task.py 56.5 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
29
30
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
31
from lm_eval.api.registry import (
32
33
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_aggregation,
35
    get_metric,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
38
)
39
from lm_eval.caching.cache import load_from_cache, save_to_cache
40
41
42
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

43

44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
48
    "generate_until",
49
50
]

51
eval_logger = logging.getLogger("lm-eval")
52

lintangsutawika's avatar
lintangsutawika committed
53

54
55
@dataclass
class TaskConfig(dict):
56
    # task naming/registry
57
58
59
60
    task: Optional[str] = None
    task_alias: Optional[str] = None
    group: Optional[Union[str, list]] = None
    group_alias: Optional[Union[str, list]] = None
lintangsutawika's avatar
lintangsutawika committed
61
    group_config: Optional[dict] = None
62
63
64
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
65
66
67
68
69
70
71
72
73
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
    fewshot_split: Optional[
        str
    ] = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
74
75
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
76
77
78
79
80
81
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
82
    description: str = ""
83
84
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
85
    fewshot_config: Optional[dict] = None
86
    # runtime configuration options
87
    num_fewshot: Optional[int] = None
88
    # scoring options
89
90
91
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
92
    repeats: int = 1
93
    filter_list: Optional[Union[str, list]] = None
94
    should_decontaminate: bool = False
95
96
97
98
    doc_to_decontamination_query: Optional[str] = None
    metadata: Optional[
        dict
    ] = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
99

Ethan Smith's avatar
Ethan Smith committed
100
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
101
        if self.generation_kwargs is not None:
102
            if self.output_type != "generate_until":
103
                raise ValueError(
104
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
105
106
107
108
109
110
111
112
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
113
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
114
        else:
115
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
116
117
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
118
119
120
121
122
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
123
124
                    "do_sample": False,
                }
125

126
127
128
    def __getitem__(self, item):
        return getattr(self, item)

129
130
131
    def __setitem__(self, item, value):
        return setattr(self, item, value)

132
    def to_dict(self, keep_callable: bool = False) -> dict:
133
134
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
135
        Used for dumping results alongside full task configuration
136

haileyschoelkopf's avatar
haileyschoelkopf committed
137
138
139
140
141
142
143
144
145
146
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
147
148
149
150
151
152
153
154
155
156
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
157
        return cfg_dict
158

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

175
176
177
178
179
180
181
182
183
184
185

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

186
    VERSION: Optional[Union[int, str]] = None
187

188
189
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
190
    DATASET_PATH: Optional[str] = None
191
192

    # The name of a subset within `DATASET_PATH`.
193
    DATASET_NAME: Optional[str] = None
194

195
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
196

197
198
    def __init__(
        self,
199
200
201
202
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
203
    ) -> None:
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
226
227
228
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
229

230
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
231

lintangsutawika's avatar
lintangsutawika committed
232
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
233

234
235
236
237
238
239
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
264
265
266
267
268
269
270
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
271

272
    @property
273
    def config(self) -> TaskConfig:
274
275
276
        """Returns the TaskConfig associated with this class."""
        return self._config

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

292
    def training_docs(self) -> Iterable:
293
294
295
296
297
298
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

299
    def validation_docs(self) -> Iterable:
300
301
302
303
304
305
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

306
    def test_docs(self) -> Iterable:
307
308
309
310
311
312
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

313
    def fewshot_docs(self) -> Iterable:
314
315
316
317
318
319
320
321
322
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
323
            eval_logger.warning(
324
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
325
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
326
            )
327
328
            return self.test_docs()

329
    def _process_doc(self, doc: dict) -> dict:
330
331
332
333
334
335
336
337
338
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
339

340
    @property
341
    def instances(self) -> List[Instance]:
342
343
344
345
346
347
348
349
350
351
352
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

353
354
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
355
356
357
358
359
360
361
362
363
364
365
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

366
367
    def build_all_requests(
        self,
368
        *,
369
370
371
372
373
374
        limit=None,
        rank=None,
        world_size=None,
        cache_requests=False,
        rewrite_requests_cache=False,
    ) -> None:
375
        """Build a set of Instances for a task, and store them in task.instances"""
376
377
378
379

        # used with caching
        og_limit = limit

380
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

        cached_instances = load_from_cache(file_name=cache_key)

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
396
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
397

398
        instances = []
399
400
401
402
403
404
405
406
407
408

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
409
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
410
411
412
413
414
415
416
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
417
        ):
418
            # sample fewshot context #TODO: need to offset doc_id by rank now!
419
            fewshot_ctx = self.fewshot_context(
420
                doc,
421
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
422
            )
423

