model_management.py 24.4 KB
Newer Older
1
2
import psutil
from enum import Enum
comfyanonymous's avatar
comfyanonymous committed
3
from comfy.cli_args import args
comfyanonymous's avatar
comfyanonymous committed
4
import comfy.utils
5
import torch
comfyanonymous's avatar
comfyanonymous committed
6
import sys
7

8
class VRAMState(Enum):
9
10
    DISABLED = 0    #No vram present: no need to move models to vram
    NO_VRAM = 1     #Very low vram: enable all the options to save vram
11
12
13
    LOW_VRAM = 2
    NORMAL_VRAM = 3
    HIGH_VRAM = 4
14
    SHARED = 5      #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.
15
16
17
18
19

class CPUState(Enum):
    GPU = 0
    CPU = 1
    MPS = 2
20

21
22
23
# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
24
cpu_state = CPUState.GPU
25

26
total_vram = 0
27

28
lowvram_available = True
藍+85CD's avatar
藍+85CD committed
29
xpu_available = False
30

31
32
33
34
if args.deterministic:
    print("Using deterministic algorithms for pytorch")
    torch.use_deterministic_algorithms(True, warn_only=True)

35
directml_enabled = False
36
if args.directml is not None:
37
38
    import torch_directml
    directml_enabled = True
39
40
41
42
43
44
    device_index = args.directml
    if device_index < 0:
        directml_device = torch_directml.device()
    else:
        directml_device = torch_directml.device(device_index)
    print("Using directml with device:", torch_directml.device_name(device_index))
45
    # torch_directml.disable_tiled_resources(True)
46
    lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
47

48
try:
49
50
51
    import intel_extension_for_pytorch as ipex
    if torch.xpu.is_available():
        xpu_available = True
52
53
54
except:
    pass

55
56
57
try:
    if torch.backends.mps.is_available():
        cpu_state = CPUState.MPS
KarryCharon's avatar
KarryCharon committed
58
        import torch.mps
59
60
61
62
63
64
except:
    pass

if args.cpu:
    cpu_state = CPUState.CPU

65
66
def is_intel_xpu():
    global cpu_state
67
    global xpu_available
68
69
70
71
72
73
    if cpu_state == CPUState.GPU:
        if xpu_available:
            return True
    return False

def get_torch_device():
74
    global directml_enabled
75
    global cpu_state
76
77
78
    if directml_enabled:
        global directml_device
        return directml_device
79
    if cpu_state == CPUState.MPS:
80
        return torch.device("mps")
81
    if cpu_state == CPUState.CPU:
82
83
        return torch.device("cpu")
    else:
84
        if is_intel_xpu():
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
            return torch.device("xpu")
        else:
            return torch.device(torch.cuda.current_device())

def get_total_memory(dev=None, torch_total_too=False):
    global directml_enabled
    if dev is None:
        dev = get_torch_device()

    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
        mem_total = psutil.virtual_memory().total
        mem_total_torch = mem_total
    else:
        if directml_enabled:
            mem_total = 1024 * 1024 * 1024 #TODO
            mem_total_torch = mem_total
101
        elif is_intel_xpu():
102
103
            stats = torch.xpu.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
104
            mem_total = torch.xpu.get_device_properties(dev).total_memory
105
            mem_total_torch = mem_reserved
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
            _, mem_total_cuda = torch.cuda.mem_get_info(dev)
            mem_total_torch = mem_reserved
            mem_total = mem_total_cuda

    if torch_total_too:
        return (mem_total, mem_total_torch)
    else:
        return mem_total

total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
print("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
if not args.normalvram and not args.cpu:
    if lowvram_available and total_vram <= 4096:
        print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
        set_vram_to = VRAMState.LOW_VRAM

126
127
128
129
130
try:
    OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
    OOM_EXCEPTION = Exception

