model_management.py 26.7 KB
Newer Older
1
import psutil
2
import logging
3
from enum import Enum
comfyanonymous's avatar
comfyanonymous committed
4
from comfy.cli_args import args
comfyanonymous's avatar
comfyanonymous committed
5
import comfy.utils
6
import torch
comfyanonymous's avatar
comfyanonymous committed
7
import sys
8

9
class VRAMState(Enum):
10
11
    DISABLED = 0    #No vram present: no need to move models to vram
    NO_VRAM = 1     #Very low vram: enable all the options to save vram
12
13
14
    LOW_VRAM = 2
    NORMAL_VRAM = 3
    HIGH_VRAM = 4
15
    SHARED = 5      #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.
16
17
18
19
20

class CPUState(Enum):
    GPU = 0
    CPU = 1
    MPS = 2
21

22
23
24
# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
25
cpu_state = CPUState.GPU
26

27
total_vram = 0
28

29
lowvram_available = True
藍+85CD's avatar
藍+85CD committed
30
xpu_available = False
31

32
if args.deterministic:
comfyanonymous's avatar
comfyanonymous committed
33
    logging.info("Using deterministic algorithms for pytorch")
34
35
    torch.use_deterministic_algorithms(True, warn_only=True)

36
directml_enabled = False
37
if args.directml is not None:
38
39
    import torch_directml
    directml_enabled = True
40
41
42
43
44
    device_index = args.directml
    if device_index < 0:
        directml_device = torch_directml.device()
    else:
        directml_device = torch_directml.device(device_index)
comfyanonymous's avatar
comfyanonymous committed
45
    logging.info("Using directml with device: {}".format(torch_directml.device_name(device_index)))
46
    # torch_directml.disable_tiled_resources(True)
47
    lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
48

49
try:
50
51
52
    import intel_extension_for_pytorch as ipex
    if torch.xpu.is_available():
        xpu_available = True
53
54
55
except:
    pass

56
57
58
try:
    if torch.backends.mps.is_available():
        cpu_state = CPUState.MPS
KarryCharon's avatar
KarryCharon committed
59
        import torch.mps
60
61
62
63
64
65
except:
    pass

if args.cpu:
    cpu_state = CPUState.CPU

66
67
def is_intel_xpu():
    global cpu_state
68
    global xpu_available
69
70
71
72
73
74
    if cpu_state == CPUState.GPU:
        if xpu_available:
            return True
    return False

def get_torch_device():
75
    global directml_enabled
76
    global cpu_state
77
78
79
    if directml_enabled:
        global directml_device
        return directml_device
80
    if cpu_state == CPUState.MPS:
81
        return torch.device("mps")
82
    if cpu_state == CPUState.CPU:
83
84
        return torch.device("cpu")
    else:
85
        if is_intel_xpu():
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
            return torch.device("xpu")
        else:
            return torch.device(torch.cuda.current_device())

def get_total_memory(dev=None, torch_total_too=False):
    global directml_enabled
    if dev is None:
        dev = get_torch_device()

    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
        mem_total = psutil.virtual_memory().total
        mem_total_torch = mem_total
    else:
        if directml_enabled:
            mem_total = 1024 * 1024 * 1024 #TODO
            mem_total_torch = mem_total
102
        elif is_intel_xpu():
103
104
            stats = torch.xpu.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
105
            mem_total = torch.xpu.get_device_properties(dev).total_memory
106
            mem_total_torch = mem_reserved
107
108
109
110
111
112
113
114
115
116
117
118
119
120
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
            _, mem_total_cuda = torch.cuda.mem_get_info(dev)
            mem_total_torch = mem_reserved
            mem_total = mem_total_cuda

    if torch_total_too:
        return (mem_total, mem_total_torch)
    else:
        return mem_total

total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
comfyanonymous's avatar
comfyanonymous committed
121
logging.info("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
122
123
if not args.normalvram and not args.cpu:
    if lowvram_available and total_vram <= 4096:
124
        logging.warning("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
125
126
        set_vram_to = VRAMState.LOW_VRAM

