test_modeling_common.py 119 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
17
import gc
18
import inspect
19
import json
20
import os
21
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
22
import random
23
import sys
24
import tempfile
thomwolf's avatar
thomwolf committed
25
import unittest
26
import unittest.mock as mock
27
import warnings
28
from pathlib import Path
NielsRogge's avatar
NielsRogge committed
29
from typing import Dict, List, Tuple
thomwolf's avatar
thomwolf committed
30

31
32
33
import numpy as np

import transformers
34
from huggingface_hub import Repository, delete_repo, login
Sylvain Gugger's avatar
Sylvain Gugger committed
35
from requests.exceptions import HTTPError
36
37
38
39
40
41
42
43
from transformers import (
    AutoConfig,
    AutoModel,
    AutoModelForSequenceClassification,
    PretrainedConfig,
    is_torch_available,
    logging,
)
44
from transformers.models.auto import get_values
Sylvain Gugger's avatar
Sylvain Gugger committed
45
46
47
48
from transformers.testing_utils import (
    PASS,
    USER,
    CaptureLogger,
49
    TestCasePlus,
50
51
    is_pt_flax_cross_test,
    is_pt_tf_cross_test,
Sylvain Gugger's avatar
Sylvain Gugger committed
52
53
54
    is_staging_test,
    require_torch,
    require_torch_multi_gpu,
55
    require_usr_bin_time,
Sylvain Gugger's avatar
Sylvain Gugger committed
56
57
58
    slow,
    torch_device,
)
59
60
61
62
63
64
65
66
from transformers.utils import (
    WEIGHTS_INDEX_NAME,
    WEIGHTS_NAME,
    is_flax_available,
    is_tf_available,
    is_torch_fx_available,
)
from transformers.utils.generic import ModelOutput
67

Aymeric Augustin's avatar
Aymeric Augustin committed
68

69
70
sys.path.append(str(Path(__file__).parent.parent / "utils"))

71
from test_module.custom_configuration import CustomConfig, NoSuperInitConfig  # noqa E402
72
73


74
if is_torch_available():
75
    import torch
76
    from torch import nn
thomwolf's avatar
thomwolf committed
77

78
    from test_module.custom_modeling import CustomModel, NoSuperInitModel
79
    from transformers import (
80
        BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
81
        MODEL_FOR_AUDIO_XVECTOR_MAPPING,
NielsRogge's avatar
NielsRogge committed
82
        MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING,
83
        MODEL_FOR_CAUSAL_LM_MAPPING,
84
        MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
NielsRogge's avatar
NielsRogge committed
85
        MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING,
86
        MODEL_FOR_MASKED_LM_MAPPING,
87
        MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
88
        MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
89
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
NielsRogge's avatar
NielsRogge committed
90
        MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING,
91
92
93
        MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
94
        MODEL_MAPPING,
95
96
97
98
        AdaptiveEmbedding,
        BertConfig,
        BertModel,
        PreTrainedModel,
99
        T5Config,
100
        T5ForConditionalGeneration,
101
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
102
    from transformers.modeling_utils import shard_checkpoint
thomwolf's avatar
thomwolf committed
103

104
105
106
if is_tf_available():
    import tensorflow as tf

107
108
109
110
111
112
113
if is_flax_available():
    import jax.numpy as jnp
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )

114
if is_torch_fx_available():
115
    from transformers.utils.fx import symbolic_trace
116

117

118
119
120
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
121
        if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
Lysandre Debut's avatar
Lysandre Debut committed
122
            setattr(configs_no_init, key, 1e-10)
123
124
    return configs_no_init

thomwolf's avatar
thomwolf committed
125

126
127
128
TINY_T5 = "patrickvonplaten/t5-tiny-random"


129
130
131
132
133
@require_torch
class ModelTesterMixin:

    model_tester = None
    all_model_classes = ()
134
    all_generative_model_classes = ()
135
    fx_compatible = False
Patrick von Platen's avatar
Patrick von Platen committed
136
137
138
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
139
    test_resize_position_embeddings = False
Patrick von Platen's avatar
Patrick von Platen committed
140
    test_head_masking = True
141
    test_mismatched_shapes = True
142
    test_missing_keys = True
143
    test_model_parallel = False
144
    is_encoder_decoder = False
145
    has_attentions = True
146

147
148
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
149
        if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
150
            inputs_dict = {
151
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
152
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
153
                else v
154
155
                for k, v in inputs_dict.items()
            }
156
157
        elif model_class in get_values(MODEL_FOR_AUDIO_XVECTOR_MAPPING):
            inputs_dict.pop("attention_mask")
158
159

        if return_labels:
160
            if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
161
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
162
            elif model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING):
163
164
165
166
167
168
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
169
            elif model_class in [
170
171
172
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
173
            ]:
174
175
176
177
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
            elif model_class in [
178
179
                *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_CAUSAL_LM_MAPPING),
NielsRogge's avatar
NielsRogge committed
180
                *get_values(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING),
181
182
                *get_values(MODEL_FOR_MASKED_LM_MAPPING),
                *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING),
183
184
185
186
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
NielsRogge's avatar
NielsRogge committed
187
188
189
190
191
            elif model_class in get_values(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING):
                num_patches = self.model_tester.image_size // self.model_tester.patch_size
                inputs_dict["bool_masked_pos"] = torch.zeros(
                    (self.model_tester.batch_size, num_patches**2), dtype=torch.long, device=torch_device
                )
NielsRogge's avatar
NielsRogge committed
192
193
194
195
196
            elif model_class in get_values(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING):
                batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
                inputs_dict["labels"] = torch.zeros(
                    [self.model_tester.batch_size, height, width], device=torch_device
                ).long()
197

198
199
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
200
    def test_save_load(self):
201
202
203
204
205
206
207
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
208
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
209

210
            out_2 = outputs[0].cpu().numpy()
211
            out_2[np.isnan(out_2)] = 0
212

213
            with tempfile.TemporaryDirectory() as tmpdirname:
214
215
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
216
                model.to(torch_device)
217
                with torch.no_grad():
218
                    after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))
thomwolf's avatar
thomwolf committed
219

220
221
222
                # Make sure we don't have nans
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
thomwolf's avatar
thomwolf committed
223
224
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
225

226
    def test_save_load_keys_to_ignore_on_save(self):
227
228
229
230
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
231
232
            _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
            if _keys_to_ignore_on_save is None:
233
234
235
                continue

            # check the keys are in the original state_dict
236
            for k in _keys_to_ignore_on_save:
237
                self.assertIn(k, model.state_dict().keys(), "\n".join(model.state_dict().keys()))
238
239
240
241
242
243

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                output_model_file = os.path.join(tmpdirname, WEIGHTS_NAME)
                state_dict_saved = torch.load(output_model_file)
244
                for k in _keys_to_ignore_on_save:
245
                    self.assertNotIn(k, state_dict_saved.keys(), "\n".join(state_dict_saved.keys()))
246

Sylvain Gugger's avatar
Sylvain Gugger committed
247
248
249
                # Test we can load the state dict in the model, necessary for the checkpointing API in Trainer.
                load_result = model.load_state_dict(state_dict_saved, strict=False)
                self.assertTrue(
250
251
                    len(load_result.missing_keys) == 0
                    or set(load_result.missing_keys) == set(model._keys_to_ignore_on_save)
Sylvain Gugger's avatar
Sylvain Gugger committed
252
253
254
                )
                self.assertTrue(len(load_result.unexpected_keys) == 0)

255
256
257
258
259
260
261
262
263
264
265
    def test_gradient_checkpointing_backward_compatibility(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            config.gradient_checkpointing = True
            model = model_class(config)
            self.assertTrue(model.is_gradient_checkpointing)

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
    def test_gradient_checkpointing_enable_disable(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            # at init model should have gradient checkpointing disabled
            model = model_class(config)
            self.assertFalse(model.is_gradient_checkpointing)

            # check enable works
            model.gradient_checkpointing_enable()
            self.assertTrue(model.is_gradient_checkpointing)