131
132
XFORMERS_VERSION = ""
XFORMERS_ENABLED_VAE = True
133
134
if args.disable_xformers:
    XFORMERS_IS_AVAILABLE = False
135
136
137
138
else:
    try:
        import xformers
        import xformers.ops
139
        XFORMERS_IS_AVAILABLE = True
140
141
142
143
        try:
            XFORMERS_IS_AVAILABLE = xformers._has_cpp_library
        except:
            pass
144
145
146
147
148
149
150
151
152
153
154
        try:
            XFORMERS_VERSION = xformers.version.__version__
            print("xformers version:", XFORMERS_VERSION)
            if XFORMERS_VERSION.startswith("0.0.18"):
                print()
                print("WARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
                print("Please downgrade or upgrade xformers to a different version.")
                print()
                XFORMERS_ENABLED_VAE = False
        except:
            pass
155
    except:
156
        XFORMERS_IS_AVAILABLE = False
157

158
159
160
161
162
def is_nvidia():
    global cpu_state
    if cpu_state == CPUState.GPU:
        if torch.version.cuda:
            return True
163
    return False
164

165
166
167
168
169
ENABLE_PYTORCH_ATTENTION = False
if args.use_pytorch_cross_attention:
    ENABLE_PYTORCH_ATTENTION = True
    XFORMERS_IS_AVAILABLE = False

170
VAE_DTYPE = torch.float32
171

172
173
174
175
try:
    if is_nvidia():
        torch_version = torch.version.__version__
        if int(torch_version[0]) >= 2:
176
            if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
177
                ENABLE_PYTORCH_ATTENTION = True
178
179
            if torch.cuda.is_bf16_supported():
                VAE_DTYPE = torch.bfloat16
180
181
182
    if is_intel_xpu():
        if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
            ENABLE_PYTORCH_ATTENTION = True
183
184
185
except:
    pass

186
187
188
if is_intel_xpu():
    VAE_DTYPE = torch.bfloat16

189
190
191
192
193
194
195
if args.fp16_vae:
    VAE_DTYPE = torch.float16
elif args.bf16_vae:
    VAE_DTYPE = torch.bfloat16
elif args.fp32_vae:
    VAE_DTYPE = torch.float32

196

197
if ENABLE_PYTORCH_ATTENTION:
198
199
200
    torch.backends.cuda.enable_math_sdp(True)
    torch.backends.cuda.enable_flash_sdp(True)
    torch.backends.cuda.enable_mem_efficient_sdp(True)
201

202
203
if args.lowvram:
    set_vram_to = VRAMState.LOW_VRAM
204
    lowvram_available = True
205
206
elif args.novram:
    set_vram_to = VRAMState.NO_VRAM
207
elif args.highvram or args.gpu_only:
208
    vram_state = VRAMState.HIGH_VRAM
209

210
FORCE_FP32 = False
211
FORCE_FP16 = False
212
213
214
215
if args.force_fp32:
    print("Forcing FP32, if this improves things please report it.")
    FORCE_FP32 = True

216
217
218
219
if args.force_fp16:
    print("Forcing FP16.")
    FORCE_FP16 = True

220
if lowvram_available:
221
222
    if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
        vram_state = set_vram_to
223

224

225
226
if cpu_state != CPUState.GPU:
    vram_state = VRAMState.DISABLED
227

228
229
if cpu_state == CPUState.MPS:
    vram_state = VRAMState.SHARED
230

231
print(f"Set vram state to: {vram_state.name}")
232

233
234
235
236
DISABLE_SMART_MEMORY = args.disable_smart_memory

if DISABLE_SMART_MEMORY:
    print("Disabling smart memory management")
237

238
239
def get_torch_device_name(device):
    if hasattr(device, 'type'):
240
        if device.type == "cuda":
241
242
243
244
245
            try:
                allocator_backend = torch.cuda.get_allocator_backend()
            except:
                allocator_backend = ""
            return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
246
247
        else:
            return "{}".format(device.type)
248
    elif is_intel_xpu():
249
        return "{} {}".format(device, torch.xpu.get_device_name(device))
250
251
    else:
        return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
252
253

try:
254
    print("Device:", get_torch_device_name(get_torch_device()))
255
256
257
except:
    print("Could not pick default device.")

