task.py 58.9 KB
Newer Older
Baber's avatar
cleanup  
Baber committed
1
2
from __future__ import annotations

3
import abc
4
import ast
lintangsutawika's avatar
lintangsutawika committed
5
import logging
6
import random
7
import re
Baber's avatar
Baber committed
8
from collections.abc import Callable, Iterable, Iterator, Mapping
9
from copy import deepcopy
Baber Abbasi's avatar
Baber Abbasi committed
10
11
12
13
14
15
16
17
18
from dataclasses import dataclass
from functools import cached_property, partial
from typing import (
    TYPE_CHECKING,
    Any,
    Literal,
    cast,
    overload,
)
19
20
21

import datasets
import numpy as np
22
from tqdm import tqdm
Baber's avatar
Baber committed
23
from typing_extensions import deprecated
24
25

from lm_eval import utils
26
from lm_eval.api.instance import Instance, OutputType
Baber Abbasi's avatar
Baber Abbasi committed
27
from lm_eval.api.samplers import ContextSampler
28
from lm_eval.caching.cache import load_from_cache, save_to_cache
Baber's avatar
Baber committed
29
from lm_eval.config.metric import MetricConfig
Baber's avatar
Baber committed
30
from lm_eval.config.task import DataSet, TaskConfig
31
from lm_eval.filters import build_filter_ensemble
Baber Abbasi's avatar
Baber Abbasi committed
32
from lm_eval.utils import validate_index
33

34

35
36
37
38
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
39
    "generate_until",
40
41
]

Baber's avatar
cleanup  
Baber committed
42
if TYPE_CHECKING:
Baber's avatar
Baber committed
43
    pass
44

45

Lintang Sutawika's avatar
Lintang Sutawika committed
46
eval_logger = logging.getLogger(__name__)
47

48

Baber Abbasi's avatar
Baber Abbasi committed
49
50
51
52
53
54
55
56
57
58
@dataclass
class Message:
    role: str  # "system" | "user" | "assistant"
    content: str


def format_turn(content: str, role: str):
    return {"role": role, "content": content}


59
60
61
62
63
64
65
66
67
68
class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

Baber's avatar
cleanup  
Baber committed
69
    VERSION: int | str | None = None
70

71
72
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
Baber's avatar
cleanup  
Baber committed
73
    DATASET_PATH: str | None = None
74
75

    # The name of a subset within `DATASET_PATH`.
Baber's avatar
cleanup  
Baber committed
76
    DATASET_NAME: str | None = None
77

Baber's avatar
cleanup  
Baber committed
78
    OUTPUT_TYPE: OutputType | None = None
lintangsutawika's avatar
lintangsutawika committed
79

80
81
    def __init__(
        self,
Baber's avatar
cleanup  
Baber committed
82
83
84
85
        data_dir: str | None = None,
        cache_dir: str | None = None,
        download_mode: datasets.DownloadMode | None = None,
        config: Mapping | None = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
86
    ) -> None:
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
Baber's avatar
cleanup  
Baber committed
109
110
111
        self._training_docs: list | None = None
        self._fewshot_docs: list | None = None
        self._instances: list[Instance] | None = None
112

113
        self._config: TaskConfig = TaskConfig.from_yaml({**config})
114

115
        self._filters = [build_filter_ensemble("none", [("take_first", None)])]
Baber's avatar
cleanup  
Baber committed
116
        self.fewshot_rnd: random.Random | None = (
117
118
            None  # purposely induce errors in case of improper usage
        )
Baber Abbasi's avatar
Baber Abbasi committed
119
120
        self.sampler = ContextSampler(list(self.fewshot_docs))
        self.multiple_input = False
121

122
123
    def download(
        self,
Baber's avatar
cleanup  
Baber committed
124
125
        data_dir: str | None = None,
        cache_dir: str | None = None,
126
127
        download_mode=None,
    ) -> None:
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
Baber's avatar
Baber committed
152
        assert self.DATASET_PATH is not None, "DATASET_PATH must be set in Task class"
153
154
155
156
157
158
159
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
160

161
    @property
162
    def config(self) -> TaskConfig:
163
164
165
        """Returns the TaskConfig associated with this class."""
        return self._config

166
    @property
Baber's avatar
Baber committed
167
    def has_training_docs(self) -> bool:
168
        """Whether the task has a training set"""
Baber's avatar
Baber committed
169
        raise NotImplementedError
170

171
    @property
Baber's avatar
Baber committed
172
    def has_validation_docs(self) -> bool:
173
        """Whether the task has a validation set"""
Baber's avatar
Baber committed
174
        raise NotImplementedError
175

176
    @property
Baber's avatar
Baber committed
177
    def has_test_docs(self) -> bool:
178
        """Whether the task has a test set"""
Baber's avatar
Baber committed
179
        raise NotImplementedError
180

Baber's avatar
Baber committed
181
    def training_docs(self) -> DataSet | None:
182
183
184
185
186
187
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

Baber's avatar
Baber committed
188
    def validation_docs(self) -> DataSet | None:
189
190
191
192
193
194
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

Baber's avatar
Baber committed
195
    def test_docs(self) -> DataSet | None:
196
197
198
199
200
201
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

Baber's avatar
Baber committed
202
    def fewshot_docs(self) -> DataSet | None:
203
204
205
206
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
207
        if self.has_training_docs:
208
            return self.training_docs()
209
        elif self.has_validation_docs:
210
211
            return self.validation_docs()
        else:
Baber's avatar
Baber committed
212
            if self.config.num_fewshot and self.config.num_fewshot > 0:
Baber Abbasi's avatar
Baber Abbasi committed
213
214
215
216
                eval_logger.warning(
                    f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
                    ", using test_docs as fewshot_docs but this is not recommended."
                )
217
218
            return self.test_docs()

219
    def _process_doc(self, doc: dict) -> dict:
220
221
222
223
224
225
226
227
228
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
229

230
    @property
Baber's avatar
cleanup  
Baber committed
231
    def instances(self) -> list[Instance]:
232
233
234
235
236
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

237
    def fewshot_examples(self, k: int, rnd) -> Iterable[dict]:
238
239
240
241
242
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Baber's avatar
cleanup  
Baber committed
243
    def doc_to_decontamination_query(self, doc: dict):
244
        raise NotImplementedError(
245
246
247
248
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
Baber's avatar
cleanup  
Baber committed
249
    def doc_to_text(self, doc: dict) -> str:
250
251
252
        pass

