model_management.py 20.7 KB
Newer Older
1
2
import psutil
from enum import Enum
comfyanonymous's avatar
comfyanonymous committed
3
from comfy.cli_args import args
4
import torch
comfyanonymous's avatar
comfyanonymous committed
5
import sys
6

7
class VRAMState(Enum):
8
9
    DISABLED = 0    #No vram present: no need to move models to vram
    NO_VRAM = 1     #Very low vram: enable all the options to save vram
10
11
12
    LOW_VRAM = 2
    NORMAL_VRAM = 3
    HIGH_VRAM = 4
13
    SHARED = 5      #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.
14
15
16
17
18

class CPUState(Enum):
    GPU = 0
    CPU = 1
    MPS = 2
19

20
21
22
# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
23
cpu_state = CPUState.GPU
24

25
total_vram = 0
26

27
lowvram_available = True
藍+85CD's avatar
藍+85CD committed
28
xpu_available = False
29

30
directml_enabled = False
31
if args.directml is not None:
32
33
    import torch_directml
    directml_enabled = True
34
35
36
37
38
39
    device_index = args.directml
    if device_index < 0:
        directml_device = torch_directml.device()
    else:
        directml_device = torch_directml.device(device_index)
    print("Using directml with device:", torch_directml.device_name(device_index))
40
    # torch_directml.disable_tiled_resources(True)
41
    lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
42

43
try:
44
45
46
    import intel_extension_for_pytorch as ipex
    if torch.xpu.is_available():
        xpu_available = True
47
48
49
except:
    pass

50
51
52
try:
    if torch.backends.mps.is_available():
        cpu_state = CPUState.MPS
KarryCharon's avatar
KarryCharon committed
53
        import torch.mps
54
55
56
57
58
59
except:
    pass

if args.cpu:
    cpu_state = CPUState.CPU

60
61
62
def get_torch_device():
    global xpu_available
    global directml_enabled
63
    global cpu_state
64
65
66
    if directml_enabled:
        global directml_device
        return directml_device
67
    if cpu_state == CPUState.MPS:
68
        return torch.device("mps")
69
    if cpu_state == CPUState.CPU:
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
        return torch.device("cpu")
    else:
        if xpu_available:
            return torch.device("xpu")
        else:
            return torch.device(torch.cuda.current_device())

def get_total_memory(dev=None, torch_total_too=False):
    global xpu_available
    global directml_enabled
    if dev is None:
        dev = get_torch_device()

    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
        mem_total = psutil.virtual_memory().total
        mem_total_torch = mem_total
    else:
        if directml_enabled:
            mem_total = 1024 * 1024 * 1024 #TODO
            mem_total_torch = mem_total
        elif xpu_available:
91
92
            stats = torch.xpu.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
93
            mem_total = torch.xpu.get_device_properties(dev).total_memory
94
            mem_total_torch = mem_reserved
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
            _, mem_total_cuda = torch.cuda.mem_get_info(dev)
            mem_total_torch = mem_reserved
            mem_total = mem_total_cuda

    if torch_total_too:
        return (mem_total, mem_total_torch)
    else:
        return mem_total

total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
print("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
if not args.normalvram and not args.cpu:
    if lowvram_available and total_vram <= 4096:
        print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
        set_vram_to = VRAMState.LOW_VRAM
    elif total_vram > total_ram * 1.1 and total_vram > 14336:
        print("Enabling highvram mode because your GPU has more vram than your computer has ram. If you don't want this use: --normalvram")
        vram_state = VRAMState.HIGH_VRAM

118
119
120
121
122
try:
    OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
    OOM_EXCEPTION = Exception

123
124
XFORMERS_VERSION = ""
XFORMERS_ENABLED_VAE = True
125
126
if args.disable_xformers:
    XFORMERS_IS_AVAILABLE = False
127
128
129
130
else:
    try:
        import xformers
        import xformers.ops
131
        XFORMERS_IS_AVAILABLE = True
132
133
134
135
136
137
138
139
140
141
142
        try:
            XFORMERS_VERSION = xformers.version.__version__
            print("xformers version:", XFORMERS_VERSION)
            if XFORMERS_VERSION.startswith("0.0.18"):
                print()
                print("WARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
                print("Please downgrade or upgrade xformers to a different version.")
                print()
                XFORMERS_ENABLED_VAE = False
        except:
            pass
143
    except:
144
        XFORMERS_IS_AVAILABLE = False
145

146
147
148
149
150
151
def is_nvidia():
    global cpu_state
    if cpu_state == CPUState.GPU:
        if torch.version.cuda:
            return True