258
print("VAE dtype:", VAE_DTYPE)
259

comfyanonymous's avatar
comfyanonymous committed
260
current_loaded_models = []
261

262
263
264
265
266
267
268
269
def module_size(module):
    module_mem = 0
    sd = module.state_dict()
    for k in sd:
        t = sd[k]
        module_mem += t.nelement() * t.element_size()
    return module_mem

comfyanonymous's avatar
comfyanonymous committed
270
271
272
273
274
class LoadedModel:
    def __init__(self, model):
        self.model = model
        self.model_accelerated = False
        self.device = model.load_device
275

comfyanonymous's avatar
comfyanonymous committed
276
277
    def model_memory(self):
        return self.model.model_size()
278

comfyanonymous's avatar
comfyanonymous committed
279
280
281
282
283
    def model_memory_required(self, device):
        if device == self.model.current_device:
            return 0
        else:
            return self.model_memory()
284

comfyanonymous's avatar
comfyanonymous committed
285
286
287
288
    def model_load(self, lowvram_model_memory=0):
        patch_model_to = None
        if lowvram_model_memory == 0:
            patch_model_to = self.device
289

comfyanonymous's avatar
comfyanonymous committed
290
291
        self.model.model_patches_to(self.device)
        self.model.model_patches_to(self.model.model_dtype())
292

comfyanonymous's avatar
comfyanonymous committed
293
294
295
296
297
298
        try:
            self.real_model = self.model.patch_model(device_to=patch_model_to) #TODO: do something with loras and offloading to CPU
        except Exception as e:
            self.model.unpatch_model(self.model.offload_device)
            self.model_unload()
            raise e
299

comfyanonymous's avatar
comfyanonymous committed
300
301
        if lowvram_model_memory > 0:
            print("loading in lowvram mode", lowvram_model_memory/(1024 * 1024))
302
303
304
305
306
            mem_counter = 0
            for m in self.real_model.modules():
                if hasattr(m, "comfy_cast_weights"):
                    m.prev_comfy_cast_weights = m.comfy_cast_weights
                    m.comfy_cast_weights = True
307
                    module_mem = module_size(m)
308
309
310
                    if mem_counter + module_mem < lowvram_model_memory:
                        m.to(self.device)
                        mem_counter += module_mem
311
312
313
314
                elif hasattr(m, "weight"): #only modules with comfy_cast_weights can be set to lowvram mode
                    m.to(self.device)
                    mem_counter += module_size(m)
                    print("lowvram: loaded module regularly", m)
315

comfyanonymous's avatar
comfyanonymous committed
316
            self.model_accelerated = True
317

318
        if is_intel_xpu() and not args.disable_ipex_optimize:
319
            self.real_model = torch.xpu.optimize(self.real_model.eval(), inplace=True, auto_kernel_selection=True, graph_mode=True)
320

comfyanonymous's avatar
comfyanonymous committed
321
        return self.real_model
322

comfyanonymous's avatar
comfyanonymous committed
323
324
    def model_unload(self):
        if self.model_accelerated:
325
326
327
328
329
            for m in self.real_model.modules():
                if hasattr(m, "prev_comfy_cast_weights"):
                    m.comfy_cast_weights = m.prev_comfy_cast_weights
                    del m.prev_comfy_cast_weights

comfyanonymous's avatar
comfyanonymous committed
330
            self.model_accelerated = False
331

comfyanonymous's avatar
comfyanonymous committed
332
333
        self.model.unpatch_model(self.model.offload_device)
        self.model.model_patches_to(self.model.offload_device)
334

comfyanonymous's avatar
comfyanonymous committed
335
336
    def __eq__(self, other):
        return self.model is other.model
comfyanonymous's avatar
comfyanonymous committed
337