    @abc.abstractmethod
Baber's avatar
cleanup  
Baber committed
253
    def doc_to_target(self, doc: dict) -> str | int:
254
255
        pass

256
    # not an abstractmethod because not every language-only task has to implement this
Baber's avatar
cleanup  
Baber committed
257
    def doc_to_image(self, doc: dict):
258
259
        raise NotImplementedError

Baber's avatar
cleanup  
Baber committed
260
    def doc_to_audio(self, doc: dict):
261
262
        raise NotImplementedError

Baber Abbasi's avatar
Baber Abbasi committed
263
264
265
266
    @staticmethod
    def resolve_field(doc: dict[str, str], field: str | None = None):
        if field is not None:
            return doc[field] if field in doc else utils.apply_template(field, doc)
Baber Abbasi's avatar
Baber Abbasi committed
267

268
269
    def build_all_requests(
        self,
270
        *,
Baber's avatar
cleanup  
Baber committed
271
272
        limit: int | None = None,
        samples: list[int] | None = None,
273
274
275
276
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
Baber's avatar
cleanup  
Baber committed
277
        system_instruction: str | None = None,
278
279
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
Baber's avatar
cleanup  
Baber committed
280
        chat_template: Callable | None = None,
281
        tokenizer_name: str = "",
282
    ) -> None:
283
        """Build a set of Instances for a task, and store them in task.instances"""
284
285
286
287

        # used with caching
        og_limit = limit

288
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
289
290
291
292
293
294
295
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
296
        cache_key += f"-tokenizer{tokenizer_name}"
297

Baber Abbasi's avatar
Baber Abbasi committed
298
        cached_instances = load_from_cache(file_name=cache_key, cache=cache_requests)
299
300
301
302
303
304
305
306
307
308
309
310
311

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
312
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
313

314
        instances = []
315
316
317
318
319
320
321
322
323
324

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
325
326
327
            self.doc_iterator(
                rank=rank, limit=limit, samples=samples, world_size=world_size
            )
328
329
330
331
332
333
334
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
335
        ):
336
            # sample fewshot context #TODO: need to offset doc_id by rank now!
337
            fewshot_ctx = self.fewshot_context(
338
                doc,
339
340
341
342
343
344
345
                num_fewshot=0
                if self.config.num_fewshot is None
                else self.config.num_fewshot,
                system_instruction=system_instruction,
                apply_chat_template=apply_chat_template,
                fewshot_as_multiturn=fewshot_as_multiturn,
                chat_template=chat_template,
Baber Abbasi's avatar
Baber Abbasi committed
346
                gen_prefix=self.resolve_field(doc, self.config.gen_prefix),
347
            )
348

349
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
350
351
352
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
Baber's avatar
Baber committed
353
                metadata=(self.config.task, doc_id, self.config.repeats),
354
                apply_chat_template=apply_chat_template,
355
                chat_template=chat_template,
lintangsutawika's avatar
lintangsutawika committed
356
            )
357
358
359
360

            if not isinstance(inst, list):
                inst = [inst]

361
362
363
364
365
366
367
368
369
370
371
372
373
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
374

375
376
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
377

378
379
380
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

381
    @abc.abstractmethod
Baber's avatar
cleanup  
Baber committed
382
    def construct_requests(self, doc: dict, ctx: list[dict] | str, **kwargs):
383
384
385
386
387
388
389
390
391
392
393
394
395
396
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
397
            The number of times each instance in a dataset is inferred on. Defaults to 1,
398
399
400
401
            can be increased for techniques like majority voting.
        """

    @abc.abstractmethod
402
    def process_results(self, doc: dict, results: list) -> dict[str, Any]:
403
404
405
406
407
408
409
410
411
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
412
        raise NotImplementedError
413

Baber's avatar
Baber committed
414
    @deprecated("not used anymore")
415
416
417
418
419
420
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
Baber's avatar
cleanup  
Baber committed
421
        return True
422

Baber's avatar
Baber committed
423
    @deprecated("not used anymore")
424
425
426
427
428
429
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
Baber's avatar
cleanup  
Baber committed
430
        return True
431

432
433
434
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Baber Abbasi's avatar
Baber Abbasi committed
435
436
    @staticmethod
    def count_bytes(doc: str) -> int:
haileyschoelkopf's avatar
haileyschoelkopf committed
437
438
439
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

Baber Abbasi's avatar
Baber Abbasi committed
440
441
    @staticmethod
    def count_words(doc: str) -> int:
haileyschoelkopf's avatar
haileyschoelkopf committed
442
443
444
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

445
    @utils.positional_deprecated
Baber Abbasi's avatar
Baber Abbasi committed
446
    def fewshot_context(self, doc, num_fewshot, rnd=None, description=None, **kwargs):
447
448
449
450
451
452
453
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
454
455
456
457
458
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
459
460
461
        :returns: str
            The fewshot context.
        """
462
        if rnd is None:
463
464
465
466
467
468
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
469

470
        description = description if description else ""
471
472

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
473
            labeled_examples = ""
474
        else:
lintangsutawika's avatar
lintangsutawika committed
475
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
476
            if self.has_training_docs:
lintangsutawika's avatar
lintangsutawika committed
477
478
479
480
481
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
482
                        if self.has_validation_docs
lintangsutawika's avatar
lintangsutawika committed
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
499
            )
500
501

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
502
        return description + labeled_examples + example
503

Baber's avatar
cleanup  
Baber committed
504
    def apply_filters(self) -> list[Instance] | None:
Baber Abbasi's avatar
Baber Abbasi committed
505
        """Iterates over FilterEnsembles and applies them to instances"""
Baber's avatar
cleanup  
Baber committed
506
        if hasattr(self, "_filters") and self._instances:
lintangsutawika's avatar
lintangsutawika committed
507
            for f in self._filters:
508
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
509
        else:
Baber's avatar
cleanup  
Baber committed
510
511
512
            eval_logger.warning(
                "No filter defined or no instances, passing through instances"
            )
lintangsutawika's avatar
lintangsutawika committed
513
            return self._instances
514

baberabb's avatar
baberabb committed
515
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
516
        """Returns the config as a dictionary."""
517
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
518
        # (num_fewshot)
519
        return self.config.to_dict()
520