            # check disable works
            model.gradient_checkpointing_disable()
            self.assertFalse(model.is_gradient_checkpointing)

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data.fill_(3)
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.data.fill_(3)

    def test_save_load_fast_init_from_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(model_class):
                pass

            model_class_copy = CopyClass

            # make sure that all keys are expected for test
            model_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
            model_class_copy._init_weights = self._mock_init_weights

            model = base_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = model_class_copy.from_pretrained(tmpdirname)
                model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
                    max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

    def test_save_load_fast_init_to_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:

            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(base_class):
                pass

            base_class_copy = CopyClass

            # make sure that all keys are expected for test
            base_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
            base_class_copy._init_weights = self._mock_init_weights

            model = model_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.config.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = base_class_copy.from_pretrained(tmpdirname)
                model_slow_init = base_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
                    max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

Patrick von Platen's avatar
Patrick von Platen committed
382
    def test_initialization(self):
383
384
385
386
387
388
389
390
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
391
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
392
                        [0.0, 1.0],
393
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
394
                    )
thomwolf's avatar
thomwolf committed
395

Patrick von Platen's avatar
Patrick von Platen committed
396
    def test_determinism(self):
397
398
399
400
401
402
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
403
404
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
405

406
407
408
409
410
411
412
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
429
                expected_arg_names.extend(
430
431
                    ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
                    if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
432
433
434
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
435
436
437
438
            else:
                expected_arg_names = ["input_ids"]
                self.assertListEqual(arg_names[:1], expected_arg_names)

439
440
441
442
443
    def test_training(self):
        if not self.model_tester.is_training:
            return

        for model_class in self.all_model_classes:
444
445
446
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.return_dict = True

447
            if model_class in get_values(MODEL_MAPPING):
448
                continue
449

450
451
452
453
454
455
456
457
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
458
        if not self.model_tester.is_training:
459
460
461
            return

        for model_class in self.all_model_classes:
462
463
464
465
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.use_cache = False
            config.return_dict = True

466
            if model_class in get_values(MODEL_MAPPING) or not model_class.supports_gradient_checkpointing:
467
468
469
                continue
            model = model_class(config)
            model.to(torch_device)
470
            model.gradient_checkpointing_enable()
471
472
473
474
475
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

Patrick von Platen's avatar
Patrick von Platen committed
476
    def test_attention_outputs(self):
477
478
        if not self.has_attentions:
            pass
479

480
481
        else:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
482
            config.return_dict = True
483

484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
            seq_len = getattr(self.model_tester, "seq_length", None)
            decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
            encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
            decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
            encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
            chunk_length = getattr(self.model_tester, "chunk_length", None)
            if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
                encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes

            for model_class in self.all_model_classes:
                inputs_dict["output_attentions"] = True
                inputs_dict["output_hidden_states"] = False
                config.return_dict = True
                model = model_class(config)
                model.to(torch_device)
                model.eval()
                with torch.no_grad():
                    outputs = model(**self._prepare_for_class(inputs_dict, model_class))
                attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
                self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

                # check that output_attentions also work using config
                del inputs_dict["output_attentions"]
                config.output_attentions = True
                model = model_class(config)
                model.to(torch_device)
                model.eval()
                with torch.no_grad():
                    outputs = model(**self._prepare_for_class(inputs_dict, model_class))
                attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
                self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

                if chunk_length is not None:
                    self.assertListEqual(
                        list(attentions[0].shape[-4:]),
                        [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                    )
                else:
                    self.assertListEqual(
                        list(attentions[0].shape[-3:]),
                        [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                    )
                out_len = len(outputs)

                if self.is_encoder_decoder:
                    correct_outlen = 5

                    # loss is at first position
                    if "labels" in inputs_dict:
                        correct_outlen += 1  # loss is added to beginning
                    # Question Answering model returns start_logits and end_logits
                    if model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING):
                        correct_outlen += 1  # start_logits and end_logits instead of only 1 output
                    if "past_key_values" in outputs:
                        correct_outlen += 1  # past_key_values have been returned

                    self.assertEqual(out_len, correct_outlen)

                    # decoder attentions
                    decoder_attentions = outputs.decoder_attentions
                    self.assertIsInstance(decoder_attentions, (list, tuple))
                    self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
                    self.assertListEqual(
                        list(decoder_attentions[0].shape[-3:]),
                        [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
                    )
thomwolf's avatar
thomwolf committed
550

551
552
553
554
555
556
557
558
559
560
561
562
                    # cross attentions
                    cross_attentions = outputs.cross_attentions
                    self.assertIsInstance(cross_attentions, (list, tuple))
                    self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                    self.assertListEqual(
                        list(cross_attentions[0].shape[-3:]),
                        [
                            self.model_tester.num_attention_heads,
                            decoder_seq_length,
                            encoder_key_length,
                        ],
                    )
563

564
565
566
567
568
569
570
571
                # Check attention is always last and order is fine
                inputs_dict["output_attentions"] = True
                inputs_dict["output_hidden_states"] = True
                model = model_class(config)
                model.to(torch_device)
                model.eval()
                with torch.no_grad():
                    outputs = model(**self._prepare_for_class(inputs_dict, model_class))
572

573
574
575
576
577
578
579
                if hasattr(self.model_tester, "num_hidden_states_types"):
                    added_hidden_states = self.model_tester.num_hidden_states_types
                elif self.is_encoder_decoder:
                    added_hidden_states = 2
                else:
                    added_hidden_states = 1
                self.assertEqual(out_len + added_hidden_states, len(outputs))
Weizhen's avatar
Weizhen committed
580

581
                self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
582

583
584
585
586
587
588
589
590
591
592
593
                self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
                if chunk_length is not None:
                    self.assertListEqual(
                        list(self_attentions[0].shape[-4:]),
                        [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                    )
                else:
                    self.assertListEqual(
                        list(self_attentions[0].shape[-3:]),
                        [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                    )
thomwolf's avatar
thomwolf committed
594

595
    @slow
596
    def test_torchscript_simple(self):
597
598
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
599

600
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
601
    def test_torchscript_output_attentions(self):
602
603
604
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
605

606
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
607
    def test_torchscript_output_hidden_state(self):
608
609
610
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
611

612
613
614
615
616
617
618
    # This is copied from `torch/testing/_internal/jit_utils.py::clear_class_registry`
    def clear_torch_jit_class_registry(self):

        torch._C._jit_clear_class_registry()
        torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()
        torch.jit._state._clear_class_state()

619
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
620
        if not self.test_torchscript:
621
            return
622

623
624
625
626
627
628
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
629
            inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
630

631
632
            main_input_name = model_class.main_input_name

633
            try:
634
                if model.config.is_encoder_decoder:
635
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
636
                    main_input = inputs[main_input_name]
637
638
639
640
                    attention_mask = inputs["attention_mask"]
                    decoder_input_ids = inputs["decoder_input_ids"]
                    decoder_attention_mask = inputs["decoder_attention_mask"]
                    traced_model = torch.jit.trace(
641
                        model, (main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
642
643
                    )
                else:
644
645
                    main_input = inputs[main_input_name]
                    traced_model = torch.jit.trace(model, main_input)
646
647
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
648

649
            with tempfile.TemporaryDirectory() as tmp_dir_name:
650
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
651

652
                try:
653
                    torch.jit.save(traced_model, pt_file_name)
654
655
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
656

657
658
659
660
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
661

662
663
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
664

665
666
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
667

668
669
670
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

671
672
673
674
675
676
677
678
679
            non_persistent_buffers = {}
            for key in loaded_model_state_dict.keys():
                if key not in model_state_dict.keys():
                    non_persistent_buffers[key] = loaded_model_state_dict[key]

            loaded_model_state_dict = {
                key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
            }

680
            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
681

682
683
684
685
686
687
688
689
690
691
692
            model_buffers = list(model.buffers())
            for non_persistent_buffer in non_persistent_buffers.values():
                found_buffer = False
                for i, model_buffer in enumerate(model_buffers):
                    if torch.equal(non_persistent_buffer, model_buffer):
                        found_buffer = True
                        break

                self.assertTrue(found_buffer)
                model_buffers.pop(i)