424
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
425
426
427
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
428
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
429
            )
430
431
432
433

            if not isinstance(inst, list):
                inst = [inst]

434
435
436
437
438
439
440
441
442
443
444
445
446
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
447

448
449
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
450

451
452
453
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
470
            The number of times each instance in a dataset is inferred on. Defaults to 1,
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

506
507
508
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
509
510
511
512
513
514
515
516
517
518
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

519
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
520
    def fewshot_context(
521
522
523
524
525
        self,
        doc,
        num_fewshot,
        rnd=random.Random(1234),
        description=None,
lintangsutawika's avatar
lintangsutawika committed
526
    ):
527
528
529
530
531
532
533
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
534
535
536
537
538
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
539
540
541
        :returns: str
            The fewshot context.
        """
542
543
544
545
        if rnd is None:
            raise ValueError(
                "A `random.Random` generator argument must be provided to `rnd`"
            )
lintangsutawika's avatar
lintangsutawika committed
546

547
        description = description if description else ""
548
549

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
550
            labeled_examples = ""
551
        else:
lintangsutawika's avatar
lintangsutawika committed
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
576
            )
577
578

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
579
        return description + labeled_examples + example
580

581
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
582
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
583
584
        if hasattr(self, "_filters"):
            for f in self._filters:
585
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
586
587
588
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
589

baberabb's avatar
baberabb committed
590
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
591
        """Returns the config as a dictionary."""
592
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
593
        # (num_fewshot)
594
        return self.config.to_dict()
595

Baber Abbasi's avatar
Baber Abbasi committed
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

636
637
638
639
640
641
642
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
643
644
645
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
646
647
648
649
650
651
652
653
654
655
656
657
658

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

659
660

class ConfigurableTask(Task):
661
    VERSION = "Yaml"
662
    OUTPUT_TYPE = None
663
    CONFIG = None
664
665

    def __init__(
666
667
668
669
670
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
671
    ) -> None:  # TODO no super() call here
672
        # Get pre-configured attributes
673
        self._config = self.CONFIG
674

675
        # Use new configurations if there was no preconfiguration
676
        if self.config is None:
677
            self._config = TaskConfig(**config)
678
679
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
680
            if config is not None:
681
                self._config.__dict__.update(config)
682

683
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
684
685
686
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
687

688
689
690
691
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

692
        if self.config.output_type is not None:
693
694
695
696
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
697
            self.OUTPUT_TYPE = self.config.output_type
698

699
700
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
701

702
703
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
704

705
706
707
708
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
709

710
        if self.config.metric_list is None:
711
            # TODO: handle this in TaskConfig.__post_init__ ?
712
713
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

714
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
715
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
716
                self._metric_fn_kwargs[metric_name] = {}
717
718
719
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
720
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
721
        else:
722
            for metric_config in self.config.metric_list:
723
724
725
726
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
727
728
729
730
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
731
732
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
733
                }
Chris's avatar
Chris committed
734
735
736
737
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
738

739
                if self.config.process_results is not None:
740
741
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
742
743
744
745
746
747
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
748
749
750
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
751
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
752

753
                if "aggregation" in metric_config:
754
                    agg_name = metric_config["aggregation"]
755
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
756
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
757
                    elif callable(agg_name):  # noqa: E721
758
759
760
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
761
                else:
762
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
763
                    metric_agg = get_metric_aggregation(metric_name)
764
                    eval_logger.warning(
765
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
766
767
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
768
                    )
769
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
770

771
772
773
774
775
776
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
777
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
778
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
779
                        f"higher_is_better={is_higher_better(metric_name)}"
780
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
781
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
782

783
        self.download(self.config.dataset_kwargs)
784
785
786
        self._training_docs = None
        self._fewshot_docs = None

787
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
788
            self._filters = []
789
            for filter_config in self.config.filter_list:
790
791
792
793
794
795
796
797
798
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
799
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
800
        else:
801
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
802

803
804
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
805
            self.prompt = get_prompt(
806
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
807
            )
808
809
810
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
811
        if self.fewshot_docs() is not None:
haileyschoelkopf's avatar
haileyschoelkopf committed
812
            self.sampler = samplers.get_sampler(
haileyschoelkopf's avatar
haileyschoelkopf committed
813
814
815
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
haileyschoelkopf's avatar
haileyschoelkopf committed
816
            )(list(self.fewshot_docs()), self, rnd=random.Random(1234))
817