Baber Abbasi's avatar
Baber Abbasi committed
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
Baber's avatar
Baber committed
540
541
542
543
544
        # if not isinstance(self, ConfigurableTask):
        #     self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
        #     self.aggregation = lambda: {
        #         metric_name: get_metric_aggregation(metric_name)
        #     }
Baber's avatar
Baber committed
545
546
        self._config.metric_list = [MetricConfig(name=metric_name)]
        self._config.process_results = lambda *args: {"bypass": 0}
Baber Abbasi's avatar
Baber Abbasi committed
547

Baber's avatar
cleanup  
Baber committed
548
    def set_fewshot_seed(self, seed: int | None = None) -> None:
549
        if hasattr(self, "sampler"):
Baber Abbasi's avatar
Baber Abbasi committed
550
            self.sampler.set_rnd(seed)
551

552
    @property
Baber's avatar
cleanup  
Baber committed
553
    def eval_docs(self) -> datasets.Dataset | Iterable[dict]:
554
        if self.has_test_docs:
555
            return self.test_docs()
556
        elif self.has_validation_docs:
557
558
            return self.validation_docs()
        else:
559
560
561
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
562
563

    def doc_iterator(
564
565
566
        self,
        *,
        rank: int = 0,
Baber's avatar
cleanup  
Baber committed
567
        limit: int | None = None,
568
        world_size: int = 1,
Baber's avatar
cleanup  
Baber committed
569
570
        samples: list[int] | None = None,
    ) -> Iterator[tuple[int, Any]]:
571
572
        if samples:
            n = len(self.eval_docs)
Baber's avatar
cleanup  
Baber committed
573
            assert all(e < n for e in samples), (
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
                f"Elements of --samples should be in the interval [0,k-1] where k is the number of total examples. In this case, k={n}."
            )
            eval_logger.info(
                f"{self.config.task}: Evaluating on {len(samples)} examples"
            )
            doc_iterator = utils.create_iterator(
                enumerate(x for i, x in enumerate(self.eval_docs) if i in samples),
                rank=int(rank),
                limit=None,  # limit does not matter here since we are selecting samples directly
                world_size=int(world_size),
            )
        else:
            limit = int(limit) if limit else None
            doc_iterator = utils.create_iterator(
                enumerate(self.eval_docs),
                rank=int(rank),
                limit=limit,
                world_size=int(world_size),
            )
593
594
        return doc_iterator

595
596

class ConfigurableTask(Task):
597
    VERSION = "Yaml"
598
    OUTPUT_TYPE = None
599
    CONFIG = None
600
601

    def __init__(
602
603
604
605
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
Baber's avatar
Baber committed
606
        config: Mapping[str, Any] | None = None,
Baber's avatar
Baber committed
607
    ) -> None:
608
        # Get pre-configured attributes
609
        self._config = self.CONFIG
Baber Abbasi's avatar
Baber Abbasi committed
610
        self.fewshot_rnd = 1234
611

612
        # Use new configurations if there was no preconfiguration
613
        if self.config is None:
614
            self._config = TaskConfig.from_yaml(config)
615
616
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
617
            if config is not None:
618
                self._config.__dict__.update(config)
619

620
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
621
622
623
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
624

Baber's avatar
cleanup  
Baber committed
625
626
        if isinstance(self.config.metadata, dict) and "version" in self.config.metadata:
            self.VERSION = self.config.metadata["version"]
627

628
        if self.config.output_type is not None:
629
630
631
632
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
633
            self.OUTPUT_TYPE = self.config.output_type
634

Baber Abbasi's avatar
Baber Abbasi committed
635
636
637
638
639
640
        self.multiple_targets = self.config.multiple_targets
        self.multiple_inputs = self.config.multiple_inputs
        assert not (self.multiple_targets and self.multiple_inputs), (
            "Cannot have both multiple_targets and multiple_inputs"
        )

641
642
643
644
        if self.config.doc_to_image is not None:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

645
646
647
648
        if self.config.doc_to_audio:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

Hojin Lee's avatar
Hojin Lee committed
649
650
651
        if self.config.unsafe_code is not False:
            self.UNSAFE_CODE = True

652
653
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
654

655
656
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
657

658
        # self.metric_list: list[MetricConfig] = self.config.get_metrics
659

660
        self.download(self.config.dataset_kwargs)
661
662
663
        self._training_docs = None
        self._fewshot_docs = None

Baber's avatar
Baber committed
664
        self._filters = self.config.get_filters
lintangsutawika's avatar
lintangsutawika committed
665

Baber's avatar
Baber committed
666
667
668
669
670
671
672
        # if self.config.use_prompt is not None:
        #     eval_logger.info(f"loading prompt {self.config.use_prompt}")
        #     self.prompt = get_prompt(
        #         self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
        #     )
        # else:
        #     self.prompt = None
673

674
675
676
677
        if (
            self.config.fewshot_cfg.num_fewshot() > 0
            and self.fewshot_docs() is not None
        ):
Baber's avatar
Baber committed
678
            self.sampler = self.config.fewshot_cfg.init_sampler(
Baber's avatar
Baber committed
679
                list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
Baber Abbasi's avatar
Baber Abbasi committed
680
            )
681
        self.task_docs = self.eval_docs
682

Baber's avatar
Baber committed
683
684
685
686
687
688
689
690
691
692
        # for name, fn in self.config._fn.items():
        #     if hasattr(self, name):
        #         setattr(
        #             self,
        #             name,
        #             types.MethodType(
        #                 lambda self, *args, _fn=fn, **kwargs: _fn(*args, **kwargs),
        #                 self,
        #             ),
        #         )
693

Baber's avatar
Baber committed
694
        self.runtime_checks(self.task_docs[0])
695

Baber Abbasi's avatar
Baber Abbasi committed
696
    def download(self, dataset_kwargs: dict[str, Any] | None = None, **kwargs) -> None:
Baber Abbasi's avatar
Baber Abbasi committed
697
698
        from packaging.version import parse as vparse