127
128
129
130
131
try:
    OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
    OOM_EXCEPTION = Exception

132
133
XFORMERS_VERSION = ""
XFORMERS_ENABLED_VAE = True
134
135
if args.disable_xformers:
    XFORMERS_IS_AVAILABLE = False
136
137
138
139
else:
    try:
        import xformers
        import xformers.ops
140
        XFORMERS_IS_AVAILABLE = True
141
142
143
144
        try:
            XFORMERS_IS_AVAILABLE = xformers._has_cpp_library
        except:
            pass
145
146
        try:
            XFORMERS_VERSION = xformers.version.__version__
comfyanonymous's avatar
comfyanonymous committed
147
            logging.info("xformers version: {}".format(XFORMERS_VERSION))
148
            if XFORMERS_VERSION.startswith("0.0.18"):
149
150
                logging.warning("\nWARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
                logging.warning("Please downgrade or upgrade xformers to a different version.\n")
151
152
153
                XFORMERS_ENABLED_VAE = False
        except:
            pass
154
    except:
155
        XFORMERS_IS_AVAILABLE = False
156

157
158
159
160
161
def is_nvidia():
    global cpu_state
    if cpu_state == CPUState.GPU:
        if torch.version.cuda:
            return True
162
    return False
163

164
165
166
167
168
ENABLE_PYTORCH_ATTENTION = False
if args.use_pytorch_cross_attention:
    ENABLE_PYTORCH_ATTENTION = True
    XFORMERS_IS_AVAILABLE = False

169
VAE_DTYPE = torch.float32
170

171
172
173
174
try:
    if is_nvidia():
        torch_version = torch.version.__version__
        if int(torch_version[0]) >= 2:
175
            if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
176
                ENABLE_PYTORCH_ATTENTION = True
177
            if torch.cuda.is_bf16_supported() and torch.cuda.get_device_properties(torch.cuda.current_device()).major >= 8:
178
                VAE_DTYPE = torch.bfloat16
179
180
181
    if is_intel_xpu():
        if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
            ENABLE_PYTORCH_ATTENTION = True
182
183
184
except:
    pass

185
186
187
if is_intel_xpu():
    VAE_DTYPE = torch.bfloat16

188
189
190
if args.cpu_vae:
    VAE_DTYPE = torch.float32

191
192
193
194
195
196
197
if args.fp16_vae:
    VAE_DTYPE = torch.float16
elif args.bf16_vae:
    VAE_DTYPE = torch.bfloat16
elif args.fp32_vae:
    VAE_DTYPE = torch.float32

198

199
if ENABLE_PYTORCH_ATTENTION:
200
201
202
    torch.backends.cuda.enable_math_sdp(True)
    torch.backends.cuda.enable_flash_sdp(True)
    torch.backends.cuda.enable_mem_efficient_sdp(True)
203

204
205
if args.lowvram:
    set_vram_to = VRAMState.LOW_VRAM
206
    lowvram_available = True
207
208
elif args.novram:
    set_vram_to = VRAMState.NO_VRAM
209
elif args.highvram or args.gpu_only:
210
    vram_state = VRAMState.HIGH_VRAM
211

212
FORCE_FP32 = False
213
FORCE_FP16 = False
214
if args.force_fp32:
comfyanonymous's avatar
comfyanonymous committed
215
    logging.info("Forcing FP32, if this improves things please report it.")
216
217
    FORCE_FP32 = True

218
if args.force_fp16:
comfyanonymous's avatar
comfyanonymous committed
219
    logging.info("Forcing FP16.")
220
221
    FORCE_FP16 = True

222
if lowvram_available:
223
224
    if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
        vram_state = set_vram_to
225