818
        self.task_docs = self.eval_docs
819

820
        # Test One Doc
821
        self.features = list(self.task_docs.features.keys())
822
823
        self.multiple_input = 0
        self.multiple_target = 0
824
        test_doc = self.task_docs[0]
825
        test_text = self.doc_to_text(test_doc)
826
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
827

828
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
829
            test_choice = self.doc_to_choice(test_doc)
830
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
831
                eval_logger.error("doc_to_choice must return list")
832
833
            else:
                num_choice = len(test_choice)
834

835
            if isinstance(test_text, int):
836
                self.multiple_input = num_choice
837
838
        else:
            test_choice = None
839

840
        if isinstance(test_target, list):
841
            self.multiple_target = len(test_target)
842
        else:
843
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
844
                test_target = test_choice[test_target]
845
            else:
lintangsutawika's avatar
lintangsutawika committed
846
                test_target = str(test_target)
847

848
849
850
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
851
            check_choices = [test_target]
852
853
854
855
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
856
857
                    True
                    if self.config.target_delimiter.rstrip()
858
                    != self.config.target_delimiter
859
                    else False
860
                )
861

862
                if delimiter_has_whitespace and choice_has_whitespace:
863
864
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
865
866
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
867
                    eval_logger.debug(
868
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
869
870
                    )

871
    def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
872
873
874
875
876
877
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
878
    def has_training_docs(self) -> bool:
879
        if self.config.training_split is not None:
880
881
882
883
            return True
        else:
            return False

baberabb's avatar
baberabb committed
884
    def has_validation_docs(self) -> bool:
885
        if self.config.validation_split is not None:
886
887
888
889
            return True
        else:
            return False

baberabb's avatar
baberabb committed
890
    def has_test_docs(self) -> bool:
891
        if self.config.test_split is not None:
892
893
894
895
            return True
        else:
            return False

baberabb's avatar
baberabb committed
896
    def training_docs(self) -> datasets.Dataset:
897
        if self.has_training_docs():
898
899
900
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
901
                )
902
            return self.dataset[self.config.training_split]
903

baberabb's avatar
baberabb committed
904
    def validation_docs(self) -> datasets.Dataset:
905
        if self.has_validation_docs():
906
907
908
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
909
                )
910
            return self.dataset[self.config.validation_split]
911

baberabb's avatar
baberabb committed
912
    def test_docs(self) -> datasets.Dataset:
913
        if self.has_test_docs():
914
915
916
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
917

918
    def fewshot_docs(self):
919
        if self.config.fewshot_split is not None:
920
921
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
922
            return self.dataset[self.config.fewshot_split]
923
        else:
924
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
925
                eval_logger.warning(
926
                    f"Task '{self.config.task}': "
927
928
929
930
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
931

lintangsutawika's avatar
lintangsutawika committed
932
    @utils.positional_deprecated
933
    def fewshot_context(self, doc: str, num_fewshot: int) -> str:
lintangsutawika's avatar
lintangsutawika committed
934
935
936
937
938
939
940
941
942
943
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :returns: str
            The fewshot context.
        """
944
945
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
946
947
948

        if num_fewshot == 0:
            # always prepend the (possibly empty) task description
949
            labeled_examples = description
lintangsutawika's avatar
lintangsutawika committed
950
        else:
951
            labeled_examples = description + self.sampler.get_context(doc, num_fewshot)
lintangsutawika's avatar
lintangsutawika committed
952
953

        example = self.doc_to_text(doc)
954
955
956
957
958
959
960
961
962
963
964
965
966
        if self.multiple_input:
            return labeled_examples
        else:
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
967

968
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
969
        """Iterates over FilterEnsembles and applies them to instances"""
970
971
        if hasattr(self, "_filters"):
            for f in self._filters:
972
                f.apply(self._instances)
973
974
975
976
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

977
    def should_decontaminate(self):
978
        return self.config.should_decontaminate
979
980

    def doc_to_decontamination_query(self, doc):
981
        if self.config.should_decontaminate:
982
983
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
984
            else:
985
986
987
988
989
990
991
992
993
994
995
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
996

997
    def _process_doc(self, doc: dict) -> dict:
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
1009
1010
        if self.prompt is not None:
            doc_to_text = self.prompt
1011
        else:
1012
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1013