699
700
701
702
        self.config.dataset_kwargs, self.config.metadata = (
            self.config.dataset_kwargs or {},
            self.config.metadata or {},
        )
Baber Abbasi's avatar
Baber Abbasi committed
703
704
        if dataset_kwargs and vparse(datasets.__version__) >= vparse("4.0.0"):
            dataset_kwargs.pop("trust_remote_code", None)
705
        if isinstance(df := self.config.custom_dataset, Callable):
Baber Abbasi's avatar
Baber Abbasi committed
706
707
708
709
            eval_logger.warning(
                f"{self.config.task}: Custom kwargs can be passed to `--metadata` in console (as json string) or to the TaskManager."
                + "\nFor example --metadata='{\"max_seq_lengths\":[4096, 8192]}'. For details see task Readme."
            )
710
            self.dataset = df(**(self.config.dataset_kwargs | self.config.metadata))
Baber Abbasi's avatar
Baber Abbasi committed
711
        else:
Baber's avatar
Baber committed
712
713
714
            assert self.config.dataset_path is not None, (
                "dataset_path must be set in TaskConfig"
            )
Baber Abbasi's avatar
Baber Abbasi committed
715
            self.dataset = datasets.load_dataset(
716
717
718
                path=self.config.dataset_path,
                name=self.config.dataset_name,
                **self.config.dataset_kwargs,
Baber Abbasi's avatar
Baber Abbasi committed
719
            )
720

721
    @cached_property
baberabb's avatar
baberabb committed
722
    def has_training_docs(self) -> bool:
Baber's avatar
cleanup  
Baber committed
723
        return self.config.training_split is not None
724

725
    @cached_property
baberabb's avatar
baberabb committed
726
    def has_validation_docs(self) -> bool:
Baber's avatar
cleanup  
Baber committed
727
        return self.config.validation_split is not None
728

729
    @cached_property
baberabb's avatar
baberabb committed
730
    def has_test_docs(self) -> bool:
Baber's avatar
cleanup  
Baber committed
731
        return self.config.test_split is not None
732

Baber's avatar
Baber committed
733
    def training_docs(self) -> DataSet | None:
734
        if self.has_training_docs:
735
736
737
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
738
                )
739
            return self.dataset[self.config.training_split]
740

Baber's avatar
Baber committed
741
    def validation_docs(self) -> DataSet | None:
742
        if self.has_validation_docs:
743
744
745
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
746
                )
747
            return self.dataset[self.config.validation_split]
748

Baber's avatar
Baber committed
749
    def test_docs(self) -> DataSet | None:
750
        if self.has_test_docs:
751
752
753
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
754

755
    def fewshot_docs(self):
Baber's avatar
Baber committed
756
757
758
759
760
761
        docs = self.config.fewshot_cfg.get_docs(self.dataset)

        if docs is not None:
            return docs

        # Fallback to parent implementation
Baber's avatar
cleanup  
Baber committed
762
763
764
765
        if (
            (_num_fewshot := self.config.num_fewshot)
            and isinstance(_num_fewshot, int)
            and _num_fewshot > 0
766
        ):
Baber's avatar
cleanup  
Baber committed
767
768
769
770
771
            eval_logger.warning(
                f"[Task: {self.config.task}] "
                "num_fewshot > 0 but no fewshot source configured. "
                "Using preconfigured rule."
            )
Baber's avatar
Baber committed
772
773

        return super().fewshot_docs()
774

Baber's avatar
cleanup  
Baber committed
775
    def apply_filters(self) -> list[Instance] | None:
Baber Abbasi's avatar
Baber Abbasi committed
776
        """Iterates over FilterEnsembles and applies them to instances"""
777
        if hasattr(self, "_filters") and self._instances:
778
            for f in self._filters:
779
                f.ensemble.apply(self._instances)
780
        else:
781
782
783
            eval_logger.warning(
                "No filter defined or instances found. Passing through instances"
            )
Baber Abbasi's avatar
Baber Abbasi committed
784
        return self._instances
785

786
    def should_decontaminate(self):
787
        return self.config.should_decontaminate
788

Baber Abbasi's avatar
Baber Abbasi committed
789
    def doc_to_decontamination_query(self, doc: dict):
790
        if self.config.should_decontaminate:
791
792
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
793
            else:
794
795
796
797
798
799
800
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
Baber's avatar
Baber committed
801
                        utils.apply_template(
802
803
804
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
805

806
    def _process_doc(self, doc: dict) -> dict:
807
808
809
810
811
812
813
814
815
816
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Baber's avatar
Baber committed
817
818
    @overload
    def doc_to_text(self, doc: dict, doc_to_text: None = None) -> str | int: ...
lintangsutawika's avatar
lintangsutawika committed
819

Baber's avatar
Baber committed
820
821
822
823
824
825
826
827
828
    @overload
    def doc_to_text(self, doc: dict, doc_to_text: int) -> int: ...

    @overload
    def doc_to_text(self, doc: dict, doc_to_text: str) -> str: ...

    @overload
    def doc_to_text(self, doc: dict, doc_to_text: Callable[..., str]) -> str: ...

829
830
    def doc_to_text(
        self, doc: dict, doc_to_text: int | str | Callable[..., str] | None = None
Baber's avatar
Baber committed
831
    ) -> str | int:
Baber's avatar
Baber committed
832
833
        # if self.prompt is not None:
        #     doc_to_text = self.prompt
834
        doc_to_text = doc_to_text or self.config.doc_to_text
Baber's avatar
Baber committed
835
836
        if callable(doc_to_text):
            return doc_to_text(doc)
837
838
        if doc_to_text in doc:
            return doc[doc_to_text]
839
        elif isinstance(doc_to_text, str):
840
841
842
            text_string = utils.apply_template(doc_to_text, doc)
            if text_string.isdigit() and self.config.doc_to_choice is not None:
                return ast.literal_eval(text_string)
843
            else:
844
845
846
                return text_string
        elif isinstance(doc_to_text, int):
            return doc_to_text
lintangsutawika's avatar
lintangsutawika committed
847
        # Used when applying a Promptsource template
Baber's avatar
Baber committed
848
849
850
851
852
853
854
        # elif hasattr(doc_to_text, "apply"):
        #     applied_prompt = doc_to_text.apply(doc)
        #     if len(applied_prompt) == 2:
        #         return applied_prompt[0]
        #     else:
        #         eval_logger.warning("Applied prompt returns empty string")
        #         return self.config.fewshot_delimiter
855
        else:
856
            print(type(doc_to_text))
857
            raise TypeError
858

Baber's avatar
Baber committed
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
    @overload
    def doc_to_target(
        self, doc: dict, doc_to_target: None = None
    ) -> int | str | list[int]: ...