152
ENABLE_PYTORCH_ATTENTION = args.use_pytorch_cross_attention
153
154
155
156
157
158
159
160
161
162

if ENABLE_PYTORCH_ATTENTION == False and XFORMERS_IS_AVAILABLE == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
    try:
        if is_nvidia():
            torch_version = torch.version.__version__
            if int(torch_version[0]) >= 2:
                ENABLE_PYTORCH_ATTENTION = True
    except:
        pass

163
if ENABLE_PYTORCH_ATTENTION:
164
165
166
    torch.backends.cuda.enable_math_sdp(True)
    torch.backends.cuda.enable_flash_sdp(True)
    torch.backends.cuda.enable_mem_efficient_sdp(True)
167
    XFORMERS_IS_AVAILABLE = False
168

169
170
if args.lowvram:
    set_vram_to = VRAMState.LOW_VRAM
171
    lowvram_available = True
172
173
elif args.novram:
    set_vram_to = VRAMState.NO_VRAM
174
elif args.highvram or args.gpu_only:
175
    vram_state = VRAMState.HIGH_VRAM
176

177
FORCE_FP32 = False
178
FORCE_FP16 = False
179
180
181
182
if args.force_fp32:
    print("Forcing FP32, if this improves things please report it.")
    FORCE_FP32 = True

183
184
185
186
if args.force_fp16:
    print("Forcing FP16.")
    FORCE_FP16 = True

187
if lowvram_available:
188
189
    try:
        import accelerate
190
191
        if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
            vram_state = set_vram_to
192
193
194
    except Exception as e:
        import traceback
        print(traceback.format_exc())
195
196
        print("ERROR: LOW VRAM MODE NEEDS accelerate.")
        lowvram_available = False
197

198

199
200
if cpu_state != CPUState.GPU:
    vram_state = VRAMState.DISABLED
201

202
203
if cpu_state == CPUState.MPS:
    vram_state = VRAMState.SHARED
204

205
print(f"Set vram state to: {vram_state.name}")
206

207
208
209
210
DISABLE_SMART_MEMORY = args.disable_smart_memory

if DISABLE_SMART_MEMORY:
    print("Disabling smart memory management")
211

212
def get_torch_device_name(device):
213
    global xpu_available
214
    if hasattr(device, 'type'):
215
        if device.type == "cuda":
216
217
218
219
220
            try:
                allocator_backend = torch.cuda.get_allocator_backend()
            except:
                allocator_backend = ""
            return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
221
222
        else:
            return "{}".format(device.type)
223
224
    elif xpu_available:
        return "{} {}".format(device, torch.xpu.get_device_name(device))
225
226
    else:
        return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
227
228

try:
229
    print("Device:", get_torch_device_name(get_torch_device()))
230
231
232
except:
    print("Could not pick default device.")

233

comfyanonymous's avatar
comfyanonymous committed
234
current_loaded_models = []
235

comfyanonymous's avatar
comfyanonymous committed
236
237
238
239
240
class LoadedModel:
    def __init__(self, model):
        self.model = model
        self.model_accelerated = False
        self.device = model.load_device
241

comfyanonymous's avatar
comfyanonymous committed
242
243
    def model_memory(self):
        return self.model.model_size()
244

comfyanonymous's avatar
comfyanonymous committed
245
246
247
248
249
    def model_memory_required(self, device):
        if device == self.model.current_device:
            return 0
        else:
            return self.model_memory()
250

comfyanonymous's avatar
comfyanonymous committed
251
    def model_load(self, lowvram_model_memory=0):
252
        global xpu_available
comfyanonymous's avatar
comfyanonymous committed
253
254
255
        patch_model_to = None
        if lowvram_model_memory == 0:
            patch_model_to = self.device
256

comfyanonymous's avatar
comfyanonymous committed
257
258
        self.model.model_patches_to(self.device)
        self.model.model_patches_to(self.model.model_dtype())
259

comfyanonymous's avatar
comfyanonymous committed
260
261
262
263
264
265
        try:
            self.real_model = self.model.patch_model(device_to=patch_model_to) #TODO: do something with loras and offloading to CPU
        except Exception as e:
            self.model.unpatch_model(self.model.offload_device)
            self.model_unload()
            raise e
266

comfyanonymous's avatar
comfyanonymous committed
267
268
269
270
271
        if lowvram_model_memory > 0:
            print("loading in lowvram mode", lowvram_model_memory/(1024 * 1024))
            device_map = accelerate.infer_auto_device_map(self.real_model, max_memory={0: "{}MiB".format(lowvram_model_memory // (1024 * 1024)), "cpu": "16GiB"})
            accelerate.dispatch_model(self.real_model, device_map=device_map, main_device=self.device)
            self.model_accelerated = True
272