1014
        if isinstance(doc_to_text, int):
1015
            return doc_to_text
1016
        elif isinstance(doc_to_text, str):
1017
            if doc_to_text in self.features:
1018
                # if self.config.doc_to_choice is not None:
1019
1020
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1021
1022
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1023
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1024
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1025
1026
1027
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1028
        elif callable(doc_to_text):
1029
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1030
        # Used when applying a Promptsource template
1031
        elif hasattr(doc_to_text, "apply"):
1032
1033
1034
1035
1036
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1037
                return self.config.fewshot_delimiter
1038
        else:
1039
            print(type(doc_to_text))
1040
            raise TypeError
1041

1042
    def doc_to_target(self, doc: Mapping) -> Union[int, str, list]:
1043
1044
        if self.prompt is not None:
            doc_to_target = self.prompt
1045
        else:
1046
            doc_to_target = self.config.doc_to_target
1047

1048
        if isinstance(doc_to_target, int):
1049
            return doc_to_target
1050
        elif isinstance(doc_to_target, str):
1051
            if doc_to_target in self.features:
1052
                # if self.config.doc_to_choice is not None:
1053
1054
1055
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1056
            else:
lintangsutawika's avatar
lintangsutawika committed
1057
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1058
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1059
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1060
1061
1062
1063
1064
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1065
1066
1067
1068
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1069
1070
                else:
                    return target_string
1071
        elif isinstance(doc_to_target, list):
1072
            return doc_to_target
1073
        elif callable(doc_to_target):
1074
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1075
        # Used when applying a Promptsource template
1076
        elif hasattr(doc_to_target, "apply"):
1077
            applied_prompt = doc_to_target.apply(doc)
1078
1079
1080
1081
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1082
                return self.config.fewshot_delimiter
1083
1084
        else:
            raise TypeError
1085

baberabb's avatar
baberabb committed
1086
    def doc_to_choice(self, doc: Any) -> List[str]:
1087
1088
        if self.prompt is not None:
            doc_to_choice = self.prompt
1089
        elif self.config.doc_to_choice is None:
1090
1091
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1092
            doc_to_choice = self.config.doc_to_choice
1093

1094
        if isinstance(doc_to_choice, str):
1095
1096
1097
1098
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1099
        elif isinstance(doc_to_choice, list):
1100
            return doc_to_choice
1101
        elif isinstance(doc_to_choice, dict):
1102
1103
1104
1105
1106
1107
1108
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1109

baberabb's avatar
baberabb committed
1110
1111
1112
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1113
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1114
            arguments = (ctx, self.doc_to_target(doc))
1115
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1116
            arguments = (self.doc_to_target(doc),)
1117
        elif self.OUTPUT_TYPE == "multiple_choice":
1118
            choices = self.doc_to_choice(doc)
1119
            target_delimiter = self.config.target_delimiter
1120
1121
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1122
                cont = self.doc_to_target(doc)
1123
1124
1125
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1126
            else:
1127
                # Otherwise they are placed in the continuation
1128
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1129

1130
            request_list = [
1131
1132
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1133
                    doc=doc,
1134
                    arguments=arg,
1135
                    idx=i,
1136
1137
                    **kwargs,
                )
1138
                for i, arg in enumerate(arguments)
1139
            ]
1140
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1141
            if "acc_mutual_info" in self._metric_fn_list.keys():
1142
1143
1144
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1145
                # here mutual info refers to calculating
1146
1147
1148
1149
1150
1151
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1152
                            doc=doc,
1153
                            arguments=("", "{}".format(choice)),
1154
1155
1156
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1157
                        for i, choice in enumerate(choices)
1158
1159
1160
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1161

1162
        elif self.OUTPUT_TYPE == "generate_until":
1163
            arguments = (ctx, deepcopy(self.config.generation_kwargs))
lintangsutawika's avatar
lintangsutawika committed
1164
1165

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1166
1167
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1168
1169

    def process_results(self, doc, results):
1170
1171
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1172

1173
        result_dict = {}
1174
        use_metric = list(self._metric_fn_list.keys())
1175
1176
1177
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1178
1179
1180
1181
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1182
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1183
            (loglikelihood,) = results
1184
1185
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1186
            return {
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1202
            }
1203
        elif self.OUTPUT_TYPE == "multiple_choice":
1204
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1205

1206
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1207
            choices = self.doc_to_choice(doc)
1208
1209
            completion_len = np.array([float(len(i)) for i in choices])