    @overload
    def doc_to_target(self, doc: dict, doc_to_target: int) -> int: ...

    @overload
    def doc_to_target(self, doc: dict, doc_to_target: str) -> int | str | list[int]: ...

    @overload
    def doc_to_target(self, doc: dict, doc_to_target: list) -> list[int]: ...

    @overload
    def doc_to_target(
        self, doc: dict, doc_to_target: Callable[..., int | str | list[int]]
    ) -> int | str | list[int]: ...

Baber's avatar
cleanup  
Baber committed
878
    def doc_to_target(self, doc: dict, doc_to_target=None) -> int | str | list[int]:
Baber's avatar
Baber committed
879
880
        # if self.prompt is not None:
        #     doc_to_target = self.prompt
881
        doc_to_target = doc_to_target or self.config.doc_to_target
Baber's avatar
Baber committed
882
883
        if callable(doc_to_target):
            doc_to_target(doc)
884
885
        if doc_to_target in doc:
            return doc[doc_to_target]
886
        elif isinstance(doc_to_target, str):
887
888
889
890
891
892
893
894
895
896
897
898
            target_string = utils.apply_template(doc_to_target, doc)
            if target_string.isdigit() and self.config.doc_to_choice is not None:
                return ast.literal_eval(target_string)
            # elif (
            #     len(target_string) >= 2
            #     and (target_string[0] == "[")
            #     and (target_string[-1] == "]")
            # ):
            #     try:
            #         return ast.literal_eval(target_string)
            #     except (SyntaxError, ValueError):
            #         return target_string
899
            else:
900
901
902
                return target_string

        elif isinstance(doc_to_target, (int, list)):
903
            return doc_to_target
904
905
906
907
        # elif isinstance(doc_to_target, list):
        #     return doc_to_target
        # elif callable(doc_to_target):
        #     return doc_to_target(doc)
Baber's avatar
Baber committed
908
909
910
911
912
913
914
915
        # # Used when applying a Promptsource template
        # elif hasattr(doc_to_target, "apply"):
        #     applied_prompt = doc_to_target.apply(doc)
        #     if len(applied_prompt) == 2:
        #         return applied_prompt[1]
        #     else:
        #         eval_logger.warning("Applied prompt returns empty string")
        #         return self.config.fewshot_delimiter
916
917
        else:
            raise TypeError
918

Baber's avatar
Baber committed
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
    @overload
    def doc_to_choice(self, doc: dict, doc_to_choice: None = None) -> list[str]: ...

    @overload
    def doc_to_choice(self, doc: dict, doc_to_choice: str) -> list[str]: ...

    @overload
    def doc_to_choice(self, doc: dict, doc_to_choice: list) -> list[str]: ...

    @overload
    def doc_to_choice(self, doc: dict, doc_to_choice: dict) -> list[str]: ...

    @overload
    def doc_to_choice(
        self, doc: dict, doc_to_choice: Callable[..., list[str]]
    ) -> list[str]: ...

Baber's avatar
cleanup  
Baber committed
936
    def doc_to_choice(
Baber's avatar
Baber committed
937
938
        self,
        doc: dict,
Baber's avatar
cleanup  
Baber committed
939
940
        doc_to_choice: str | list | dict | Callable[..., list[str]] | None = None,
    ) -> list[str]:
Baber's avatar
Baber committed
941
942
943
        # if self.prompt is not None:
        #     doc_to_choice = self.prompt
        if doc_to_choice is not None:
Yu Shi Jie's avatar
Yu Shi Jie committed
944
            doc_to_choice = doc_to_choice
945
        elif self.config.doc_to_choice is None:
946
            eval_logger.error("doc_to_choice was called but not set in config")
Baber's avatar
Baber committed
947
            doc_to_choice = None
948
        else:
949
            doc_to_choice = self.config.doc_to_choice
950

951
        if isinstance(doc_to_choice, str):
952
            if doc_to_choice in doc:
953
954
                return doc[doc_to_choice]
            else:
Baber's avatar
Baber committed
955
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
956
        elif isinstance(doc_to_choice, list):
957
            return doc_to_choice
958
959
        # elif isinstance(doc_to_choice, dict):
        #     return list(doc_to_choice.values())
Baber's avatar
Baber committed
960
961
        # elif hasattr(doc_to_choice, "get_answer_choices_list"):
        #     return doc_to_choice.get_answer_choices_list(doc)
962
963
        else:
            raise TypeError
964

Baber's avatar
Baber committed
965
966
967
968
969
970
971
972
973
974
975
976
    @overload
    def doc_to_image(self, doc: dict, doc_to_image: None = None) -> None: ...

    @overload
    def doc_to_image(self, doc: dict, doc_to_image: list) -> list: ...

    @overload
    def doc_to_image(self, doc: dict, doc_to_image: str) -> int | str | None: ...

    @overload
    def doc_to_image(self, doc: dict, doc_to_image: Callable[..., Any]) -> Any: ...

Baber's avatar
cleanup  
Baber committed
977
    def doc_to_image(self, doc: dict, doc_to_image=None) -> int | str | list | None:
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
        if doc_to_image is not None:
            doc_to_image = doc_to_image
        elif self.config.doc_to_image is not None:
            doc_to_image = self.config.doc_to_image
        else:
            return None

        if isinstance(doc_to_image, list):
            image_feature = [
                self.doc_to_image(doc, feature) for feature in doc_to_image
            ]
            return [feature for feature in image_feature if feature is not None]
        elif isinstance(doc_to_image, str):
            if doc_to_image in self.features:
                return doc[doc_to_image]
            else:
Baber's avatar
Baber committed
994
                return ast.literal_eval(utils.apply_template(doc_to_image, doc))
995
996
997
998
999
        elif callable(doc_to_image):
            return doc_to_image(doc)
        else:
            return None

Baber's avatar
Baber committed
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
    @overload
    def doc_to_audio(self, doc: Any, doc_to_audio: None = None) -> None: ...

    @overload
    def doc_to_audio(self, doc: Any, doc_to_audio: list) -> list: ...

    @overload
    def doc_to_audio(self, doc: Any, doc_to_audio: str) -> int | str | None: ...

    @overload
    def doc_to_audio(self, doc: Any, doc_to_audio: Callable[..., Any]) -> Any: ...