693
            models_equal = True
694
            for layer_name, p1 in model_state_dict.items():
695
696
697
698
                if layer_name in loaded_model_state_dict:
                    p2 = loaded_model_state_dict[layer_name]
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
thomwolf's avatar
thomwolf committed
699

700
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
701

702
703
704
705
            # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
            # (Even with this call, there are still memory leak by ~0.04MB)
            self.clear_torch_jit_class_registry()

706
707
708
709
710
711
712
713
    def test_torch_fx(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict)

    def test_torch_fx_output_loss(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict, output_loss=True)

714
715
    def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
        if not is_torch_fx_available() or not self.fx_compatible:
716
717
718
719
720
            return

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.return_dict = False

721
        for model_class in self.all_model_classes:
722
723
724
725
726
727
728
729
730
731
732
733
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)

            try:
                if model.config.is_encoder_decoder:
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                    labels = inputs.get("labels", None)
                    input_names = ["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask"]
                    if labels is not None:
                        input_names.append("labels")
734
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
735

736
                    model_output = model(**filtered_inputs)
737

738
                    traced_model = symbolic_trace(model, input_names)
739
                    traced_output = traced_model(**filtered_inputs)
740
                else:
741
                    input_names = ["input_ids", "attention_mask", "token_type_ids"]
742
                    input_ids = inputs["input_ids"]
743

744
                    labels = inputs.get("labels", None)
745
746
                    start_positions = inputs.get("start_positions", None)
                    end_positions = inputs.get("end_positions", None)
747
748
                    if labels is not None:
                        input_names.append("labels")
749
750
751
752
                    if start_positions is not None:
                        input_names.append("start_positions")
                    if end_positions is not None:
                        input_names.append("end_positions")
753

754
755
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
                    input_names = filtered_inputs.keys()
756

757
                    model_output = model(**filtered_inputs)
758

759
                    rank = len(input_ids.shape)
760
                    if rank not in [2, 3]:
761
762
763
                        raise NotImplementedError(
                            f"symbolic_trace automatic parameters inference not implemented for input of rank {rank}."
                        )
764

765
                    traced_model = symbolic_trace(model, input_names)
766
                    traced_output = traced_model(**filtered_inputs)
767
768
769
770

            except RuntimeError:
                self.fail("Couldn't trace module.")

771
772
773
774
775
776
777
778
779
780
781
782
783
            def flatten_output(output):
                flatten = []
                for x in output:
                    if isinstance(x, (tuple, list)):
                        flatten += flatten_output(x)
                    elif not isinstance(x, torch.Tensor):
                        continue
                    else:
                        flatten.append(x)
                return flatten

            model_output = flatten_output(model_output)
            traced_output = flatten_output(traced_output)
784
            num_outputs = len(model_output)
785
786
787
788
789
790

            for i in range(num_outputs):
                self.assertTrue(
                    torch.allclose(model_output[i], traced_output[i]),
                    f"traced {i}th output doesn't match model {i}th output for {model_class}",
                )
791

Patrick von Platen's avatar
Patrick von Platen committed
792
793
    def test_headmasking(self):
        if not self.test_head_masking:
794
            return
795

796
797
798
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
799

800
        inputs_dict["output_attentions"] = True
801
802
803
804
805
806
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
807

808
809
810
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
811
812
813
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
814
815
816
817
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
818
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
819
            inputs["head_mask"] = head_mask
820
821
822
823
824
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.forward)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
825
826
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
827
            outputs = model(**inputs, return_dict=True)
828
829
830
831
832
833
834
835
836

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        torch.sum(torch.isnan(t)), t.numel() / 4
                    )  # Check we don't have more than 25% nans (arbitrary)
                attentions = [
                    t.masked_fill(torch.isnan(t), 0.0) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
                if len(attentions) > 2:  # encoder-decoder models have only 2 layers in each module
                    self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
858
                check_attentions_validity(outputs.cross_attentions)
859
860
            else:
                check_attentions_validity(outputs.attentions)
861

Patrick von Platen's avatar
Patrick von Platen committed
862
863
    def test_head_pruning(self):
        if not self.test_pruning:
864
865
866
            return

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
867
868
869
870
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
871

872
873
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
874

875
            inputs_dict["output_attentions"] = True
876
877
878
879
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
880
881
882
883
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
884
885
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
886
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
887

888
            attentions = outputs[-1]
889

890
891
892
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
893

Patrick von Platen's avatar
Patrick von Platen committed
894
895
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
896
            return
LysandreJik's avatar
LysandreJik committed
897

898
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
899
900
901
902
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
903
904
905

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
906

907
            inputs_dict["output_attentions"] = True
908
909
910
911
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
912
913
914
915
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
916
            model.prune_heads(heads_to_prune)
917

918
            with tempfile.TemporaryDirectory() as temp_dir_name:
919
920
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
921
                model.to(torch_device)
922

923
            with torch.no_grad():
924
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
925
926
927
928
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
929

Patrick von Platen's avatar
Patrick von Platen committed
930
931
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
932
            return
933

934
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
935
936
937
938
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
939

940
941
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
942

943
            inputs_dict["output_attentions"] = True
944
            config.output_hidden_states = False
945

946
947
948
949
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
950
            config.pruned_heads = heads_to_prune
951

952
953
954
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
955

956
            with torch.no_grad():
957
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
958
            attentions = outputs[-1]
959

960
961
962
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
963

Patrick von Platen's avatar
Patrick von Platen committed
964
965
    def test_head_pruning_integration(self):
        if not self.test_pruning:
966
            return
967

968
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
969
970
971
972
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
973

974
975
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
976

977
            inputs_dict["output_attentions"] = True
978
            config.output_hidden_states = False
979

980
981
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
982

983
984
985
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
986

987
            with torch.no_grad():
988
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
989
            attentions = outputs[-1]
990

991
992
993
994
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
995

996
            with tempfile.TemporaryDirectory() as temp_dir_name:
997
998
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
999
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
1000

1001
            with torch.no_grad():
1002
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1003
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
1004

1005
1006
1007
1008
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
1009

1010
1011
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
1012

1013
            with torch.no_grad():
1014
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1015
            attentions = outputs[-1]
1016

1017
1018
1019
1020
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
1021

1022
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
1023

Patrick von Platen's avatar
Patrick von Platen committed
1024
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
1025
        def check_hidden_states_output(inputs_dict, config, model_class):
1026
            model = model_class(config)
1027
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1028
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
1029

thomwolf's avatar
thomwolf committed
1030
            with torch.no_grad():
1031
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1032
1033

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
1034

Sylvain Gugger's avatar
Sylvain Gugger committed
1035
1036
1037
1038
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
1039

Patrick von Platen's avatar
Patrick von Platen committed
1040
1041
1042
1043
1044
1045
1046
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

1047
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
1048
1049
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
1050
            )
thomwolf's avatar
thomwolf committed
1051

1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

Joseph Liu's avatar
Joseph Liu committed
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

1077
1078
1079
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
1080
        config.output_attentions = self.has_attentions
1081
1082
1083
1084
1085
1086
1087
1088
1089

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)
1090

1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
        output = outputs[0]

        if config.is_encoder_decoder:
            # Seq2Seq models
            encoder_hidden_states = outputs.encoder_hidden_states[0]
            encoder_hidden_states.retain_grad()

            decoder_hidden_states = outputs.decoder_hidden_states[0]
            decoder_hidden_states.retain_grad()

1101
1102
1103
1104
1105
1106
1107
1108
1109
            if self.has_attentions:
                encoder_attentions = outputs.encoder_attentions[0]
                encoder_attentions.retain_grad()

                decoder_attentions = outputs.decoder_attentions[0]
                decoder_attentions.retain_grad()

                cross_attentions = outputs.cross_attentions[0]
                cross_attentions.retain_grad()
1110
1111
1112
1113
1114