comfyanonymous's avatar
comfyanonymous committed
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
def minimum_inference_memory():
    return (1024 * 1024 * 1024)

def unload_model_clones(model):
    to_unload = []
    for i in range(len(current_loaded_models)):
        if model.is_clone(current_loaded_models[i].model):
            to_unload = [i] + to_unload

    for i in to_unload:
        print("unload clone", i)
        current_loaded_models.pop(i).model_unload()

def free_memory(memory_required, device, keep_loaded=[]):
    unloaded_model = False
    for i in range(len(current_loaded_models) -1, -1, -1):
comfyanonymous's avatar
comfyanonymous committed
354
355
356
        if not DISABLE_SMART_MEMORY:
            if get_free_memory(device) > memory_required:
                break
comfyanonymous's avatar
comfyanonymous committed
357
358
359
        shift_model = current_loaded_models[i]
        if shift_model.device == device:
            if shift_model not in keep_loaded:
comfyanonymous's avatar
comfyanonymous committed
360
361
362
                m = current_loaded_models.pop(i)
                m.model_unload()
                del m
comfyanonymous's avatar
comfyanonymous committed
363
364
365
366
                unloaded_model = True

    if unloaded_model:
        soft_empty_cache()
367
368
369
370
371
    else:
        if vram_state != VRAMState.HIGH_VRAM:
            mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True)
            if mem_free_torch > mem_free_total * 0.25:
                soft_empty_cache()
comfyanonymous's avatar
comfyanonymous committed
372
373

def load_models_gpu(models, memory_required=0):
374
375
    global vram_state

comfyanonymous's avatar
comfyanonymous committed
376
377
378
379
380
381
382
383
384
385
386
387
388
    inference_memory = minimum_inference_memory()
    extra_mem = max(inference_memory, memory_required)

    models_to_load = []
    models_already_loaded = []
    for x in models:
        loaded_model = LoadedModel(x)

        if loaded_model in current_loaded_models:
            index = current_loaded_models.index(loaded_model)
            current_loaded_models.insert(0, current_loaded_models.pop(index))
            models_already_loaded.append(loaded_model)
        else:
389
390
            if hasattr(x, "model"):
                print(f"Requested to load {x.model.__class__.__name__}")
comfyanonymous's avatar
comfyanonymous committed
391
392
393
394
395
396
397
            models_to_load.append(loaded_model)

    if len(models_to_load) == 0:
        devs = set(map(lambda a: a.device, models_already_loaded))
        for d in devs:
            if d != torch.device("cpu"):
                free_memory(extra_mem, d, models_already_loaded)
398
399
        return

400
    print(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}")
401

comfyanonymous's avatar
comfyanonymous committed
402
403
404
405
    total_memory_required = {}
    for loaded_model in models_to_load:
        unload_model_clones(loaded_model.model)
        total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
comfyanonymous's avatar
comfyanonymous committed
406

comfyanonymous's avatar
comfyanonymous committed
407
408
409
    for device in total_memory_required:
        if device != torch.device("cpu"):
            free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
comfyanonymous's avatar
comfyanonymous committed
410

comfyanonymous's avatar
comfyanonymous committed
411
412
413
414
415
416
417
418
419
420
421
    for loaded_model in models_to_load:
        model = loaded_model.model
        torch_dev = model.load_device
        if is_device_cpu(torch_dev):
            vram_set_state = VRAMState.DISABLED
        else:
            vram_set_state = vram_state
        lowvram_model_memory = 0
        if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
            model_size = loaded_model.model_memory_required(torch_dev)
            current_free_mem = get_free_memory(torch_dev)
422
            lowvram_model_memory = int(max(64 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
comfyanonymous's avatar
comfyanonymous committed
423
424
425
426
            if model_size > (current_free_mem - inference_memory): #only switch to lowvram if really necessary
                vram_set_state = VRAMState.LOW_VRAM
            else:
                lowvram_model_memory = 0
427