Baber's avatar
cleanup  
Baber committed
1012
    def doc_to_audio(self, doc: Any, doc_to_audio=None) -> int | str | list | None:
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
        if doc_to_audio is not None:
            doc_to_audio = doc_to_audio
        elif self.config.doc_to_audio is not None:
            doc_to_audio = self.config.doc_to_audio
        else:
            return None

        if isinstance(doc_to_audio, list):
            audio_feature = [
                self.doc_to_audio(doc, feature) for feature in doc_to_audio
            ]
            return [feature for feature in audio_feature if feature is not None]
        elif isinstance(doc_to_audio, str):
            if doc_to_audio in self.features:
                return doc[doc_to_audio]
            else:
Baber's avatar
Baber committed
1029
                return ast.literal_eval(utils.apply_template(doc_to_audio, doc))
1030
1031
1032
1033
1034
        elif callable(doc_to_audio):
            return doc_to_audio(doc)
        else:
            return None

Baber Abbasi's avatar
Baber Abbasi committed
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
    def _doc_to_qa_pair(
        self,
        doc: dict[str, Any],
        gen_prefix: str | None,
        *,
        q: str | None = None,
        a: str | None = None,
        include_answer: bool = True,
    ) -> list[Message]:
        """Return `[user, assistant?]` for a single doc."""
        q = q or self.doc_to_text(doc)
        a = a or self.doc_to_target(doc)
        # Handle multiple-choice indirection
        if isinstance(q, list) and self.config.doc_to_choice:
            q = q[cast(int, self.doc_to_target(doc))]
        if isinstance(a, int) and self.config.doc_to_choice:
            a = (
                self.doc_to_choice(doc)[a]
                if not self.multiple_inputs
                else self.doc_to_choice(doc)[0]
            )

        assert isinstance(q, str), "Context is not a string!"
        msgs = [Message("user", q)]
        if include_answer:
            if gen_prefix and not gen_prefix[-1].isspace():
                prefix = gen_prefix + " "
            elif gen_prefix:
                prefix = gen_prefix
Baber Abbasi's avatar
Baber Abbasi committed
1064
            else:
Baber Abbasi's avatar
Baber Abbasi committed
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
                prefix = ""
            answer_txt = prefix + (a if not isinstance(a, list) else a[0])
            msgs.append(Message("assistant", answer_txt))
        else:
            msgs.append(Message("assistant", gen_prefix)) if gen_prefix else None
        return msgs

    @staticmethod
    def _render_chat_template(
        messages: list[Message],
        chat_template: Callable[[list[dict[str, str]]], str],
        *,
        tgt_delim: str = " ",
        few_delim: str = "\n\n",
        multiturn=True,
    ) -> str:
        if multiturn:
            return chat_template([m.__dict__ for m in messages])
        else:
            has_prefix = messages[-1].role == "assistant"
            if not has_prefix:
                context = [
                    format_turn(
                        ConfigurableTask._message_to_text(
                            messages, tgt_delim=tgt_delim, few_delim=few_delim
                        ),
                        role="user",
                    )
                ]
            else:
                context = [
                    format_turn(
                        ConfigurableTask._message_to_text(
                            messages[:-1], tgt_delim=tgt_delim, few_delim=few_delim
                        ),
                        role="user",
                    )
                ]
                context += [format_turn(**messages[-1].__dict__)]

            return chat_template(context)

    def fewshot_context(
        self,
        doc: dict[str, str],
        num_fewshot: int,
        system_instruction: str | None = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        chat_template: Callable[..., str] | None = None,
        gen_prefix: str | None = None,
    ) -> str | list[str]:
        messages = []
        tgt_delim, few_delim = (
            self.config.target_delimiter,
            self.config.fewshot_delimiter,
        )
        chat_template = (
            partial(chat_template, add_generation_prompt=not gen_prefix)
            if chat_template
            else None
        )
        description = self.resolve_field(doc, self.config.description) or ""
        system_prompt = few_delim.join(filter(None, [system_instruction, description]))
        if system_prompt:
            messages.append(Message("system", system_prompt))

        for fs_doc in self.sampler.sample(
            n=num_fewshot,
            doc=doc if self.config.fewshot_split == self.config.test_split else None,
        ):
            messages += self._doc_to_qa_pair(fs_doc, gen_prefix)

        if self.multiple_inputs:
            # if multiple inputs, then doc_to_text: list[str]
            messages = [
                messages
                + self._doc_to_qa_pair(
                    doc,
                    gen_prefix,
                    q=q,
                    include_answer=False,
                )
                for q in cast(list[str], self.doc_to_text(doc))
            ]
        else:
            # otherwise, doc_to_text: str for all other cases
            messages += self._doc_to_qa_pair(doc, gen_prefix, include_answer=False)
            messages = [messages]

        if apply_chat_template and chat_template:
            res = [
                self._render_chat_template(
                    m,
                    chat_template,
                    tgt_delim=tgt_delim,
                    few_delim=few_delim,
                    multiturn=fewshot_as_multiturn,
                )
                for m in messages
            ]
        else:
            res = [
                self._message_to_text(m, tgt_delim=tgt_delim, few_delim=few_delim)
                for m in messages
            ]

        return res[0] if not self.multiple_inputs else res

    @staticmethod
    def _message_to_text(
        messages: list[Message],
        *,
        tgt_delim=" ",
        few_delim="\n\n",
    ) -> str:
        buff = []
        for i, m in enumerate(messages):
            if m.role == "system" or m.role == "user":
                buff.append(m.content)
            elif m.role == "assistant":
                buff.append(tgt_delim + m.content)
                if i != len(messages) - 1:
                    # then this is not assis prefill
                    buff.append(few_delim)

        return "".join(buff)
Baber Abbasi's avatar
Baber Abbasi committed
1192

baberabb's avatar
baberabb committed
1193
    def construct_requests(
Baber Abbasi's avatar
Baber Abbasi committed
1194
        self, doc: dict[str, str], ctx: str | list[str], **kwargs
Baber's avatar
cleanup  
Baber committed
1195
    ) -> list[Instance] | Instance:
1196
        apply_chat_template = kwargs.pop("apply_chat_template", False)
Baber Abbasi's avatar
Baber Abbasi committed
1197
        chat_template: Callable | None = kwargs.pop("chat_template", None)  # noqa: F841
1198