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(encoder_hidden_states.grad)
            self.assertIsNotNone(decoder_hidden_states.grad)
1115
1116
1117
1118
1119

            if self.has_attentions:
                self.assertIsNotNone(encoder_attentions.grad)
                self.assertIsNotNone(decoder_attentions.grad)
                self.assertIsNotNone(cross_attentions.grad)
1120
1121
1122
1123
        else:
            # Encoder-/Decoder-only models
            hidden_states = outputs.hidden_states[0]
            hidden_states.retain_grad()
1124
1125
1126
1127

            if self.has_attentions:
                attentions = outputs.attentions[0]
                attentions.retain_grad()
1128
1129
1130
1131

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(hidden_states.grad)
1132
1133
1134

            if self.has_attentions:
                self.assertIsNotNone(attentions.grad)
1135

Pradhy729's avatar
Pradhy729 committed
1136
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
1137
1138
1139
1140
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
    def test_resize_position_vector_embeddings(self):
        if not self.test_resize_position_embeddings:
            return

        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            if self.model_tester.is_training is False:
                model.eval()

            max_position_embeddings = config.max_position_embeddings

            # Retrieve the embeddings and clone theme
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                encoder_cloned_embeddings = encoder_model_embed.weight.clone()
                decoder_cloned_embeddings = decoder_model_embed.weight.clone()
            else:
                model_embed = model.get_position_embeddings()
                cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the position embeddings with a larger max_position_embeddings increases
            # the model's postion embeddings size
            model.resize_position_embeddings(max_position_embeddings + 10)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings + 10)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] + 10)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] + 10)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the position embeddings with a smaller max_position_embeddings decreases
            # the model's max_position_embeddings
            model.resize_position_embeddings(max_position_embeddings - 5)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings - 5)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] - 5)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] - 5)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 5)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True

            if model.config.is_encoder_decoder:
                for p1, p2 in zip(encoder_cloned_embeddings, encoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
                for p1, p2 in zip(decoder_cloned_embeddings, decoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
            else:
                for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
1238
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
1239
1240
1241
1242
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
1243
        if not self.test_resize_embeddings:
1244
1245
1246
1247
1248
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
1249
            model.to(torch_device)
1250

Patrick von Platen's avatar
Patrick von Platen committed
1251
1252
1253
            if self.model_tester.is_training is False:
                model.eval()

1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
1264
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
1265
            model(**self._prepare_for_class(inputs_dict, model_class))
1266
1267
1268
1269
1270
1271
1272

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

1273
1274
1275
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1276
1277
1278
1279

            # make sure that decoder_input_ids are resized as well
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1280
            model(**self._prepare_for_class(inputs_dict, model_class))
1281

1282
1283
1284
1285
1286
1287
1288
1289
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
    def test_resize_embeddings_untied(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_vocab_size = config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

Patrick von Platen's avatar
Patrick von Platen committed
1341
    def test_model_common_attributes(self):
1342
1343
1344
1345
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1346
1347
            self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(nn.Embedding(10, 10))
1348
            x = model.get_output_embeddings()
1349
            self.assertTrue(x is None or isinstance(x, nn.Linear))
1350

1351
1352
1353
1354
1355
1356
1357
    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "forward"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

1358
    def test_correct_missing_keys(self):
1359
1360
        if not self.test_missing_keys:
            return
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
1371
                    with self.subTest(msg=f"Missing keys for {model.__class__.__name__}"):
1372
1373
                        self.assertGreater(len(loading_info["missing_keys"]), 0)

1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

1422
1423
1424
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
1425
1426
1427
1428
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

1429
1430
1431
1432
1433
1434
1435
1436
1437
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
NielsRogge's avatar
NielsRogge committed
1438
1439
1440
1441
1442
                    elif isinstance(tuple_object, Dict):
                        for tuple_iterable_value, dict_iterable_value in zip(
                            tuple_object.values(), dict_object.values()
                        ):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
1443
1444
1445
1446
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
1447
1448
1449
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
1450
                            msg=f"Tuple and dict output are not equal. Difference: {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`: {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}.",
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

1476
1477
1478
1479
            if self.has_attentions:
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
1480

1481
1482
1483
1484
1485
1486
1487
1488
1489
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(
                    model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
                )
1490

1491
1492
1493
1494
    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _make_attention_mask_non_null(self, inputs_dict):
        """Make sure no sequence has all zeros as attention mask"""
1495

1496
1497
1498
        for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]:
            if k in inputs_dict:
                attention_mask = inputs_dict[k]
1499

1500
1501
1502
1503
1504
1505
                # Make sure no all 0s attention masks - to avoid failure at this moment.
                # Put `1` at the beginning of sequences to make it still work when combining causal attention masks.
                # TODO: remove this line once a fix regarding large negative values for attention mask is done.
                attention_mask = torch.cat(
                    [torch.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], dim=-1
                )
1506

1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
                # Here we make the first sequence with all 0s as attention mask.
                # Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative
                # values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks.
                # TODO: enable this block once the large negative values thing is cleaned up.
                # (see https://github.com/huggingface/transformers/issues/14859)
                # attention_mask = torch.cat(
                #     [torch.zeros_like(attention_mask[:1], dtype=attention_mask.dtype), attention_mask[1:]],
                #     dim=0
                # )

                inputs_dict[k] = attention_mask

    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class):
        """For temporarily ignoring some failed test cases (issues to be fixed)"""

        tf_keys = set([k for k, v in tf_outputs.items() if v is not None])
        pt_keys = set([k for k, v in pt_outputs.items() if v is not None])

        key_differences = tf_keys.symmetric_difference(pt_keys)

        if model_class.__name__ in [
            "FlaubertWithLMHeadModel",
            "FunnelForPreTraining",
            "ElectraForPreTraining",
            "XLMWithLMHeadModel",
            "TransfoXLLMHeadModel",
        ]:
            for k in key_differences:
                if k in ["loss", "losses"]:
                    tf_keys.discard(k)
                    pt_keys.discard(k)
        elif model_class.__name__.startswith("GPT2"):
            # `TFGPT2` has `past_key_values` as a tensor while `GPT2` has it as a tuple.
            tf_keys.discard("past_key_values")
            pt_keys.discard("past_key_values")

        # create new outputs from the remaining fields
        new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys})
        new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys})

        return new_tf_outputs, new_pt_outputs

    # Copied from tests.test_modeling_tf_common.TFModelTesterMixin.check_pt_tf_outputs
    def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
        """Check the outputs from PyTorch and TensorFlow models are closed enough. Checks are done in a recursive way.
1554

1555
1556
1557
1558
1559
1560
1561
1562
        Args:
            model_class: The class of the model that is currently testing. For example, `TFBertModel`,
                TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative
                error messages.
            name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc.
            attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element
                being a named field in the output.
        """
1563

1564
1565
1566
        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")
1567

1568
1569
1570
1571
1572
1573
        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(tf_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is",
            )
1574

1575
1576
1577
            # Don't copy this block to model specific test file!
            # TODO: remove this method and this line after issues are fixed
            tf_outputs, pt_outputs = self._postprocessing_to_ignore_test_cases(tf_outputs, pt_outputs, model_class)
1578

1579
1580
            tf_keys = tuple([k for k, v in tf_outputs.items() if v is not None])
            pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])
1581

1582
            self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch")
1583

1584
1585
1586
1587
1588
1589
            # convert to the case of `tuple`
            # appending each key to the current (string) `names`
            attributes = tuple([f"{name}.{k}" for k in tf_keys])
            self.check_pt_tf_outputs(
                tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )
1590

1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(tf_outputs) in [tuple, list]:
            self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch")
            self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch")

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(tf_outputs),
                    f"{name}: The tuple `names` should have the same length as `tf_outputs`",
1602
                )
1603
1604
1605
            else:
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `names`
                attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))])
1606

1607
1608
            for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes):
                self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr)
1609

1610
1611
1612
1613
        elif isinstance(tf_outputs, tf.Tensor):
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is"
            )
1614

1615
1616
            tf_outputs = tf_outputs.numpy()
            pt_outputs = pt_outputs.detach().to("cpu").numpy()
1617