226

227
228
if cpu_state != CPUState.GPU:
    vram_state = VRAMState.DISABLED
229

230
231
if cpu_state == CPUState.MPS:
    vram_state = VRAMState.SHARED
232

comfyanonymous's avatar
comfyanonymous committed
233
logging.info(f"Set vram state to: {vram_state.name}")
234

235
236
237
DISABLE_SMART_MEMORY = args.disable_smart_memory

if DISABLE_SMART_MEMORY:
comfyanonymous's avatar
comfyanonymous committed
238
    logging.info("Disabling smart memory management")
239

240
241
def get_torch_device_name(device):
    if hasattr(device, 'type'):
242
        if device.type == "cuda":
243
244
245
246
247
            try:
                allocator_backend = torch.cuda.get_allocator_backend()
            except:
                allocator_backend = ""
            return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
248
249
        else:
            return "{}".format(device.type)
250
    elif is_intel_xpu():
251
        return "{} {}".format(device, torch.xpu.get_device_name(device))
252
253
    else:
        return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
254
255

try:
comfyanonymous's avatar
comfyanonymous committed
256
    logging.info("Device: {}".format(get_torch_device_name(get_torch_device())))
257
except:
258
    logging.warning("Could not pick default device.")
259

comfyanonymous's avatar
comfyanonymous committed
260
logging.info("VAE dtype: {}".format(VAE_DTYPE))
261

comfyanonymous's avatar
comfyanonymous committed
262
current_loaded_models = []
263

264
265
266
267
268
269
270
271
def module_size(module):
    module_mem = 0
    sd = module.state_dict()
    for k in sd:
        t = sd[k]
        module_mem += t.nelement() * t.element_size()
    return module_mem

comfyanonymous's avatar
comfyanonymous committed
272
273
274
275
class LoadedModel:
    def __init__(self, model):
        self.model = model
        self.device = model.load_device
276
        self.weights_loaded = False
277

comfyanonymous's avatar
comfyanonymous committed
278
279
    def model_memory(self):
        return self.model.model_size()
280

comfyanonymous's avatar
comfyanonymous committed
281
282
283
284
285
    def model_memory_required(self, device):
        if device == self.model.current_device:
            return 0
        else:
            return self.model_memory()
286

comfyanonymous's avatar
comfyanonymous committed
287
    def model_load(self, lowvram_model_memory=0):
288
        patch_model_to = self.device
289

comfyanonymous's avatar
comfyanonymous committed
290
291
        self.model.model_patches_to(self.device)
        self.model.model_patches_to(self.model.model_dtype())
292

293
294
        load_weights = not self.weights_loaded

comfyanonymous's avatar
comfyanonymous committed
295
        try:
296
            if lowvram_model_memory > 0 and load_weights:
297
298
                self.real_model = self.model.patch_model_lowvram(device_to=patch_model_to, lowvram_model_memory=lowvram_model_memory)
            else:
299
                self.real_model = self.model.patch_model(device_to=patch_model_to, patch_weights=load_weights)
comfyanonymous's avatar
comfyanonymous committed
300
301
302
303
        except Exception as e:
            self.model.unpatch_model(self.model.offload_device)
            self.model_unload()
            raise e
304

305
        if is_intel_xpu() and not args.disable_ipex_optimize:
306
            self.real_model = torch.xpu.optimize(self.real_model.eval(), inplace=True, auto_kernel_selection=True, graph_mode=True)
307

308
        self.weights_loaded = True
comfyanonymous's avatar
comfyanonymous committed
309
        return self.real_model
310

311
312
    def model_unload(self, unpatch_weights=True):
        self.model.unpatch_model(self.model.offload_device, unpatch_weights=unpatch_weights)
comfyanonymous's avatar
comfyanonymous committed
313
        self.model.model_patches_to(self.model.offload_device)
314
        self.weights_loaded = self.weights_loaded and not unpatch_weights
315

comfyanonymous's avatar
comfyanonymous committed
316
317
    def __eq__(self, other):
        return self.model is other.model
comfyanonymous's avatar
comfyanonymous committed
318

comfyanonymous's avatar
comfyanonymous committed
319
320
321
def minimum_inference_memory():
    return (1024 * 1024 * 1024)

