here mutual info refers to calculating
1185
1186
1187
1188
1189
1190
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1191
                            doc=doc,
1192
                            arguments=("", "{}".format(choice)),
1193
1194
1195
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1196
                        for i, choice in enumerate(choices)
1197
1198
1199
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1200

1201
        elif self.OUTPUT_TYPE == "generate_until":
1202
            arguments = (ctx, deepcopy(self.config.generation_kwargs))
lintangsutawika's avatar
lintangsutawika committed
1203
1204

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1205
1206
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1207
1208

    def process_results(self, doc, results):
1209
1210
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1211

1212
        result_dict = {}
1213
        use_metric = list(self._metric_fn_list.keys())
1214
1215
1216
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1217
1218
1219
1220
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1221
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1222
            (loglikelihood,) = results
1223
1224
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1225
            return {
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1241
            }
1242
        elif self.OUTPUT_TYPE == "multiple_choice":
1243
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1244

1245
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1246
            choices = self.doc_to_choice(doc)
1247
1248
            completion_len = np.array([float(len(i)) for i in choices])

1249
1250
            if (
                2 * len(choices) == len(lls)
1251
                and "acc_mutual_info" in self._metric_fn_list.keys()
1252
1253
1254
1255
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1256
1257
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1258
1259
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1260

1261
1262
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1263

1264
1265
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1266
            else:
1267
                gold = self.doc_to_target(doc)
1268
1269

            gold_index_error = False
1270
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1271
1272
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1273
1274
                    gold_index_error = True
            else:
1275
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1276
                    gold = gold if gold < len(choices) else -100
1277
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1278
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1279

Lintang Sutawika's avatar
Lintang Sutawika committed
1280
                if gold == -100:
1281
1282
1283
1284
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1285
                    f"Label index was not in within range of available choices,"
1286
1287
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1288

1289
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1290
1291
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1292
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1293
1294
1295
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1296
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1297
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1298

Lintang Sutawika's avatar
Lintang Sutawika committed
1299
1300
1301
1302
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1303
            result_dict = {
1304
                **({"acc": acc} if "acc" in use_metric else {}),
1305
1306
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1307
                **({"squad": (gold, pred)} if "squad" in use_metric else {}),
1308
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1309
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1310
1311
1312
1313
1314
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1315
1316
            }

1317
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1318
1319
1320
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1321
1322
1323
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
        elif self.OUTPUT_TYPE == "multiple_choice_gpt":
            gold = self.doc_to_target(doc)
            result = results[0]
            choices = self.doc_to_choice(doc)
            try:
                gold = choices[gold]
                gold = type(result)(gold)
            except TypeError:
                gold = gold

            for metric in self._metric_fn_list.keys():
                try:
                    result_score = self._metric_fn_list[metric](
                        references=[gold],
                        predictions=[result],
                        **self._metric_fn_kwargs[metric],
                    )
                except (
                        TypeError
                ):  # TODO: this is hacky and I don't want to do it
                    result_score = self._metric_fn_list[metric](
                        [gold, result]
                    )
                if isinstance(result_score, dict):
                    # TODO: this handles the case where HF evaluate returns a dict.
                    result_score = result_score[metric]
                result_dict[metric] = result_score

1352
        elif self.OUTPUT_TYPE == "generate_until":
1353
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1354
            result = results[0]
1355
            if self.config.doc_to_choice is not None:
1356
1357
1358
1359
1360
1361
1362
                try:
                    # If you set doc_to_choice,
                    # it assumes that doc_to_target returns a number.
                    choices = self.doc_to_choice(doc)
                    gold = choices[gold]
                except TypeError:
                    gold = gold
1363
1364
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1365
                gold = list(gold)
Chris's avatar
Chris committed
1366
1367
1368
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1369

lintangsutawika's avatar
lintangsutawika committed
1370
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1371
1372
1373
1374
1375
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1376
1377
1378
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        gold = [gold]
1379
1380
1381
1382
1383
1384
1385
1386
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1387
                    else:
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1409
                else:
1410
                    try:
JessicaOjo's avatar
JessicaOjo committed
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
                        if metric == "exact_match":
                            result_score = self._metric_fn_list[metric](
                                references=[str(gold)],
                                predictions=[str(result)],
                                **self._metric_fn_kwargs[metric],
                            )
                        else:
                            result_score = self._metric_fn_list[metric](
                                references=[gold],
                                predictions=[result],
                                **self._metric_fn_kwargs[metric],
                            )
JessicaOjo's avatar
JessicaOjo committed
1423
                    except TypeError as error:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1424
                        result_score = self._metric_fn_list[metric]([gold, result])
JessicaOjo's avatar
spacing  
JessicaOjo committed
1425
1426
1427
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
1428
                result_dict[metric] = result_score
1429
        else:
lintangsutawika's avatar
lintangsutawika committed
1430
1431
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1432
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1433
            )
1434
1435
1436

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1437
    def aggregation(self) -> dict:
1438
1439
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1440
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1441
        return self._higher_is_better
1442

Baber Abbasi's avatar
Baber Abbasi committed
1443
1444
1445
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

1446
1447
1448
1449
1450
1451
1452
1453
1454
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"group_name={getattr(self.config, 'group', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
            f"num_samples={len(self.eval_docs)})"
        )

1455
1456

class MultipleChoiceTask(Task):
1457
    OUTPUT_TYPE = "loglikelihood"
1458

baberabb's avatar
baberabb committed
1459
    def doc_to_target(self, doc: dict) -> str:
1460
1461
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1462
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1463
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1464
1465
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1466
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1467
                doc=doc,
1468
                arguments=(ctx, " {}".format(choice)),
1469
                idx=i,
1470
1471
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1472
1473
            for i, choice in enumerate(doc["choices"])
        ]
1474

1475
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1476
1477
1478
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1490
    def higher_is_better(self) -> dict:
1491
1492
1493
1494
1495
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1496
    def aggregation(self) -> dict:
1497
1498
1499
1500
1501
1502
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1503
class PerplexityTask(Task):
1504
1505
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1506
    def has_training_docs(self) -> bool:
1507
1508
        return False

baberabb's avatar
baberabb committed
1509
    def fewshot_examples(self, k: int, rnd) -> List:
1510
1511
1512
1513
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1514
1515
        return []

baberabb's avatar
baberabb committed
1516
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1517
1518
1519
1520
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1521
1522
1523

        return ""

baberabb's avatar
baberabb committed
1524
    def higher_is_better(self) -> dict:
1525
1526
1527
1528
1529
1530
1531
1532
1533
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1534
    def doc_to_text(self, doc) -> str:
1535
1536
1537
1538
1539
        return ""

    def doc_to_target(self, doc):
        return doc

1540
1541
1542
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1543

lintangsutawika's avatar
lintangsutawika committed
1544
1545
1546
1547
1548
1549
1550
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1551

1552
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1553
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1554
1555
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1556
1557
1558
1559
1560
1561
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1562
    def aggregation(self) -> dict:
1563
1564
1565
1566
1567
1568
1569
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1570
    def count_bytes(cls, doc) -> int:
1571
1572
1573
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1574
    def count_words(cls, doc) -> int:
1575
1576
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))