1618
1619
1620
            self.assertEqual(
                tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch"
            )
1621

1622
1623
1624
1625
            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(tf_outputs):
                tf_outputs = np.array([tf_outputs])
                pt_outputs = np.array([pt_outputs])
1626

1627
1628
            tf_nans = np.isnan(tf_outputs)
            pt_nans = np.isnan(pt_outputs)
1629

1630
1631
1632
1633
            pt_outputs[tf_nans] = 0
            tf_outputs[tf_nans] = 0
            pt_outputs[pt_nans] = 0
            tf_outputs[pt_nans] = 0
1634

1635
1636
1637
1638
1639
            max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
            self.assertLessEqual(max_diff, tol, f"{name}: Difference between torch and tf is {max_diff} (>= {tol}).")
        else:
            raise ValueError(
                f"`tf_outputs` should be an instance of `tf.Tensor`, a `tuple`, or an instance of `tf.Tensor`. Got {type(tf_outputs)} instead."
1640
1641
            )

1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
    def prepare_tf_inputs_from_pt_inputs(self, pt_inputs_dict):

        tf_inputs_dict = {}
        for key, tensor in pt_inputs_dict.items():
            # skip key that does not exist in tf
            if type(tensor) == bool:
                tf_inputs_dict[key] = tensor
            elif key == "input_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "pixel_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "input_features":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            # other general float inputs
            elif tensor.is_floating_point():
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            else:
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.int32)
1660

1661
        return tf_inputs_dict
1662

1663
    def check_pt_tf_models(self, tf_model, pt_model, pt_inputs_dict):
1664

1665
        tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
1666

1667
1668
1669
1670
        # send pytorch inputs to the correct device
        pt_inputs_dict = {
            k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
        }
1671

1672
1673
        # send pytorch model to the correct device
        pt_model.to(torch_device)
1674

1675
1676
        # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
        pt_model.eval()
1677

1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
        with torch.no_grad():
            pt_outputs = pt_model(**pt_inputs_dict)
        tf_outputs = tf_model(tf_inputs_dict)

        # tf models returned loss is usually a tensor rather than a scalar.
        # (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`)
        # Change it here to a scalar to match PyTorch models' loss
        tf_loss = getattr(tf_outputs, "loss", None)
        if tf_loss is not None:
            tf_outputs.loss = tf.math.reduce_mean(tf_loss)

        self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(pt_model))

    @is_pt_tf_cross_test
    def test_pt_tf_model_equivalence(self):
        import transformers
1694
1695
1696

        for model_class in self.all_model_classes:

1697
1698
1699
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning
1700
            if not hasattr(transformers, tf_model_class_name):
1701
                # transformers does not have this model in TF version yet
1702
1703
                return

1704
1705
1706
            # Output all for aggressive testing
            config.output_hidden_states = True
            config.output_attentions = self.has_attentions
1707

1708
1709
1710
1711
            # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
            # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
            # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it.
            self._make_attention_mask_non_null(inputs_dict)
1712
1713

            tf_model_class = getattr(transformers, tf_model_class_name)
1714
1715

            pt_model = model_class(config)
1716
1717
1718
1719
1720
1721
1722
1723
1724
            tf_model = tf_model_class(config)

            pt_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            pt_inputs_dict_with_labels = self._prepare_for_class(
                inputs_dict,
                model_class,
                # Not all models accept "labels" in the forward pass (yet :) )
                return_labels=True if "labels" in inspect.signature(model_class.forward).parameters.keys() else False,
            )
1725
1726
1727
1728
1729
1730
1731
1732
1733

            # make sure only tf inputs are forward that actually exist in function args
            tf_input_keys = set(inspect.signature(tf_model.call).parameters.keys())

            # remove all head masks
            tf_input_keys.discard("head_mask")
            tf_input_keys.discard("cross_attn_head_mask")
            tf_input_keys.discard("decoder_head_mask")

1734
            pt_inputs_dict = {k: v for k, v in pt_inputs_dict.items() if k in tf_input_keys}
1735
1736
1737
1738
1739
1740
            pt_inputs_dict_with_labels = {k: v for k, v in pt_inputs_dict_with_labels.items() if k in tf_input_keys}

            # For some models (e.g. base models), there is no label returned.
            # Set the input dict to `None` to avoid check outputs twice for the same input dicts.
            if set(pt_inputs_dict_with_labels.keys()).symmetric_difference(pt_inputs_dict.keys()):
                pt_inputs_dict_with_labels = None
1741
1742

            # Check we can load pt model in tf and vice-versa with model => model functions
1743
1744
            # Here requires `tf_inputs_dict` to build `tf_model`
            tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
1745
            tf_model = transformers.load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=tf_inputs_dict)
1746
            pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)
1747

1748
1749
1750
1751
1752
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)

1764
1765
1766
1767
1768
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
1769
1770
1771
1772
1773

    def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
        diff = np.abs((a - b)).max()
        self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")

1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
    def check_outputs(self, fx_outputs, pt_outputs, model_class, names):
        """
        Args:
            model_class: The class of the model that is currently testing. For example, ..., etc.
            Currently unused, but it could make debugging easier and faster.

            names: A string, or a list of strings. These specify what fx_outputs/pt_outputs represent in the model outputs.
                Currently unused, but in the future, we could use this information to make the error message clearer
                by giving the name(s) of the output tensor(s) with large difference(s) between PT and Flax.
        """
        if type(fx_outputs) in [tuple, list]:
            self.assertEqual(type(fx_outputs), type(pt_outputs))
            self.assertEqual(len(fx_outputs), len(pt_outputs))
            if type(names) == tuple:
                for fo, po, name in zip(fx_outputs, pt_outputs, names):
                    self.check_outputs(fo, po, model_class, names=name)
            elif type(names) == str:
                for idx, (fo, po) in enumerate(zip(fx_outputs, pt_outputs)):
                    self.check_outputs(fo, po, model_class, names=f"{names}_{idx}")
            else:
                raise ValueError(f"`names` should be a `tuple` or a string. Got {type(names)} instead.")
        elif isinstance(fx_outputs, jnp.ndarray):
            self.assertTrue(isinstance(pt_outputs, torch.Tensor))

            # Using `np.asarray` gives `ValueError: assignment destination is read-only` at the line `fx_outputs[fx_nans] = 0`.
            fx_outputs = np.array(fx_outputs)
            pt_outputs = pt_outputs.detach().to("cpu").numpy()

            fx_nans = np.isnan(fx_outputs)
            pt_nans = np.isnan(pt_outputs)

            pt_outputs[fx_nans] = 0
            fx_outputs[fx_nans] = 0
            pt_outputs[pt_nans] = 0
            fx_outputs[pt_nans] = 0

            self.assert_almost_equals(fx_outputs, pt_outputs, 1e-5)
        else:
            raise ValueError(
                f"`fx_outputs` should be a `tuple` or an instance of `jnp.ndarray`. Got {type(fx_outputs)} instead."
            )

1816
1817
1818
1819
1820
1821
1822
1823
1824
    @is_pt_flax_cross_test
    def test_equivalence_pt_to_flax(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
1825
                    # no flax model exists for this class
1826
1827
                    return

1828
1829
1830
1831
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

1832
1833
                fx_model_class = getattr(transformers, fx_model_class_name)

1834
1835
1836
1837
1838
1839
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

1840
1841
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
1842

1843
1844
1845
1846
1847
1848
1849
1850
1851
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

1852
1853
1854
1855
1856
1857
1858
1859
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }

                # convert inputs to Flax
                fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)}

1860
1861
1862
                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
                fx_model.params = fx_state

1863
1864
1865
                # send pytorch model to the correct device
                pt_model.to(torch_device)

1866
                with torch.no_grad():
1867
1868
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)
1869

1870
1871
1872
1873
1874
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
                self.check_outputs(fx_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, names=fx_keys)
1875
1876
1877
1878
1879

                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True)