322
def unload_model_clones(model, unload_weights_only=True, force_unload=True):
comfyanonymous's avatar
comfyanonymous committed
323
324
325
326
327
    to_unload = []
    for i in range(len(current_loaded_models)):
        if model.is_clone(current_loaded_models[i].model):
            to_unload = [i] + to_unload

328
    if len(to_unload) == 0:
329
        return None
330
331

    same_weights = 0
comfyanonymous's avatar
comfyanonymous committed
332
    for i in to_unload:
333
334
335
336
337
338
339
340
        if model.clone_has_same_weights(current_loaded_models[i].model):
            same_weights += 1

    if same_weights == len(to_unload):
        unload_weight = False
    else:
        unload_weight = True

341
342
343
    if not force_unload:
        if unload_weights_only and unload_weight == False:
            return None
344
345
346
347
348

    for i in to_unload:
        logging.debug("unload clone {} {}".format(i, unload_weight))
        current_loaded_models.pop(i).model_unload(unpatch_weights=unload_weight)

349
    return unload_weight
comfyanonymous's avatar
comfyanonymous committed
350
351

def free_memory(memory_required, device, keep_loaded=[]):
352
353
354
    unloaded_model = []
    can_unload = []

comfyanonymous's avatar
comfyanonymous committed
355
356
357
358
    for i in range(len(current_loaded_models) -1, -1, -1):
        shift_model = current_loaded_models[i]
        if shift_model.device == device:
            if shift_model not in keep_loaded:
359
360
361
362
363
364
365
366
367
368
369
370
                can_unload.append((sys.getrefcount(shift_model.model), shift_model.model_memory(), i))

    for x in sorted(can_unload):
        i = x[-1]
        if not DISABLE_SMART_MEMORY:
            if get_free_memory(device) > memory_required:
                break
        current_loaded_models[i].model_unload()
        unloaded_model.append(i)

    for i in sorted(unloaded_model, reverse=True):
        current_loaded_models.pop(i)
comfyanonymous's avatar
comfyanonymous committed
371

372
    if len(unloaded_model) > 0:
comfyanonymous's avatar
comfyanonymous committed
373
        soft_empty_cache()
374
375
376
377
378
    else:
        if vram_state != VRAMState.HIGH_VRAM:
            mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True)
            if mem_free_torch > mem_free_total * 0.25:
                soft_empty_cache()
comfyanonymous's avatar
comfyanonymous committed
379
380

def load_models_gpu(models, memory_required=0):
381
382
    global vram_state

comfyanonymous's avatar
comfyanonymous committed
383
384
385
386
387
388
389
390
391
392
393
394
395
    inference_memory = minimum_inference_memory()
    extra_mem = max(inference_memory, memory_required)

    models_to_load = []
    models_already_loaded = []
    for x in models:
        loaded_model = LoadedModel(x)

        if loaded_model in current_loaded_models:
            index = current_loaded_models.index(loaded_model)
            current_loaded_models.insert(0, current_loaded_models.pop(index))
            models_already_loaded.append(loaded_model)
        else:
396
            if hasattr(x, "model"):
comfyanonymous's avatar
comfyanonymous committed
397
                logging.info(f"Requested to load {x.model.__class__.__name__}")
comfyanonymous's avatar
comfyanonymous committed
398
399
400
401
402
403
404
            models_to_load.append(loaded_model)

    if len(models_to_load) == 0:
        devs = set(map(lambda a: a.device, models_already_loaded))
        for d in devs:
            if d != torch.device("cpu"):
                free_memory(extra_mem, d, models_already_loaded)
405
406
        return

comfyanonymous's avatar
comfyanonymous committed
407
    logging.info(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}")
408

comfyanonymous's avatar
comfyanonymous committed
409
410
    total_memory_required = {}
    for loaded_model in models_to_load:
411
        unload_model_clones(loaded_model.model, unload_weights_only=True, force_unload=False) #unload clones where the weights are different
comfyanonymous's avatar
comfyanonymous committed
412
        total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
comfyanonymous's avatar
comfyanonymous committed
413

comfyanonymous's avatar
comfyanonymous committed
414
415
416
    for device in total_memory_required:
        if device != torch.device("cpu"):
            free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
comfyanonymous's avatar
comfyanonymous committed
417