comfyanonymous's avatar
comfyanonymous committed
428
        if vram_set_state == VRAMState.NO_VRAM:
429
            lowvram_model_memory = 64 * 1024 * 1024
430

comfyanonymous's avatar
comfyanonymous committed
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
        cur_loaded_model = loaded_model.model_load(lowvram_model_memory)
        current_loaded_models.insert(0, loaded_model)
    return


def load_model_gpu(model):
    return load_models_gpu([model])

def cleanup_models():
    to_delete = []
    for i in range(len(current_loaded_models)):
        if sys.getrefcount(current_loaded_models[i].model) <= 2:
            to_delete = [i] + to_delete

    for i in to_delete:
        x = current_loaded_models.pop(i)
        x.model_unload()
        del x
449

450
451
452
453
def dtype_size(dtype):
    dtype_size = 4
    if dtype == torch.float16 or dtype == torch.bfloat16:
        dtype_size = 2
454
455
456
457
458
459
460
    elif dtype == torch.float32:
        dtype_size = 4
    else:
        try:
            dtype_size = dtype.itemsize
        except: #Old pytorch doesn't have .itemsize
            pass
461
462
    return dtype_size

463
def unet_offload_device():
comfyanonymous's avatar
comfyanonymous committed
464
    if vram_state == VRAMState.HIGH_VRAM:
465
466
467
468
        return get_torch_device()
    else:
        return torch.device("cpu")

comfyanonymous's avatar
comfyanonymous committed
469
470
471
472
473
474
def unet_inital_load_device(parameters, dtype):
    torch_dev = get_torch_device()
    if vram_state == VRAMState.HIGH_VRAM:
        return torch_dev

    cpu_dev = torch.device("cpu")
475
476
477
    if DISABLE_SMART_MEMORY:
        return cpu_dev

478
    model_size = dtype_size(dtype) * parameters
comfyanonymous's avatar
comfyanonymous committed
479
480
481
482
483
484
485
486

    mem_dev = get_free_memory(torch_dev)
    mem_cpu = get_free_memory(cpu_dev)
    if mem_dev > mem_cpu and model_size < mem_dev:
        return torch_dev
    else:
        return cpu_dev

487
def unet_dtype(device=None, model_params=0):
488
489
    if args.bf16_unet:
        return torch.bfloat16
490
491
    if args.fp16_unet:
        return torch.float16
492
493
494
495
    if args.fp8_e4m3fn_unet:
        return torch.float8_e4m3fn
    if args.fp8_e5m2_unet:
        return torch.float8_e5m2
496
497
498
499
    if should_use_fp16(device=device, model_params=model_params):
        return torch.float16
    return torch.float32

500
501
502
503
504
505
506
507
508
509
510
511
512
513
# None means no manual cast
def unet_manual_cast(weight_dtype, inference_device):
    if weight_dtype == torch.float32:
        return None

    fp16_supported = comfy.model_management.should_use_fp16(inference_device, prioritize_performance=False)
    if fp16_supported and weight_dtype == torch.float16:
        return None

    if fp16_supported:
        return torch.float16
    else:
        return torch.float32

514
def text_encoder_offload_device():
comfyanonymous's avatar
comfyanonymous committed
515
    if args.gpu_only:
516
517
518
519
        return get_torch_device()
    else:
        return torch.device("cpu")

520
def text_encoder_device():
comfyanonymous's avatar
comfyanonymous committed
521
    if args.gpu_only:
522
        return get_torch_device()
523
    elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
524
525
        if is_intel_xpu():
            return torch.device("cpu")
526
        if should_use_fp16(prioritize_performance=False):
527
528
529
            return get_torch_device()
        else:
            return torch.device("cpu")
530
531
532
    else:
        return torch.device("cpu")

533
534
535
536
537
538
539
540
541
542
def text_encoder_dtype(device=None):
    if args.fp8_e4m3fn_text_enc:
        return torch.float8_e4m3fn
    elif args.fp8_e5m2_text_enc:
        return torch.float8_e5m2
    elif args.fp16_text_enc:
        return torch.float16
    elif args.fp32_text_enc:
        return torch.float32