1880
1881
1882
1883
1884
1885
1886
                fx_outputs_loaded = fx_model_loaded(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs_loaded.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
                self.check_outputs(fx_outputs_loaded.to_tuple(), pt_outputs.to_tuple(), model_class, names=fx_keys)
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899

    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    # no flax model exists for this class
                    return

1900
1901
1902
1903
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

1904
1905
                fx_model_class = getattr(transformers, fx_model_class_name)

1906
1907
1908
1909
1910
1911
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

1912
1913
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
1914

1915
1916
1917
1918
1919
1920
1921
1922
1923
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

1924
1925
1926
1927
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }
1928

1929
                # convert inputs to Flax
1930
1931
                fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)}

1932
1933
1934
1935
1936
1937
1938
                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

                # send pytorch model to the correct device
                pt_model.to(torch_device)
1939

1940
1941
1942
1943
1944
1945
1946
1947
1948
                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
                self.check_outputs(fx_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, names=fx_keys)
1949
1950
1951
1952
1953

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
                    pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True)

1954
1955
1956
1957
                # send pytorch model to the correct device
                pt_model_loaded.to(torch_device)
                pt_model_loaded.eval()

1958
                with torch.no_grad():
1959
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs)
1960

1961
1962
1963
1964
1965
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs_loaded.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
                self.check_outputs(fx_outputs.to_tuple(), pt_outputs_loaded.to_tuple(), model_class, names=fx_keys)
1966

Patrick von Platen's avatar
Patrick von Platen committed
1967
    def test_inputs_embeds(self):
1968
1969
1970
1971
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1972
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1973
            model.eval()
1974

1975
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
1976

1977
1978
1979
1980
1981
1982
1983
1984
1985
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

1986
1987
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
1988
                inputs["inputs_embeds"] = wte(input_ids)
1989
            else:
1990
1991
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
1992

thomwolf's avatar
thomwolf committed
1993
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
1994
                model(**inputs)[0]
1995

1996
1997
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
1998
1999
2000
2001
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
2002
        blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"]
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
2017
            model = nn.DataParallel(model)
2018
            with torch.no_grad():
2019
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
2020

2021
2022
2023
    @require_torch_multi_gpu
    def test_model_parallelization(self):
        if not self.test_model_parallel:
2024
            return
2025

2026
        # a candidate for testing_utils
2027
        def get_current_gpu_memory_use():
Patrick von Platen's avatar
Patrick von Platen committed
2028
            """returns a list of cuda memory allocations per GPU in MBs"""
2029
2030
2031
2032
2033

            per_device_memory = []
            for id in range(torch.cuda.device_count()):
                with torch.cuda.device(id):
                    per_device_memory.append(torch.cuda.memory_allocated() >> 20)
2034
2035
2036
2037
2038
2039
2040
2041
2042

            return per_device_memory

        # Needs a large model to see the difference.
        config = self.model_tester.get_large_model_config()

        for model_class in self.all_parallelizable_model_classes:
            torch.cuda.empty_cache()

2043
2044
2045
            # 1. single gpu memory load + unload + memory measurements
            # Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests)
            memory_at_start = get_current_gpu_memory_use()
2046

2047
2048
            # Put model on device 0 and take a memory snapshot
            model = model_class(config)
2049
2050
2051
            model.to("cuda:0")
            memory_after_model_load = get_current_gpu_memory_use()

2052
2053
2054
            # The memory use on device 0 should be higher than it was initially.
            self.assertGreater(memory_after_model_load[0], memory_at_start[0])

2055
            del model
2056
            gc.collect()
2057
2058
            torch.cuda.empty_cache()

2059
2060
2061
            # 2. MP test
            # it's essential to re-calibrate the usage before the next stage
            memory_at_start = get_current_gpu_memory_use()
2062
2063

            # Spread model layers over multiple devices
2064
            model = model_class(config)
2065
2066
2067
2068
2069
            model.parallelize()
            memory_after_parallelization = get_current_gpu_memory_use()

            # Assert that the memory use on all devices is higher than it was when loaded only on CPU
            for n in range(torch.cuda.device_count()):
2070
                self.assertGreater(memory_after_parallelization[n], memory_at_start[n])
2071

2072
            # Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it
2073
2074
            self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])

2075
2076
            # Assert that the memory use of device 1 is higher than it was when the entire model was loaded
            # on device 0 and device 1 wasn't used at all
2077
2078
2079
            self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])

            del model
2080
            gc.collect()
2081
2082
2083
2084
2085
            torch.cuda.empty_cache()

    @require_torch_multi_gpu
    def test_model_parallel_equal_results(self):
        if not self.test_model_parallel:
2086
            return
2087
2088
2089
2090
2091
2092

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)

2093
            def cast_to_device(dictionary, device):
2094
2095
2096
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
2097
                        output[k] = v.to(device)
2098
2099
2100
2101
2102
                    else:
                        output[k] = v

                return output

2103
2104
2105
2106
2107
2108
            model = model_class(config)
            output = model(**cast_to_device(inputs_dict, "cpu"))

            model.parallelize()

            parallel_output = model(**cast_to_device(inputs_dict, "cuda:0"))
2109
2110
2111
2112
2113
2114
2115
2116

            for value, parallel_value in zip(output, parallel_output):
                if isinstance(value, torch.Tensor):
                    self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
                elif isinstance(value, (Tuple, List)):
                    for value_, parallel_value_ in zip(value, parallel_value):
                        self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))

2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
    @require_torch_multi_gpu
    def test_model_parallel_beam_search(self):
        if not self.test_model_parallel:
            return

        all_generative_and_parallelizable_model_classes = tuple(
            set(self.all_generative_model_classes).intersection(self.all_parallelizable_model_classes)
        )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in all_generative_and_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)

            def cast_to_device(dictionary, device):
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
                        output[k] = v.to(device)
                    else:
                        output[k] = v

                return output

            model.parallelize()
            model.generate(**cast_to_device(inputs_dict, "cuda:0"), num_beams=2)

2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
    def test_problem_types(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        problem_types = [
            {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
            {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
            {"title": "regression", "num_labels": 1, "dtype": torch.float},
        ]

        for model_class in self.all_model_classes:
2155
2156
2157
2158
            if model_class not in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
            ]:
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
                continue

            for problem_type in problem_types:
                with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):

                    config.problem_type = problem_type["title"]
                    config.num_labels = problem_type["num_labels"]

                    model = model_class(config)
                    model.to(torch_device)
                    model.train()

                    inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

                    if problem_type["num_labels"] > 1:
                        inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])

                    inputs["labels"] = inputs["labels"].to(problem_type["dtype"])

2178
2179
2180
2181
2182
2183
                    # This tests that we do not trigger the warning form PyTorch "Using a target size that is different
                    # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
                    # they have the same size." which is a symptom something in wrong for the regression problem.
                    # See https://github.com/huggingface/transformers/issues/11780
                    with warnings.catch_warnings(record=True) as warning_list:
                        loss = model(**inputs).loss
2184
2185
2186
2187
2188
                    for w in warning_list:
                        if "Using a target size that is different to the input size" in str(w.message):
                            raise ValueError(
                                f"Something is going wrong in the regression problem: intercepted {w.message}"
                            )
2189

2190
2191
                    loss.backward()

2192
    def test_load_with_mismatched_shapes(self):
2193
2194
        if not self.test_mismatched_shapes:
            return
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
2207
                    with self.assertRaises(RuntimeError):
2208
                        new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
2209
2210
                    with self.assertRaises(RuntimeError):
                        new_model_without_prefix = AutoModel.from_pretrained(tmp_dir, vocab_size=10)
2211
2212

                    logger = logging.get_logger("transformers.modeling_utils")
2213

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
                    with CaptureLogger(logger) as cl:
                        new_model = AutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    new_model.to(torch_device)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = AutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    input_ids = ids_tensor((2, 8), 10)
                    new_model_without_prefix.to(torch_device)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

2236

2237
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
2238
2239


thomwolf's avatar
thomwolf committed
2240
def ids_tensor(shape, vocab_size, rng=None, name=None):
2241
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
2242
    if rng is None:
2243
        rng = global_rng
thomwolf's avatar
thomwolf committed
2244

thomwolf's avatar
thomwolf committed
2245
2246
2247
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
2248

thomwolf's avatar
thomwolf committed
2249
2250
2251
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
2252