418
    for loaded_model in models_to_load:
419
420
421
        weights_unloaded = unload_model_clones(loaded_model.model, unload_weights_only=False, force_unload=False) #unload the rest of the clones where the weights can stay loaded
        if weights_unloaded is not None:
            loaded_model.weights_loaded = not weights_unloaded
422

comfyanonymous's avatar
comfyanonymous committed
423
424
425
426
427
428
429
430
431
432
433
    for loaded_model in models_to_load:
        model = loaded_model.model
        torch_dev = model.load_device
        if is_device_cpu(torch_dev):
            vram_set_state = VRAMState.DISABLED
        else:
            vram_set_state = vram_state
        lowvram_model_memory = 0
        if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
            model_size = loaded_model.model_memory_required(torch_dev)
            current_free_mem = get_free_memory(torch_dev)
434
            lowvram_model_memory = int(max(64 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
comfyanonymous's avatar
comfyanonymous committed
435
436
437
438
            if model_size > (current_free_mem - inference_memory): #only switch to lowvram if really necessary
                vram_set_state = VRAMState.LOW_VRAM
            else:
                lowvram_model_memory = 0
439

comfyanonymous's avatar
comfyanonymous committed
440
        if vram_set_state == VRAMState.NO_VRAM:
441
            lowvram_model_memory = 64 * 1024 * 1024
442

comfyanonymous's avatar
comfyanonymous committed
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
        cur_loaded_model = loaded_model.model_load(lowvram_model_memory)
        current_loaded_models.insert(0, loaded_model)
    return


def load_model_gpu(model):
    return load_models_gpu([model])

def cleanup_models():
    to_delete = []
    for i in range(len(current_loaded_models)):
        if sys.getrefcount(current_loaded_models[i].model) <= 2:
            to_delete = [i] + to_delete

    for i in to_delete:
        x = current_loaded_models.pop(i)
        x.model_unload()
        del x
461

462
463
464
465
def dtype_size(dtype):
    dtype_size = 4
    if dtype == torch.float16 or dtype == torch.bfloat16:
        dtype_size = 2
466
467
468
469
470
471
472
    elif dtype == torch.float32:
        dtype_size = 4
    else:
        try:
            dtype_size = dtype.itemsize
        except: #Old pytorch doesn't have .itemsize
            pass
473
474
    return dtype_size

475
def unet_offload_device():
comfyanonymous's avatar
comfyanonymous committed
476
    if vram_state == VRAMState.HIGH_VRAM:
477
478
479
480
        return get_torch_device()
    else:
        return torch.device("cpu")

comfyanonymous's avatar
comfyanonymous committed
481
482
483
484
485
486
def unet_inital_load_device(parameters, dtype):
    torch_dev = get_torch_device()
    if vram_state == VRAMState.HIGH_VRAM:
        return torch_dev

    cpu_dev = torch.device("cpu")
487
488
489
    if DISABLE_SMART_MEMORY:
        return cpu_dev