543
544
545
    if is_device_cpu(device):
        return torch.float16

546
547
548
549
550
    if should_use_fp16(device, prioritize_performance=False):
        return torch.float16
    else:
        return torch.float32

551
552
553
554
555
556
def intermediate_device():
    if args.gpu_only:
        return get_torch_device()
    else:
        return torch.device("cpu")

557
558
559
560
def vae_device():
    return get_torch_device()

def vae_offload_device():
comfyanonymous's avatar
comfyanonymous committed
561
    if args.gpu_only:
562
563
564
565
        return get_torch_device()
    else:
        return torch.device("cpu")

566
def vae_dtype():
567
568
    global VAE_DTYPE
    return VAE_DTYPE
569

570
571
572
573
def get_autocast_device(dev):
    if hasattr(dev, 'type'):
        return dev.type
    return "cuda"
574

575
576
577
def supports_dtype(device, dtype): #TODO
    if dtype == torch.float32:
        return True
578
    if is_device_cpu(device):
579
580
581
582
583
584
585
        return False
    if dtype == torch.float16:
        return True
    if dtype == torch.bfloat16:
        return True
    return False

586
587
588
589
590
def device_supports_non_blocking(device):
    if is_device_mps(device):
        return False #pytorch bug? mps doesn't support non blocking
    return True

591
592
593
594
595
596
597
def cast_to_device(tensor, device, dtype, copy=False):
    device_supports_cast = False
    if tensor.dtype == torch.float32 or tensor.dtype == torch.float16:
        device_supports_cast = True
    elif tensor.dtype == torch.bfloat16:
        if hasattr(device, 'type') and device.type.startswith("cuda"):
            device_supports_cast = True
598
599
        elif is_intel_xpu():
            device_supports_cast = True
600

601
    non_blocking = device_supports_non_blocking(device)
comfyanonymous's avatar
comfyanonymous committed
602

603
604
605
    if device_supports_cast:
        if copy:
            if tensor.device == device:
comfyanonymous's avatar
comfyanonymous committed
606
607
                return tensor.to(dtype, copy=copy, non_blocking=non_blocking)
            return tensor.to(device, copy=copy, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
608
        else:
comfyanonymous's avatar
comfyanonymous committed
609
            return tensor.to(device, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
610
    else:
comfyanonymous's avatar
comfyanonymous committed
611
        return tensor.to(device, dtype, copy=copy, non_blocking=non_blocking)
612

613
def xformers_enabled():
614
    global directml_enabled
615
616
    global cpu_state
    if cpu_state != CPUState.GPU:
617
        return False
618
    if is_intel_xpu():
619
620
621
        return False
    if directml_enabled:
        return False
622
    return XFORMERS_IS_AVAILABLE
623

624
625
626
627
628

def xformers_enabled_vae():
    enabled = xformers_enabled()
    if not enabled:
        return False
629
630

    return XFORMERS_ENABLED_VAE
631

632
def pytorch_attention_enabled():
633
    global ENABLE_PYTORCH_ATTENTION
634
635
    return ENABLE_PYTORCH_ATTENTION

636
637
638
639
def pytorch_attention_flash_attention():
    global ENABLE_PYTORCH_ATTENTION
    if ENABLE_PYTORCH_ATTENTION:
        #TODO: more reliable way of checking for flash attention?
640
        if is_nvidia(): #pytorch flash attention only works on Nvidia
641
642
643
            return True
    return False

644
def get_free_memory(dev=None, torch_free_too=False):
645
    global directml_enabled
646
    if dev is None:
647
        dev = get_torch_device()
648