2253
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
2254
2255


2256
2257
2258
2259
2260
2261
2262
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
    attn_mask[:, -1] = 1
    return attn_mask


2263
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
2264
    """Creates a random float32 tensor"""
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

2276
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
2277
2278


2279
@require_torch
2280
class ModelUtilsTest(TestCasePlus):
2281
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
2282
    def test_model_from_pretrained(self):
2283
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
2284
2285
2286
2287
2288
2289
2290
2291
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
Lysandre Debut's avatar
Lysandre Debut committed
2292
2293
2294
2295
2296

            self.assertEqual(len(loading_info["missing_keys"]), 0)
            self.assertEqual(len(loading_info["unexpected_keys"]), 8)
            self.assertEqual(len(loading_info["mismatched_keys"]), 0)
            self.assertEqual(len(loading_info["error_msgs"]), 0)
thomwolf's avatar
thomwolf committed
2297
2298

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
Lysandre Debut's avatar
Lysandre Debut committed
2299
2300
2301
2302

            # Not sure this is the intended behavior. TODO fix Lysandre & Thom
            config.name_or_path = model_name

thomwolf's avatar
thomwolf committed
2303
2304
2305
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)
2306
2307
2308
2309
2310

    def test_model_from_pretrained_with_different_pretrained_model_name(self):
        model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
        self.assertIsNotNone(model)

2311
2312
        logger = logging.get_logger("transformers.configuration_utils")
        with CaptureLogger(logger) as cl:
2313
            BertModel.from_pretrained(TINY_T5)
2314
        self.assertTrue("You are using a model of type t5 to instantiate a model of type bert" in cl.out)
Sylvain Gugger's avatar
Sylvain Gugger committed
2315

2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
    @require_torch
    def test_model_from_config_torch_dtype(self):
        # test that the model can be instantiated with dtype of user's choice - as long as it's a
        # float dtype. To make it happen config.torch_dtype needs to be set before instantiating the
        # model from the config object.

        config = T5Config.from_pretrained(TINY_T5)
        model = AutoModel.from_config(config)
        # XXX: isn't supported
        # model = T5ForConditionalGeneration.from_config(config)
        self.assertEqual(model.dtype, torch.float32)

        model = AutoModel.from_config(config, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

        # torch.set_default_dtype() supports only float dtypes, so will fail with non-float type
        with self.assertRaises(ValueError):
            model = AutoModel.from_config(config, torch_dtype=torch.int64)

    @require_torch
    def test_model_from_pretrained_torch_dtype(self):
        # test that the model can be instantiated with dtype of either
2338
2339
        # 1. explicit from_pretrained's torch_dtype argument
        # 2. via autodiscovery by looking at model weights (torch_dtype="auto")
2340
        # so if a model.half() was saved, we want it to be instantiated as such.
2341
2342
        #
        # test an explicit model class, but also AutoModel separately as the latter goes through a different code path
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
        model_path = self.get_auto_remove_tmp_dir()

        # baseline - we know TINY_T5 is fp32 model
        model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
        self.assertEqual(model.dtype, torch.float32)

        # test the default fp32 save_pretrained => from_pretrained cycle
        model.save_pretrained(model_path)
        model = T5ForConditionalGeneration.from_pretrained(model_path)
        self.assertEqual(model.dtype, torch.float32)
        # test with auto-detection
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float32)

        # test forced loading in fp16 (even though the weights are in fp32)
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

        # test fp16 save_pretrained, loaded with auto-detection
        model = model.half()
        model.save_pretrained(model_path)
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
2365
        self.assertEqual(model.config.torch_dtype, torch.float16)
2366
2367
        self.assertEqual(model.dtype, torch.float16)

2368
2369
2370
2371
2372
        # tests `config.torch_dtype` saving
        with open(f"{model_path}/config.json") as f:
            config_dict = json.load(f)
        self.assertEqual(config_dict["torch_dtype"], "float16")

2373
2374
2375
2376
        # test fp16 save_pretrained, loaded with the explicit fp16
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

2377
2378
2379
2380
2381
2382
2383
2384
        # test AutoModel separately as it goes through a different path
        # test auto-detection
        model = AutoModel.from_pretrained(TINY_T5, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float32)
        # test forcing an explicit dtype
        model = AutoModel.from_pretrained(TINY_T5, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

2385
2386
2387
2388
2389
2390
2391
    def test_no_super_init_config_and_model(self):
        config = NoSuperInitConfig(attribute=32)
        model = NoSuperInitModel(config)

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)

2392
2393
2394
2395
            new_model = NoSuperInitModel.from_pretrained(tmp_dir)

        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
2396

Sylvain Gugger's avatar
Sylvain Gugger committed
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
    def test_shard_checkpoint(self):
        # This is the model we will use, total size 340,000 bytes.
        model = torch.nn.Sequential(
            torch.nn.Linear(100, 200, bias=False),  # size 80,000
            torch.nn.Linear(200, 200, bias=False),  # size 160,000
            torch.nn.Linear(200, 100, bias=False),  # size 80,000
            torch.nn.Linear(100, 50, bias=False),  # size 20,000
        )
        state_dict = model.state_dict()

        with self.subTest("No shard when max size is bigger than model size"):
            shards, index = shard_checkpoint(state_dict)
            self.assertIsNone(index)
            self.assertDictEqual(shards, {WEIGHTS_NAME: state_dict})

        with self.subTest("Test sharding, no weights bigger than max size"):
            shards, index = shard_checkpoint(state_dict, max_shard_size="300kB")
            # Split is first two layers then last two.
            self.assertDictEqual(
                index,
                {
                    "metadata": {"total_size": 340000},
                    "weight_map": {
                        "0.weight": "pytorch_model-00001-of-00002.bin",
                        "1.weight": "pytorch_model-00001-of-00002.bin",
                        "2.weight": "pytorch_model-00002-of-00002.bin",
                        "3.weight": "pytorch_model-00002-of-00002.bin",
                    },
                },
            )

            shard1 = {"0.weight": state_dict["0.weight"], "1.weight": state_dict["1.weight"]}
            shard2 = {"2.weight": state_dict["2.weight"], "3.weight": state_dict["3.weight"]}
            self.assertDictEqual(
                shards, {"pytorch_model-00001-of-00002.bin": shard1, "pytorch_model-00002-of-00002.bin": shard2}
            )

        with self.subTest("Test sharding with weights bigger than max size"):
            shards, index = shard_checkpoint(state_dict, max_shard_size="100kB")
            # Split is first layer, second layer then last 2.
            self.assertDictEqual(
                index,
                {
                    "metadata": {"total_size": 340000},
                    "weight_map": {
                        "0.weight": "pytorch_model-00001-of-00003.bin",
                        "1.weight": "pytorch_model-00002-of-00003.bin",
                        "2.weight": "pytorch_model-00003-of-00003.bin",
                        "3.weight": "pytorch_model-00003-of-00003.bin",
                    },
                },
            )

            shard1 = {"0.weight": state_dict["0.weight"]}
            shard2 = {"1.weight": state_dict["1.weight"]}
            shard3 = {"2.weight": state_dict["2.weight"], "3.weight": state_dict["3.weight"]}
            self.assertDictEqual(
                shards,
                {
                    "pytorch_model-00001-of-00003.bin": shard1,
                    "pytorch_model-00002-of-00003.bin": shard2,
                    "pytorch_model-00003-of-00003.bin": shard3,
                },
            )

    def test_checkpoint_sharding_local(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        with tempfile.TemporaryDirectory() as tmp_dir:
            # We use the same folder for various sizes to make sure a new save erases the old checkpoint.
            for max_size in ["50kB", "50kiB", "100kB", "100kiB", "200kB", "200kiB"]:
                model.save_pretrained(tmp_dir, max_shard_size=max_size)