490
    model_size = dtype_size(dtype) * parameters
comfyanonymous's avatar
comfyanonymous committed
491
492
493
494
495
496
497
498

    mem_dev = get_free_memory(torch_dev)
    mem_cpu = get_free_memory(cpu_dev)
    if mem_dev > mem_cpu and model_size < mem_dev:
        return torch_dev
    else:
        return cpu_dev

comfyanonymous's avatar
comfyanonymous committed
499
def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
500
501
    if args.bf16_unet:
        return torch.bfloat16
502
503
    if args.fp16_unet:
        return torch.float16
504
505
506
507
    if args.fp8_e4m3fn_unet:
        return torch.float8_e4m3fn
    if args.fp8_e5m2_unet:
        return torch.float8_e5m2
508
    if should_use_fp16(device=device, model_params=model_params, manual_cast=True):
comfyanonymous's avatar
comfyanonymous committed
509
510
        if torch.float16 in supported_dtypes:
            return torch.float16
511
    if should_use_bf16(device, model_params=model_params, manual_cast=True):
comfyanonymous's avatar
comfyanonymous committed
512
513
        if torch.bfloat16 in supported_dtypes:
            return torch.bfloat16
514
515
    return torch.float32

516
# None means no manual cast
comfyanonymous's avatar
comfyanonymous committed
517
def unet_manual_cast(weight_dtype, inference_device, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
518
519
520
    if weight_dtype == torch.float32:
        return None

comfyanonymous's avatar
comfyanonymous committed
521
    fp16_supported = should_use_fp16(inference_device, prioritize_performance=False)
522
523
524
    if fp16_supported and weight_dtype == torch.float16:
        return None

comfyanonymous's avatar
comfyanonymous committed
525
526
527
528
529
    bf16_supported = should_use_bf16(inference_device)
    if bf16_supported and weight_dtype == torch.bfloat16:
        return None

    if fp16_supported and torch.float16 in supported_dtypes:
530
        return torch.float16
comfyanonymous's avatar
comfyanonymous committed
531
532
533

    elif bf16_supported and torch.bfloat16 in supported_dtypes:
        return torch.bfloat16
534
535
536
    else:
        return torch.float32

537
def text_encoder_offload_device():
comfyanonymous's avatar
comfyanonymous committed
538
    if args.gpu_only:
539
540
541
542
        return get_torch_device()
    else:
        return torch.device("cpu")

543
def text_encoder_device():
comfyanonymous's avatar
comfyanonymous committed
544
    if args.gpu_only:
545
        return get_torch_device()
546
    elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
547
548
        if is_intel_xpu():
            return torch.device("cpu")
549
        if should_use_fp16(prioritize_performance=False):
550
551
552
            return get_torch_device()
        else:
            return torch.device("cpu")
553
554
555
    else:
        return torch.device("cpu")

556
557
558
559
560
561
562
563
564
565
def text_encoder_dtype(device=None):
    if args.fp8_e4m3fn_text_enc:
        return torch.float8_e4m3fn
    elif args.fp8_e5m2_text_enc:
        return torch.float8_e5m2
    elif args.fp16_text_enc:
        return torch.float16
    elif args.fp32_text_enc:
        return torch.float32

566
567
568
    if is_device_cpu(device):
        return torch.float16

569
570
    return torch.float16

571

572
573
574
575
576
577
def intermediate_device():
    if args.gpu_only:
        return get_torch_device()
    else:
        return torch.device("cpu")

578
def vae_device():
579
580
    if args.cpu_vae:
        return torch.device("cpu")
581
582
583
    return get_torch_device()

def vae_offload_device():
comfyanonymous's avatar
comfyanonymous committed
584
    if args.gpu_only:
585
586
587
588
        return get_torch_device()
    else:
        return torch.device("cpu")

589
def vae_dtype():
590
591
    global VAE_DTYPE
    return VAE_DTYPE
592

593
594
595
596
def get_autocast_device(dev):
    if hasattr(dev, 'type'):
        return dev.type
    return "cuda"
597

598
599
600
def supports_dtype(device, dtype): #TODO
    if dtype == torch.float32:
        return True
601
    if is_device_cpu(device):
602
603
604
605
606
607
608
        return False
    if dtype == torch.float16:
        return True
    if dtype == torch.bfloat16:
        return True
    return False