273
274
275
276
        if xpu_available and not args.disable_ipex_optimize:
            self.real_model.training = False
            self.real_model = torch.xpu.optimize(self.real_model, inplace=True)

comfyanonymous's avatar
comfyanonymous committed
277
        return self.real_model
278

comfyanonymous's avatar
comfyanonymous committed
279
280
281
282
    def model_unload(self):
        if self.model_accelerated:
            accelerate.hooks.remove_hook_from_submodules(self.real_model)
            self.model_accelerated = False
283

comfyanonymous's avatar
comfyanonymous committed
284
285
        self.model.unpatch_model(self.model.offload_device)
        self.model.model_patches_to(self.model.offload_device)
286

comfyanonymous's avatar
comfyanonymous committed
287
288
    def __eq__(self, other):
        return self.model is other.model
comfyanonymous's avatar
comfyanonymous committed
289

comfyanonymous's avatar
comfyanonymous committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
def minimum_inference_memory():
    return (1024 * 1024 * 1024)

def unload_model_clones(model):
    to_unload = []
    for i in range(len(current_loaded_models)):
        if model.is_clone(current_loaded_models[i].model):
            to_unload = [i] + to_unload

    for i in to_unload:
        print("unload clone", i)
        current_loaded_models.pop(i).model_unload()

def free_memory(memory_required, device, keep_loaded=[]):
    unloaded_model = False
    for i in range(len(current_loaded_models) -1, -1, -1):
306
307
308
309
        if DISABLE_SMART_MEMORY:
            current_free_mem = 0
        else:
            current_free_mem = get_free_memory(device)
comfyanonymous's avatar
comfyanonymous committed
310
311
312
313
314
315
316
317
318
319
320
321
322
        if current_free_mem > memory_required:
            break
        shift_model = current_loaded_models[i]
        if shift_model.device == device:
            if shift_model not in keep_loaded:
                current_loaded_models.pop(i).model_unload()
                unloaded_model = True

    if unloaded_model:
        soft_empty_cache()


def load_models_gpu(models, memory_required=0):
323
324
    global vram_state

comfyanonymous's avatar
comfyanonymous committed
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
    inference_memory = minimum_inference_memory()
    extra_mem = max(inference_memory, memory_required)

    models_to_load = []
    models_already_loaded = []
    for x in models:
        loaded_model = LoadedModel(x)

        if loaded_model in current_loaded_models:
            index = current_loaded_models.index(loaded_model)
            current_loaded_models.insert(0, current_loaded_models.pop(index))
            models_already_loaded.append(loaded_model)
        else:
            models_to_load.append(loaded_model)

    if len(models_to_load) == 0:
        devs = set(map(lambda a: a.device, models_already_loaded))
        for d in devs:
            if d != torch.device("cpu"):
                free_memory(extra_mem, d, models_already_loaded)
345
346
        return

comfyanonymous's avatar
comfyanonymous committed
347
    print("loading new")
348

comfyanonymous's avatar
comfyanonymous committed
349
350
351
352
    total_memory_required = {}
    for loaded_model in models_to_load:
        unload_model_clones(loaded_model.model)
        total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
comfyanonymous's avatar
comfyanonymous committed
353

comfyanonymous's avatar
comfyanonymous committed
354
355
356
    for device in total_memory_required:
        if device != torch.device("cpu"):
            free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
comfyanonymous's avatar
comfyanonymous committed
357

comfyanonymous's avatar
comfyanonymous committed
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
    for loaded_model in models_to_load:
        model = loaded_model.model
        torch_dev = model.load_device
        if is_device_cpu(torch_dev):
            vram_set_state = VRAMState.DISABLED
        else:
            vram_set_state = vram_state
        lowvram_model_memory = 0
        if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
            model_size = loaded_model.model_memory_required(torch_dev)
            current_free_mem = get_free_memory(torch_dev)
            lowvram_model_memory = int(max(256 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
            if model_size > (current_free_mem - inference_memory): #only switch to lowvram if really necessary
                vram_set_state = VRAMState.LOW_VRAM
            else:
                lowvram_model_memory = 0
374

comfyanonymous's avatar
comfyanonymous committed
375
376
        if vram_set_state == VRAMState.NO_VRAM:
            lowvram_model_memory = 256 * 1024 * 1024
377