1199
1200
        aux_arguments = None

1201
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1202
            arguments = (ctx, self.doc_to_target(doc))
1203
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1204
            arguments = (self.doc_to_target(doc),)
1205
        elif self.OUTPUT_TYPE == "multiple_choice":
1206
            choices = self.doc_to_choice(doc)
Baber Abbasi's avatar
Baber Abbasi committed
1207
1208
1209
1210
1211
1212
1213
1214
            target_delimiter = (
                ""
                if (apply_chat_template and not self.config.gen_prefix)
                else self.config.target_delimiter
            )
            if self.multiple_inputs:
                # If there are multiple inputs, assume only one choice
                arguments = [(_ctx, f"{target_delimiter}{choices[0]}") for _ctx in ctx]
1215
            else:
1216
                # Otherwise they are placed in the continuation
1217
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1218

1219
            if "acc_mutual_info" in [m.metric_name for m in self.config._metric_list]:
1220
1221
1222
1223
1224
1225
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
1226
1227
1228
                aux_arguments = [
                    ("", f"{target_delimiter}{choice}") for choice in choices
                ]
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240

                arguments.extend(aux_arguments)

        elif self.OUTPUT_TYPE == "generate_until":
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

        multimodal_arg = {}
        if (
            self.config.doc_to_image
        ):  # TODO: ensure that non-multimodal tasks aren't getting visual args
            multimodal_arg = {
                **multimodal_arg,
Baber's avatar
Baber committed
1241
                "visual": self.doc_to_image(doc),
1242
1243
            }

1244
1245
1246
1247
1248
        if (
            self.config.doc_to_audio
        ):  # TODO: ensure that non-multimodal tasks aren't getting audio args
            multimodal_arg = {
                **multimodal_arg,
Baber's avatar
Baber committed
1249
                "audio": self.doc_to_audio(doc),
1250
1251
            }

1252
1253
1254
1255
1256
1257
1258
        if bool(multimodal_arg):
            if isinstance(arguments, list):
                arguments = [arg + (multimodal_arg,) for arg in arguments]
            else:
                arguments = arguments + (multimodal_arg,)

        if self.OUTPUT_TYPE == "multiple_choice":
1259
            request_list = [
1260
1261
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1262
                    doc=doc,
1263
                    arguments=arg,
1264
                    idx=i,
1265
1266
                    **kwargs,
                )
1267
                for i, arg in enumerate(arguments)
1268
            ]
1269
1270

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1271

lintangsutawika's avatar
lintangsutawika committed
1272
        return Instance(
1273
1274
1275
1276
1277
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=arguments,
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1278
        )
1279

1280
    def process_results(self, doc: dict, results: list) -> dict[str, Any]:
1281
1282
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
1283
        result_dict = {}
1284
        use_metric = list(m.metric_name for m in self.config._metric_list)
1285
1286
1287
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1288
1289
1290
1291
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1292
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
1293
1294
1295
1296
1297
1298
            (loglikelihood, *_) = results
            assert isinstance(_target := self.doc_to_target(doc), str), (
                "Require target to be a string for loglikelihood_rolling"
            )
            _words = self.count_words(_target)
            _bytes = self.count_bytes(_target)
haileyschoelkopf's avatar
haileyschoelkopf committed
1299
            return {
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1315
            }
1316
        elif self.OUTPUT_TYPE == "multiple_choice":
1317
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1318

Baber's avatar
cleanup  
Baber committed
1319
            # retrieve choices in list[str] form, to compute choice lengths, etc.
Baber Abbasi's avatar
Baber Abbasi committed
1320
1321
1322
1323
1324
            choices = (
                self.doc_to_choice(doc)
                if not self.multiple_inputs
                else cast(list[str], self.doc_to_text(doc))
            )
1325
1326
            completion_len = np.array([float(len(i)) for i in choices])

Baber's avatar
Baber committed
1327
            if 2 * len(choices) == len(lls) and "acc_mutual_info" in use_metric:
1328
1329
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
1330
1331
                # as we extend the args list with unconditional ("", continuation) pairs
                lls_unconditional = lls[len(choices) :]
1332
1333
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1334
                # and this stores our "regular" conditional loglikelihoods
1335
                lls = lls[: len(choices)]
Baber's avatar
Baber committed
1336
1337
            else:
                lls_unconditional = None
1338

1339
1340
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1341

Baber Abbasi's avatar
Baber Abbasi committed
1342
1343
1344
1345
1346
            gold = backup = self.doc_to_target(doc)

            if isinstance(gold, list):
                gold = [validate_index(g, len(choices)) for g in gold]
                gold_index_error = -100 in gold
1347
            else:
Baber Abbasi's avatar
Baber Abbasi committed
1348
1349
1350
1351
                if isinstance(gold, int):
                    gold = validate_index(gold, len(choices))
                elif isinstance(gold, str):
                    gold = choices.index(gold) if gold in choices else -100
1352

Baber Abbasi's avatar
Baber Abbasi committed
1353
                gold_index_error = gold == -100
1354
1355
1356

            if gold_index_error:
                eval_logger.warning(
Baber Abbasi's avatar
Baber Abbasi committed
1357
                    f"Label [{backup}] index was not in within range of available choices {choices},"
1358
1359
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1360

Baber Abbasi's avatar
Baber Abbasi committed
1361
            if self.multiple_targets:
lintangsutawika's avatar
lintangsutawika committed
1362
1363
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Baber's avatar
cleanup  
Baber committed
1364
                exact_match = int(any(is_greedy[i] if i != -100 else 0 for i in gold))
lintangsutawika's avatar
lintangsutawika committed
1365
1366
1367
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1368
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1369
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1370

Lintang Sutawika's avatar
Lintang Sutawika committed
1371
1372
1373
1374
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1375
            result_dict = {
1376
                **({"acc": acc} if "acc" in use_metric else {}),
1377
1378
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1379
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1380
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1381
1382
1383
1384
1385
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1386
1387
            }