1210
1211
            if (
                2 * len(choices) == len(lls)
1212
                and "acc_mutual_info" in self._metric_fn_list.keys()
1213
1214
1215
1216
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1217
1218
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1219
1220
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1221

1222
1223
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1224

1225
1226
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1227
            else:
1228
                gold = self.doc_to_target(doc)
1229
1230

            gold_index_error = False
1231
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1232
1233
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1234
1235
                    gold_index_error = True
            else:
1236
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1237
                    gold = gold if gold < len(choices) else -100
1238
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1239
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1240

Lintang Sutawika's avatar
Lintang Sutawika committed
1241
                if gold == -100:
1242
1243
1244
1245
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1246
                    f"Label index was not in within range of available choices,"
1247
1248
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1249

1250
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1251
1252
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1253
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1254
1255
1256
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1257
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1258
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1259

Lintang Sutawika's avatar
Lintang Sutawika committed
1260
1261
1262
1263
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1264
            result_dict = {
1265
                **({"acc": acc} if "acc" in use_metric else {}),
1266
1267
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1268
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1269
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1270
1271
1272
1273
1274
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1275
1276
            }

1277
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1278
1279
1280
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1281
1282
1283
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1284
        elif self.OUTPUT_TYPE == "generate_until":
1285
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1286
            result = results[0]
1287
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1288
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1289
                # it assumes that doc_to_target returns a number.
1290
1291
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1292
1293
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1294
                gold = list(gold)
Chris's avatar
Chris committed
1295
1296
1297
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1298

lintangsutawika's avatar
lintangsutawika committed
1299
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1300
1301
1302
1303
1304
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1305
1306
1307
1308
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1309
1310
1311
1312
1313
1314
1315
1316
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1317
                    else:
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1339
                else:
1340
                    try:
1341
                        result_score = self._metric_fn_list[metric](
1342
1343
                            references=[gold],
                            predictions=[result],
1344
                            **self._metric_fn_kwargs[metric],
1345
                        )
1346
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1347
                        result_score = self._metric_fn_list[metric]([gold, result])
1348
1349
1350
1351
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1352
        else:
lintangsutawika's avatar
lintangsutawika committed
1353
1354
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1355
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1356
            )
1357
1358
1359

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1360
    def aggregation(self) -> dict:
1361
1362
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1363
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1364
        return self._higher_is_better
1365

Baber Abbasi's avatar
Baber Abbasi committed
1366
1367
1368
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

1369
1370
1371
1372
1373
1374
1375
1376
1377
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"group_name={getattr(self.config, 'group', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
            f"num_samples={len(self.eval_docs)})"
        )

1378
1379

class MultipleChoiceTask(Task):
1380
    OUTPUT_TYPE = "loglikelihood"
1381

baberabb's avatar
baberabb committed
1382
    def doc_to_target(self, doc: dict) -> str:
1383
1384
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1385
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1386
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1387
1388
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1389
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1390
                doc=doc,
1391
                arguments=(ctx, " {}".format(choice)),
1392
                idx=i,
1393
1394
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1395
1396
            for i, choice in enumerate(doc["choices"])
        ]
1397

1398
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1399
1400
1401
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1413
    def higher_is_better(self) -> dict:
1414
1415
1416
1417
1418
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1419
    def aggregation(self) -> dict:
1420
1421
1422
1423
1424
1425
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1426
class PerplexityTask(Task):
1427
1428
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1429
    def has_training_docs(self) -> bool:
1430
1431
        return False

baberabb's avatar
baberabb committed
1432
    def fewshot_examples(self, k: int, rnd) -> List:
1433
1434
1435
1436
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1437
1438
        return []

baberabb's avatar
baberabb committed
1439
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1440
1441
1442
1443
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1444
1445
1446

        return ""

baberabb's avatar
baberabb committed
1447
    def higher_is_better(self) -> dict:
1448
1449
1450
1451
1452
1453
1454
1455
1456
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1457
    def doc_to_text(self, doc) -> str:
1458
1459
1460
1461
1462
        return ""

    def doc_to_target(self, doc):
        return doc

1463
1464
1465
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1466

lintangsutawika's avatar
lintangsutawika committed
1467
1468
1469
1470
1471
1472
1473
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1474

1475
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1476
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1477
1478
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1479
1480
1481
1482
1483
1484
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1485
    def aggregation(self) -> dict:
1486
1487
1488
1489
1490
1491
1492
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1493
    def count_bytes(cls, doc) -> int:
1494
1495
1496
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1497
    def count_words(cls, doc) -> int:
1498
1499
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))