comfyanonymous's avatar
comfyanonymous committed
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
        cur_loaded_model = loaded_model.model_load(lowvram_model_memory)
        current_loaded_models.insert(0, loaded_model)
    return


def load_model_gpu(model):
    return load_models_gpu([model])

def cleanup_models():
    to_delete = []
    for i in range(len(current_loaded_models)):
        print(sys.getrefcount(current_loaded_models[i].model))
        if sys.getrefcount(current_loaded_models[i].model) <= 2:
            to_delete = [i] + to_delete

    for i in to_delete:
        x = current_loaded_models.pop(i)
        x.model_unload()
        del x
397

398
def unet_offload_device():
comfyanonymous's avatar
comfyanonymous committed
399
    if vram_state == VRAMState.HIGH_VRAM:
400
401
402
403
        return get_torch_device()
    else:
        return torch.device("cpu")

comfyanonymous's avatar
comfyanonymous committed
404
405
406
407
408
409
def unet_inital_load_device(parameters, dtype):
    torch_dev = get_torch_device()
    if vram_state == VRAMState.HIGH_VRAM:
        return torch_dev

    cpu_dev = torch.device("cpu")
410
411
412
    if DISABLE_SMART_MEMORY:
        return cpu_dev

413
414
415
416
417
    dtype_size = 4
    if dtype == torch.float16 or dtype == torch.bfloat16:
        dtype_size = 2

    model_size = dtype_size * parameters
comfyanonymous's avatar
comfyanonymous committed
418
419
420
421
422
423
424
425

    mem_dev = get_free_memory(torch_dev)
    mem_cpu = get_free_memory(cpu_dev)
    if mem_dev > mem_cpu and model_size < mem_dev:
        return torch_dev
    else:
        return cpu_dev

426
def text_encoder_offload_device():
comfyanonymous's avatar
comfyanonymous committed
427
    if args.gpu_only:
428
429
430
431
        return get_torch_device()
    else:
        return torch.device("cpu")

432
def text_encoder_device():
comfyanonymous's avatar
comfyanonymous committed
433
    if args.gpu_only:
434
        return get_torch_device()
435
    elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
436
437
        #NOTE: on a Ryzen 5 7600X with 4080 it's faster to shift to GPU
        if torch.get_num_threads() < 8: #leaving the text encoder on the CPU is faster than shifting it if the CPU is fast enough.
438
439
440
            return get_torch_device()
        else:
            return torch.device("cpu")
441
442
443
    else:
        return torch.device("cpu")

444
445
446
447
def vae_device():
    return get_torch_device()

def vae_offload_device():
comfyanonymous's avatar
comfyanonymous committed
448
    if args.gpu_only:
449
450
451
452
        return get_torch_device()
    else:
        return torch.device("cpu")

453
454
455
456
457
458
459
460
def vae_dtype():
    if args.fp16_vae:
        return torch.float16
    elif args.bf16_vae:
        return torch.bfloat16
    else:
        return torch.float32

461
462
463
464
def get_autocast_device(dev):
    if hasattr(dev, 'type'):
        return dev.type
    return "cuda"
465

466

467
def xformers_enabled():
468
469
    global xpu_available
    global directml_enabled
470
471
    global cpu_state
    if cpu_state != CPUState.GPU:
472
        return False
473
474
475
476
    if xpu_available:
        return False
    if directml_enabled:
        return False
477
    return XFORMERS_IS_AVAILABLE
478

479
480
481
482
483

def xformers_enabled_vae():
    enabled = xformers_enabled()
    if not enabled:
        return False
484
485

    return XFORMERS_ENABLED_VAE
486

487
def pytorch_attention_enabled():
488
    global ENABLE_PYTORCH_ATTENTION
489
490
    return ENABLE_PYTORCH_ATTENTION

491
492
493
494
def pytorch_attention_flash_attention():
    global ENABLE_PYTORCH_ATTENTION
    if ENABLE_PYTORCH_ATTENTION:
        #TODO: more reliable way of checking for flash attention?
495
        if is_nvidia(): #pytorch flash attention only works on Nvidia
496
497
498
            return True
    return False

499
def get_free_memory(dev=None, torch_free_too=False):
500
    global xpu_available
501
    global directml_enabled
502
    if dev is None:
503
        dev = get_torch_device()
504