1388
            if "acc_mutual_info" in use_metric:
Baber's avatar
Baber committed
1389
1390
1391
                assert lls_unconditional is not None, (
                    "lls_unconditional should not be None if acc_mutual_info is in use_metric"
                )
lintangsutawika's avatar
lintangsutawika committed
1392
1393
1394
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1395
1396
1397
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1398
        elif self.OUTPUT_TYPE == "generate_until":
1399
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1400
            result = results[0]
Baber's avatar
Baber committed
1401
            for metric in self.config._metric_list:
1402
                try:
Baber's avatar
Baber committed
1403
                    result_score = metric.fn(
1404
1405
                        references=[gold] if not isinstance(gold, list) else gold,
                        predictions=[result],
Baber's avatar
Baber committed
1406
                        **metric.kwargs,
1407
1408
                    )
                except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
Baber's avatar
Baber committed
1409
                    result_score = metric.fn([gold, result])
1410
1411
1412
1413
1414
                if isinstance(result_score, dict):
                    # This allows for multiple metrics to be returned from the same function
                    for k, v in result_score.items():
                        result_dict[k] = v
                else:
Baber's avatar
Baber committed
1415
                    result_dict[metric.name] = result_score
1416
        else:
lintangsutawika's avatar
lintangsutawika committed
1417
1418
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1419
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1420
            )
1421
1422
1423

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1424
    def aggregation(self) -> dict:
1425
        return {k.name: k.aggregation_fn for k in self.config._metric_list}
1426

Baber Abbasi's avatar
Baber Abbasi committed
1427
    def higher_is_better(self) -> dict:
1428
        return {k.name: k.higher_is_better for k in self.config._metric_list}
1429

Baber Abbasi's avatar
Baber Abbasi committed
1430
1431
1432
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1433
    @property
Baber's avatar
cleanup  
Baber committed
1434
    def task_name(self) -> str | None:
Lintang Sutawika's avatar
Lintang Sutawika committed
1435
1436
        return getattr(self.config, "task", None)

Baber's avatar
Baber committed
1437
1438
1439
1440
    def runtime_checks(self, test_doc):
        # Test One Doc
        self.features: list[str] = list(self.task_docs.features.keys())
        self.multiple_target = 0
Baber's avatar
Baber committed
1441
        self.multiple_input = 0
Baber's avatar
Baber committed
1442
1443
1444
1445
1446
1447
1448
        test_text = self.doc_to_text(test_doc)
        test_target = self.doc_to_target(test_doc)

        if self.config.doc_to_choice is not None:
            test_choice = self.doc_to_choice(test_doc)
            if not isinstance(test_choice, list):
                eval_logger.error("doc_to_choice must return list")
Baber's avatar
Baber committed
1449
1450
1451
1452
1453
1454
1455
            else:
                num_choice = len(test_choice)

            if isinstance(test_text, int):
                eval_logger.debug(
                    "doc_to_text returned an int. Assuming multiple inputs."
                )
Baber's avatar
Baber committed
1456
1457
1458
1459
1460

            if isinstance(test_text, int):
                eval_logger.debug(
                    "doc_to_text returned an int. Assuming multiple inputs."
                )
Baber's avatar
Baber committed
1461
                self.multiple_input = num_choice
Baber's avatar
Baber committed
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
        else:
            test_choice = None

        if isinstance(test_target, list):
            eval_logger.debug(
                "doc_to_target returned a list. Assuming multiple targets."
            )
            self.multiple_target = len(test_target)
        else:
            if (isinstance(test_target, int)) and (test_choice is not None):
                test_target = test_choice[test_target]
            else:
                test_target = str(test_target)

        check_choices = test_choice if test_choice is not None else [test_target]
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = choice[0].isspace()
                delimiter_has_whitespace = (
                    self.config.target_delimiter.rstrip()
                    != self.config.target_delimiter
                )

                if delimiter_has_whitespace and choice_has_whitespace:
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
                    )

1494
1495
1496
1497
1498
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Baber Abbasi's avatar
Baber Abbasi committed
1499
            f"num_samples={len(self.eval_docs)})"
1500
1501
        )

1502
1503

class MultipleChoiceTask(Task):
1504
    OUTPUT_TYPE = "loglikelihood"
1505

baberabb's avatar
baberabb committed
1506
    def doc_to_target(self, doc: dict) -> str:
1507
1508
        return " " + doc["choices"][doc["gold"]]

Baber's avatar
cleanup  
Baber committed
1509
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> list[Instance]:
1510
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1511
1512
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1513
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1514
                doc=doc,
Baber's avatar
Baber committed
1515
                arguments=(ctx, f" {choice}"),
1516
                idx=i,
1517
1518
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1519
1520
            for i, choice in enumerate(doc["choices"])
        ]
1521

Baber's avatar
cleanup  
Baber committed
1522
    def process_results(self, doc: dict, results: Iterable[tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1523
1524
1525
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1537
    def higher_is_better(self) -> dict:
1538
1539
1540
1541
1542
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1543
    def aggregation(self) -> dict:
Baber's avatar
Baber committed
1544
1545
        from lm_eval.api.metrics import mean

1546
1547
1548
1549
1550
1551
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1552
class PerplexityTask(Task):
1553
1554
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1555
    def has_training_docs(self) -> bool:
1556
1557
        return False

Baber's avatar
cleanup  
Baber committed
1558
    def fewshot_examples(self, k: int, rnd) -> list:
1559
1560
1561
1562
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1563
1564
        return []

baberabb's avatar
baberabb committed
1565
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1566
1567
1568
1569
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1570
1571
1572

        return ""

baberabb's avatar
baberabb committed
1573
    def higher_is_better(self) -> dict:
1574
1575
1576
1577
1578
1579
1580
1581
1582
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1583
    def doc_to_text(self, doc) -> str:
1584
1585
1586
1587
1588
        return ""

    def doc_to_target(self, doc):
        return doc

Baber's avatar
cleanup  
Baber committed
1589
    def construct_requests(self, doc: dict, ctx: str | None, **kwargs):
1590
1591
        if bool(ctx):
            raise ValueError
1592

lintangsutawika's avatar
lintangsutawika committed
1593
1594
1595
1596
1597
1598
1599
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1600

Baber's avatar
cleanup  
Baber committed
1601
    def process_results(self, doc: dict, results: tuple[float]) -> dict:
1602
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1603
1604
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1605
1606
1607
1608
1609
1610
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1611
    def aggregation(self) -> dict:
Baber's avatar
Baber committed
1612
1613
        from lm_eval.api.metrics import bits_per_byte, weighted_perplexity

1614
1615
1616
1617
1618
1619
1620
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1621
    def count_bytes(cls, doc) -> int:
1622
1623
1624
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1625
    def count_words(cls, doc) -> int:
1626
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
1627
        return len(re.split(r"\s+", doc))