609
610
611
612
613
def device_supports_non_blocking(device):
    if is_device_mps(device):
        return False #pytorch bug? mps doesn't support non blocking
    return True

614
615
616
617
618
619
620
def cast_to_device(tensor, device, dtype, copy=False):
    device_supports_cast = False
    if tensor.dtype == torch.float32 or tensor.dtype == torch.float16:
        device_supports_cast = True
    elif tensor.dtype == torch.bfloat16:
        if hasattr(device, 'type') and device.type.startswith("cuda"):
            device_supports_cast = True
621
622
        elif is_intel_xpu():
            device_supports_cast = True
623

624
    non_blocking = device_supports_non_blocking(device)
comfyanonymous's avatar
comfyanonymous committed
625

626
627
628
    if device_supports_cast:
        if copy:
            if tensor.device == device:
comfyanonymous's avatar
comfyanonymous committed
629
630
                return tensor.to(dtype, copy=copy, non_blocking=non_blocking)
            return tensor.to(device, copy=copy, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
631
        else:
comfyanonymous's avatar
comfyanonymous committed
632
            return tensor.to(device, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
633
    else:
comfyanonymous's avatar
comfyanonymous committed
634
        return tensor.to(device, dtype, copy=copy, non_blocking=non_blocking)
635

636
def xformers_enabled():
637
    global directml_enabled
638
639
    global cpu_state
    if cpu_state != CPUState.GPU:
640
        return False
641
    if is_intel_xpu():
642
643
644
        return False
    if directml_enabled:
        return False
645
    return XFORMERS_IS_AVAILABLE
646

647
648
649
650
651

def xformers_enabled_vae():
    enabled = xformers_enabled()
    if not enabled:
        return False
652
653

    return XFORMERS_ENABLED_VAE
654

655
def pytorch_attention_enabled():
656
    global ENABLE_PYTORCH_ATTENTION
657
658
    return ENABLE_PYTORCH_ATTENTION

659
660
661
662
def pytorch_attention_flash_attention():
    global ENABLE_PYTORCH_ATTENTION
    if ENABLE_PYTORCH_ATTENTION:
        #TODO: more reliable way of checking for flash attention?
663
        if is_nvidia(): #pytorch flash attention only works on Nvidia
664
665
666
            return True
    return False

667
def get_free_memory(dev=None, torch_free_too=False):
668
    global directml_enabled
669
    if dev is None:
670
        dev = get_torch_device()
671

Yurii Mazurevich's avatar
Yurii Mazurevich committed
672
    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
673
674
675
        mem_free_total = psutil.virtual_memory().available
        mem_free_torch = mem_free_total
    else:
676
677
678
        if directml_enabled:
            mem_free_total = 1024 * 1024 * 1024 #TODO
            mem_free_torch = mem_free_total
679
        elif is_intel_xpu():
680
681
682
683
684
            stats = torch.xpu.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_allocated = stats['allocated_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_torch = mem_reserved - mem_active
685
            mem_free_total = torch.xpu.get_device_properties(dev).total_memory - mem_allocated
686
687
688
689
690
691
692
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
            mem_free_torch = mem_reserved - mem_active
            mem_free_total = mem_free_cuda + mem_free_torch
693
694
695
696
697

    if torch_free_too:
        return (mem_free_total, mem_free_torch)
    else:
        return mem_free_total
698

699
def cpu_mode():
700
701
    global cpu_state
    return cpu_state == CPUState.CPU
702

Yurii Mazurevich's avatar
Yurii Mazurevich committed
703
def mps_mode():
704
705
    global cpu_state
    return cpu_state == CPUState.MPS
Yurii Mazurevich's avatar
Yurii Mazurevich committed
706

707
def is_device_type(device, type):
708
    if hasattr(device, 'type'):
709
        if (device.type == type):
comfyanonymous's avatar
comfyanonymous committed
710
711
712
            return True
    return False