Yurii Mazurevich's avatar
Yurii Mazurevich committed
505
    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
506
507
508
        mem_free_total = psutil.virtual_memory().available
        mem_free_torch = mem_free_total
    else:
509
510
511
512
        if directml_enabled:
            mem_free_total = 1024 * 1024 * 1024 #TODO
            mem_free_torch = mem_free_total
        elif xpu_available:
513
514
515
516
517
518
            stats = torch.xpu.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_allocated = stats['allocated_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_torch = mem_reserved - mem_active
            mem_free_total = torch.xpu.get_device_properties(dev).total_memory - mem_allocated + mem_free_torch
519
520
521
522
523
524
525
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
            mem_free_torch = mem_reserved - mem_active
            mem_free_total = mem_free_cuda + mem_free_torch
526
527
528
529
530

    if torch_free_too:
        return (mem_free_total, mem_free_torch)
    else:
        return mem_free_total
531

comfyanonymous's avatar
comfyanonymous committed
532
533
534
535
536
537
538
def batch_area_memory(area):
    if xformers_enabled() or pytorch_attention_flash_attention():
        #TODO: these formulas are copied from maximum_batch_area below
        return (area / 20) * (1024 * 1024)
    else:
        return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024)

539
540
def maximum_batch_area():
    global vram_state
541
    if vram_state == VRAMState.NO_VRAM:
542
543
544
        return 0

    memory_free = get_free_memory() / (1024 * 1024)
545
    if xformers_enabled() or pytorch_attention_flash_attention():
546
        #TODO: this needs to be tweaked
547
        area = 20 * memory_free
548
549
550
    else:
        #TODO: this formula is because AMD sucks and has memory management issues which might be fixed in the future
        area = ((memory_free - 1024) * 0.9) / (0.6)
551
    return int(max(area, 0))
552
553

def cpu_mode():
554
555
    global cpu_state
    return cpu_state == CPUState.CPU
556

Yurii Mazurevich's avatar
Yurii Mazurevich committed
557
def mps_mode():
558
559
    global cpu_state
    return cpu_state == CPUState.MPS
Yurii Mazurevich's avatar
Yurii Mazurevich committed
560

561
562
def is_device_cpu(device):
    if hasattr(device, 'type'):
comfyanonymous's avatar
comfyanonymous committed
563
564
565
566
567
568
569
        if (device.type == 'cpu'):
            return True
    return False

def is_device_mps(device):
    if hasattr(device, 'type'):
        if (device.type == 'mps'):
570
571
572
            return True
    return False

573
def should_use_fp16(device=None, model_params=0):
574
    global xpu_available
575
576
    global directml_enabled

577
578
579
    if FORCE_FP16:
        return True

580
    if device is not None: #TODO
comfyanonymous's avatar
comfyanonymous committed
581
        if is_device_cpu(device) or is_device_mps(device):
582
            return False
583

584
585
586
    if FORCE_FP32:
        return False

587
588
589
    if directml_enabled:
        return False

590
    if cpu_mode() or mps_mode():
591
592
        return False #TODO ?

593
    if torch.cuda.is_bf16_supported() or xpu_available:
594
595
        return True

comfyanonymous's avatar
comfyanonymous committed
596
    props = torch.cuda.get_device_properties("cuda")
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
    if props.major < 6:
        return False

    fp16_works = False
    #FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled
    #when the model doesn't actually fit on the card
    #TODO: actually test if GP106 and others have the same type of behavior
    nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050"]
    for x in nvidia_10_series:
        if x in props.name.lower():
            fp16_works = True

    if fp16_works:
        free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
        if model_params * 4 > free_model_memory:
            return True

614
615
616
    if props.major < 7:
        return False

617
    #FP16 is just broken on these cards
618
    nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX"]
619
620
621
622
623
624
    for x in nvidia_16_series:
        if x in props.name:
            return False

    return True

625
626
def soft_empty_cache():
    global xpu_available
627
628
    global cpu_state
    if cpu_state == CPUState.MPS:
comfyanonymous's avatar
comfyanonymous committed
629
630
        torch.mps.empty_cache()
    elif xpu_available:
631
632
        torch.xpu.empty_cache()
    elif torch.cuda.is_available():
633
        if is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
634
635
636
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()

637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
#TODO: might be cleaner to put this somewhere else
import threading

class InterruptProcessingException(Exception):
    pass

interrupt_processing_mutex = threading.RLock()

interrupt_processing = False
def interrupt_current_processing(value=True):
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        interrupt_processing = value

def processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        return interrupt_processing

def throw_exception_if_processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        if interrupt_processing:
            interrupt_processing = False
            raise InterruptProcessingException()