Yurii Mazurevich's avatar
Yurii Mazurevich committed
649
    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
650
651
652
        mem_free_total = psutil.virtual_memory().available
        mem_free_torch = mem_free_total
    else:
653
654
655
        if directml_enabled:
            mem_free_total = 1024 * 1024 * 1024 #TODO
            mem_free_torch = mem_free_total
656
        elif is_intel_xpu():
657
658
659
660
661
            stats = torch.xpu.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_allocated = stats['allocated_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_torch = mem_reserved - mem_active
662
            mem_free_total = torch.xpu.get_device_properties(dev).total_memory - mem_allocated
663
664
665
666
667
668
669
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
            mem_free_torch = mem_reserved - mem_active
            mem_free_total = mem_free_cuda + mem_free_torch
670
671
672
673
674

    if torch_free_too:
        return (mem_free_total, mem_free_torch)
    else:
        return mem_free_total
675

676
def cpu_mode():
677
678
    global cpu_state
    return cpu_state == CPUState.CPU
679

Yurii Mazurevich's avatar
Yurii Mazurevich committed
680
def mps_mode():
681
682
    global cpu_state
    return cpu_state == CPUState.MPS
Yurii Mazurevich's avatar
Yurii Mazurevich committed
683

684
685
def is_device_cpu(device):
    if hasattr(device, 'type'):
comfyanonymous's avatar
comfyanonymous committed
686
687
688
689
690
691
692
        if (device.type == 'cpu'):
            return True
    return False

def is_device_mps(device):
    if hasattr(device, 'type'):
        if (device.type == 'mps'):
693
694
695
            return True
    return False

696
def should_use_fp16(device=None, model_params=0, prioritize_performance=True):
697
698
    global directml_enabled

699
700
701
702
    if device is not None:
        if is_device_cpu(device):
            return False

703
704
705
    if FORCE_FP16:
        return True

706
    if device is not None: #TODO
707
        if is_device_mps(device):
708
            return False
709

710
711
712
    if FORCE_FP32:
        return False

713
714
715
    if directml_enabled:
        return False

716
    if cpu_mode() or mps_mode():
717
718
        return False #TODO ?

719
    if is_intel_xpu():
comfyanonymous's avatar
comfyanonymous committed
720
721
722
        return True

    if torch.cuda.is_bf16_supported():
723
724
        return True

comfyanonymous's avatar
comfyanonymous committed
725
    props = torch.cuda.get_device_properties("cuda")
726
727
728
729
730
731
732
733
734
735
736
737
738
739
    if props.major < 6:
        return False

    fp16_works = False
    #FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled
    #when the model doesn't actually fit on the card
    #TODO: actually test if GP106 and others have the same type of behavior
    nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050"]
    for x in nvidia_10_series:
        if x in props.name.lower():
            fp16_works = True

    if fp16_works:
        free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
740
        if (not prioritize_performance) or model_params * 4 > free_model_memory:
741
742
            return True

743
744
745
    if props.major < 7:
        return False

746
    #FP16 is just broken on these cards
747
    nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"]
748
749
750
751
752
753
    for x in nvidia_16_series:
        if x in props.name:
            return False

    return True

754
def soft_empty_cache(force=False):
755
756
    global cpu_state
    if cpu_state == CPUState.MPS:
comfyanonymous's avatar
comfyanonymous committed
757
        torch.mps.empty_cache()
758
    elif is_intel_xpu():
759
760
        torch.xpu.empty_cache()
    elif torch.cuda.is_available():
761
        if force or is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
762
763
764
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()

765
766
767
768
def unload_all_models():
    free_memory(1e30, get_torch_device())


769
def resolve_lowvram_weight(weight, model, key): #TODO: remove
comfyanonymous's avatar
comfyanonymous committed
770
771
    return weight

772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
#TODO: might be cleaner to put this somewhere else
import threading

class InterruptProcessingException(Exception):
    pass

interrupt_processing_mutex = threading.RLock()

interrupt_processing = False
def interrupt_current_processing(value=True):
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        interrupt_processing = value

def processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        return interrupt_processing

def throw_exception_if_processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        if interrupt_processing:
            interrupt_processing = False
            raise InterruptProcessingException()