713
714
715
def is_device_cpu(device):
    return is_device_type(device, 'cpu')

comfyanonymous's avatar
comfyanonymous committed
716
def is_device_mps(device):
717
718
719
720
    return is_device_type(device, 'mps')

def is_device_cuda(device):
    return is_device_type(device, 'cuda')
721

722
def should_use_fp16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
723
724
    global directml_enabled

725
726
727
728
    if device is not None:
        if is_device_cpu(device):
            return False

729
730
731
    if FORCE_FP16:
        return True

732
    if device is not None:
733
        if is_device_mps(device):
734
            return True
735

736
737
738
    if FORCE_FP32:
        return False

739
740
741
    if directml_enabled:
        return False

742
743
744
745
746
    if mps_mode():
        return True

    if cpu_mode():
        return False
747

748
    if is_intel_xpu():
comfyanonymous's avatar
comfyanonymous committed
749
750
        return True

751
    if torch.version.hip:
752
753
        return True

comfyanonymous's avatar
comfyanonymous committed
754
    props = torch.cuda.get_device_properties("cuda")
755
756
757
    if props.major >= 8:
        return True

758
759
760
761
762
763
764
    if props.major < 6:
        return False

    fp16_works = False
    #FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled
    #when the model doesn't actually fit on the card
    #TODO: actually test if GP106 and others have the same type of behavior
765
    nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050", "p40", "p100", "p6", "p4"]
766
767
768
769
    for x in nvidia_10_series:
        if x in props.name.lower():
            fp16_works = True

770
    if fp16_works or manual_cast:
771
        free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
772
        if (not prioritize_performance) or model_params * 4 > free_model_memory:
773
774
            return True

775
776
777
    if props.major < 7:
        return False

778
    #FP16 is just broken on these cards
779
    nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"]
780
781
782
783
784
785
    for x in nvidia_16_series:
        if x in props.name:
            return False

    return True

786
787
788
789
790
791
792
793
794
def should_use_bf16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
    if device is not None:
        if is_device_cpu(device): #TODO ? bf16 works on CPU but is extremely slow
            return False

    if device is not None: #TODO not sure about mps bf16 support
        if is_device_mps(device):
            return False

795
796
797
    if FORCE_FP32:
        return False

798
799
800
801
802
803
    if directml_enabled:
        return False

    if cpu_mode() or mps_mode():
        return False

comfyanonymous's avatar
comfyanonymous committed
804
805
806
807
808
809
810
811
812
813
    if is_intel_xpu():
        return True

    if device is None:
        device = torch.device("cuda")

    props = torch.cuda.get_device_properties(device)
    if props.major >= 8:
        return True

814
815
816
817
818
819
820
    bf16_works = torch.cuda.is_bf16_supported()

    if bf16_works or manual_cast:
        free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
        if (not prioritize_performance) or model_params * 4 > free_model_memory:
            return True

comfyanonymous's avatar
comfyanonymous committed
821
822
    return False

823
def soft_empty_cache(force=False):
824
825
    global cpu_state
    if cpu_state == CPUState.MPS:
comfyanonymous's avatar
comfyanonymous committed
826
        torch.mps.empty_cache()
827
    elif is_intel_xpu():
828
829
        torch.xpu.empty_cache()
    elif torch.cuda.is_available():
830
        if force or is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
831
832
833
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()

834
835
836
837
def unload_all_models():
    free_memory(1e30, get_torch_device())


838
def resolve_lowvram_weight(weight, model, key): #TODO: remove
comfyanonymous's avatar
comfyanonymous committed
839
840
    return weight

841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
#TODO: might be cleaner to put this somewhere else
import threading

class InterruptProcessingException(Exception):
    pass

interrupt_processing_mutex = threading.RLock()

interrupt_processing = False
def interrupt_current_processing(value=True):
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        interrupt_processing = value

def processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        return interrupt_processing

def throw_exception_if_processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        if interrupt_processing:
            interrupt_processing = False
            raise InterruptProcessingException()