                # Get each shard file and its size
                shard_to_size = {}
                for shard in os.listdir(tmp_dir):
                    if shard.endswith(".bin"):
                        shard_file = os.path.join(tmp_dir, shard)
                        shard_to_size[shard_file] = os.path.getsize(shard_file)

                index_file = os.path.join(tmp_dir, WEIGHTS_INDEX_NAME)
                # Check there is an index but no regular weight file
                self.assertTrue(os.path.isfile(index_file))
                self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))

                # Check a file is bigger than max_size only when it has a single weight
                for shard_file, size in shard_to_size.items():
                    if max_size.endswith("kiB"):
                        max_size_int = int(max_size[:-3]) * 2**10
                    else:
                        max_size_int = int(max_size[:-2]) * 10**3
                    # Note: pickle adds some junk so the weight of the file can end up being slightly bigger than
                    # the size asked for (since we count parameters)
                    if size >= max_size_int + 50000:
                        state_dict = torch.load(shard_file)
                        self.assertEqual(len(state_dict), 1)

                # Check the index and the shard files found match
                with open(index_file, "r", encoding="utf-8") as f:
                    index = json.loads(f.read())

                all_shards = set(index["weight_map"].values())
                shards_found = set(f for f in os.listdir(tmp_dir) if f.endswith(".bin"))
                self.assertSetEqual(all_shards, shards_found)

                # Finally, check the model can be reloaded
                new_model = BertModel.from_pretrained(tmp_dir)
                for p1, p2 in zip(model.parameters(), new_model.parameters()):
                    self.assertTrue(torch.allclose(p1, p2))

    def test_checkpoint_sharding_from_hub(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded")
        # the model above is the same as the model below, just a sharded version.
        ref_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
        for p1, p2 in zip(model.parameters(), ref_model.parameters()):
            self.assertTrue(torch.allclose(p1, p2))

2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
    def test_from_pretrained_low_cpu_mem_usage_functional(self):
        # test that we can use `from_pretrained(..., low_cpu_mem_usage=True)` with normal and
        # sharded models

        mnames = [
            "hf-internal-testing/tiny-random-bert-sharded",
            "hf-internal-testing/tiny-random-bert",
        ]
        for mname in mnames:
            _ = BertModel.from_pretrained(mname, low_cpu_mem_usage=True)

    @require_usr_bin_time
    def test_from_pretrained_low_cpu_mem_usage_measured(self):
        # test that `from_pretrained(..., low_cpu_mem_usage=True)` uses less cpu memory than default

        mname = "bert-base-cased"

        preamble = "from transformers import AutoModel"
        one_liner_str = f'{preamble}; AutoModel.from_pretrained("{mname}", low_cpu_mem_usage=False)'
        max_rss_normal = self.python_one_liner_max_rss(one_liner_str)
        # print(f"{max_rss_normal=}")

        one_liner_str = f'{preamble};  AutoModel.from_pretrained("{mname}", low_cpu_mem_usage=True)'
        max_rss_low_mem = self.python_one_liner_max_rss(one_liner_str)
        # print(f"{max_rss_low_mem=}")

        diff_bytes = max_rss_normal - max_rss_low_mem
        diff_percent = diff_bytes / max_rss_low_mem
        # print(f"{diff_bytes=}, {diff_percent=}")
        # ideally we would compare that the diff is close to ~1x checkpoint size in bytes, but
        # measuring cpu memory on linux is very tricky and inconsistent, so instead let's check that
        # it's at least 15% less cpu memory consumed

        self.assertGreater(
            diff_percent,
            0.15,
            "should use less CPU memory for low_cpu_mem_usage=True, "
            f"but got max_rss_normal={max_rss_normal} and max_rss_low_mem={max_rss_low_mem}",
        )

        # if you want to compare things manually, let's first look at the size of the model in bytes
        # model = BertModel.from_pretrained(mname, low_cpu_mem_usage=False)
        # total_numel = sum(dict((p.data_ptr(), p.numel()) for p in model.parameters()).values())
        # total_bytes = total_numel * 4  # 420MB
        # Now the diff_bytes should be very close to total_bytes, but the reports are inconsistent.
        # The easiest way to test this is to switch the model and torch.load to do all the work on
        # gpu - that way one can measure exactly the total and peak memory used. Perhaps once we add
        # functionality to load models directly on gpu, this test can be rewritten to use torch's
        # cuda memory tracking and then we should be able to do a much more precise test.

2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
    def test_cached_files_are_used_when_internet_is_down(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
        response_mock.headers = []
        response_mock.raise_for_status.side_effect = HTTPError

        # Download this model to make sure it's in the cache.
        _ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        # Under the mock environment we get a 500 error when trying to reach the model.
        with mock.patch("transformers.utils.hub.requests.head", return_value=response_mock) as mock_head:
            _ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
            # This check we did call the fake head request
            mock_head.assert_called()

Sylvain Gugger's avatar
Sylvain Gugger committed
2580
2581
2582
2583
2584
2585

@require_torch
@is_staging_test
class ModelPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
2586
        cls._token = login(username=USER, password=PASS)
Sylvain Gugger's avatar
Sylvain Gugger committed
2587
2588
2589
2590

    @classmethod
    def tearDownClass(cls):
        try:
2591
            delete_repo(token=cls._token, name="test-model")
Sylvain Gugger's avatar
Sylvain Gugger committed
2592
2593
2594
2595
        except HTTPError:
            pass

        try:
2596
            delete_repo(token=cls._token, name="test-model-org", organization="valid_org")
Sylvain Gugger's avatar
Sylvain Gugger committed
2597
2598
2599
        except HTTPError:
            pass

2600
        try:
2601
            delete_repo(token=cls._token, name="test-dynamic-model")
2602
2603
2604
        except HTTPError:
            pass

2605
2606
2607
2608
2609
        try:
            delete_repo(token=cls._token, name="test-dynamic-model-config")
        except HTTPError:
            pass

Sylvain Gugger's avatar
Sylvain Gugger committed
2610
2611
2612
2613
2614
2615
    def test_push_to_hub(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
2616
            model.save_pretrained(os.path.join(tmp_dir, "test-model"), push_to_hub=True, use_auth_token=self._token)
Sylvain Gugger's avatar
Sylvain Gugger committed
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628

            new_model = BertModel.from_pretrained(f"{USER}/test-model")
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))

    def test_push_to_hub_in_organization(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(
2629
                os.path.join(tmp_dir, "test-model-org"),
Sylvain Gugger's avatar
Sylvain Gugger committed
2630
2631
2632
2633
2634
2635
2636
2637
                push_to_hub=True,
                use_auth_token=self._token,
                organization="valid_org",
            )

            new_model = BertModel.from_pretrained("valid_org/test-model-org")
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))
2638
2639

    def test_push_to_hub_dynamic_model(self):
2640
2641
2642
2643
2644
        CustomConfig.register_for_auto_class()
        CustomModel.register_for_auto_class()

        config = CustomConfig(hidden_size=32)
        model = CustomModel(config)
2645
2646
2647
2648

        with tempfile.TemporaryDirectory() as tmp_dir:
            repo = Repository(tmp_dir, clone_from=f"{USER}/test-dynamic-model", use_auth_token=self._token)
            model.save_pretrained(tmp_dir)
2649
2650
2651
2652
2653
            # checks
            self.assertDictEqual(
                config.auto_map,
                {"AutoConfig": "custom_configuration.CustomConfig", "AutoModel": "custom_modeling.CustomModel"},
            )
2654
2655
2656
2657

            repo.push_to_hub()

        new_model = AutoModel.from_pretrained(f"{USER}/test-dynamic-model", trust_remote_code=True)
2658
2659
        # Can't make an isinstance check because the new_model is from the CustomModel class of a dynamic module
        self.assertEqual(new_model.__class__.__name__, "CustomModel")
2660
2661
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
2662

2663
        config = AutoConfig.from_pretrained(f"{USER}/test-dynamic-model", trust_remote_code=True)
2664
        new_model = AutoModel.from_config(config, trust_remote_code=True)
2665
        self.assertEqual(new_model.__class__.__name__, "CustomModel")