model_management.py 26.4 KB
Newer Older
1
import psutil
2
import logging
3
from enum import Enum
comfyanonymous's avatar
comfyanonymous committed
4
from comfy.cli_args import args
comfyanonymous's avatar
comfyanonymous committed
5
import comfy.utils
6
import torch
comfyanonymous's avatar
comfyanonymous committed
7
import sys
8

9
class VRAMState(Enum):
10
11
    DISABLED = 0    #No vram present: no need to move models to vram
    NO_VRAM = 1     #Very low vram: enable all the options to save vram
12
13
14
    LOW_VRAM = 2
    NORMAL_VRAM = 3
    HIGH_VRAM = 4
15
    SHARED = 5      #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.
16
17
18
19
20

class CPUState(Enum):
    GPU = 0
    CPU = 1
    MPS = 2
21

22
23
24
# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
25
cpu_state = CPUState.GPU
26

27
total_vram = 0
28

29
lowvram_available = True
藍+85CD's avatar
藍+85CD committed
30
xpu_available = False
31

32
if args.deterministic:
33
    logging.warning("Using deterministic algorithms for pytorch")
34
35
    torch.use_deterministic_algorithms(True, warn_only=True)

36
directml_enabled = False
37
if args.directml is not None:
38
39
    import torch_directml
    directml_enabled = True
40
41
42
43
44
    device_index = args.directml
    if device_index < 0:
        directml_device = torch_directml.device()
    else:
        directml_device = torch_directml.device(device_index)
45
    logging.warning("Using directml with device: {}".format(torch_directml.device_name(device_index)))
46
    # torch_directml.disable_tiled_resources(True)
47
    lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
48

49
try:
50
51
52
    import intel_extension_for_pytorch as ipex
    if torch.xpu.is_available():
        xpu_available = True
53
54
55
except:
    pass

56
57
58
try:
    if torch.backends.mps.is_available():
        cpu_state = CPUState.MPS
KarryCharon's avatar
KarryCharon committed
59
        import torch.mps
60
61
62
63
64
65
except:
    pass

if args.cpu:
    cpu_state = CPUState.CPU

66
67
def is_intel_xpu():
    global cpu_state
68
    global xpu_available
69
70
71
72
73
74
    if cpu_state == CPUState.GPU:
        if xpu_available:
            return True
    return False

def get_torch_device():
75
    global directml_enabled
76
    global cpu_state
77
78
79
    if directml_enabled:
        global directml_device
        return directml_device
80
    if cpu_state == CPUState.MPS:
81
        return torch.device("mps")
82
    if cpu_state == CPUState.CPU:
83
84
        return torch.device("cpu")
    else:
85
        if is_intel_xpu():
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
            return torch.device("xpu")
        else:
            return torch.device(torch.cuda.current_device())

def get_total_memory(dev=None, torch_total_too=False):
    global directml_enabled
    if dev is None:
        dev = get_torch_device()

    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
        mem_total = psutil.virtual_memory().total
        mem_total_torch = mem_total
    else:
        if directml_enabled:
            mem_total = 1024 * 1024 * 1024 #TODO
            mem_total_torch = mem_total
102
        elif is_intel_xpu():
103
104
            stats = torch.xpu.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
105
            mem_total = torch.xpu.get_device_properties(dev).total_memory
106
            mem_total_torch = mem_reserved
107
108
109
110
111
112
113
114
115
116
117
118
119
120
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_reserved = stats['reserved_bytes.all.current']
            _, mem_total_cuda = torch.cuda.mem_get_info(dev)
            mem_total_torch = mem_reserved
            mem_total = mem_total_cuda

    if torch_total_too:
        return (mem_total, mem_total_torch)
    else:
        return mem_total

total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
121
logging.warning("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
122
123
if not args.normalvram and not args.cpu:
    if lowvram_available and total_vram <= 4096:
124
        logging.warning("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
125
126
        set_vram_to = VRAMState.LOW_VRAM

127
128
129
130
131
try:
    OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
    OOM_EXCEPTION = Exception

132
133
XFORMERS_VERSION = ""
XFORMERS_ENABLED_VAE = True
134
135
if args.disable_xformers:
    XFORMERS_IS_AVAILABLE = False
136
137
138
139
else:
    try:
        import xformers
        import xformers.ops
140
        XFORMERS_IS_AVAILABLE = True
141
142
143
144
        try:
            XFORMERS_IS_AVAILABLE = xformers._has_cpp_library
        except:
            pass
145
146
        try:
            XFORMERS_VERSION = xformers.version.__version__
147
            logging.warning("xformers version: {}".format(XFORMERS_VERSION))
148
            if XFORMERS_VERSION.startswith("0.0.18"):
149
150
                logging.warning("\nWARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
                logging.warning("Please downgrade or upgrade xformers to a different version.\n")
151
152
153
                XFORMERS_ENABLED_VAE = False
        except:
            pass
154
    except:
155
        XFORMERS_IS_AVAILABLE = False
156

157
158
159
160
161
def is_nvidia():
    global cpu_state
    if cpu_state == CPUState.GPU:
        if torch.version.cuda:
            return True
162
    return False
163

164
165
166
167
168
ENABLE_PYTORCH_ATTENTION = False
if args.use_pytorch_cross_attention:
    ENABLE_PYTORCH_ATTENTION = True
    XFORMERS_IS_AVAILABLE = False

169
VAE_DTYPE = torch.float32
170

171
172
173
174
try:
    if is_nvidia():
        torch_version = torch.version.__version__
        if int(torch_version[0]) >= 2:
175
            if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
176
                ENABLE_PYTORCH_ATTENTION = True
177
            if torch.cuda.is_bf16_supported() and torch.cuda.get_device_properties(torch.cuda.current_device()).major >= 8:
178
                VAE_DTYPE = torch.bfloat16
179
180
181
    if is_intel_xpu():
        if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
            ENABLE_PYTORCH_ATTENTION = True
182
183
184
except:
    pass

185
186
187
if is_intel_xpu():
    VAE_DTYPE = torch.bfloat16

188
189
190
if args.cpu_vae:
    VAE_DTYPE = torch.float32

191
192
193
194
195
196
197
if args.fp16_vae:
    VAE_DTYPE = torch.float16
elif args.bf16_vae:
    VAE_DTYPE = torch.bfloat16
elif args.fp32_vae:
    VAE_DTYPE = torch.float32

198

199
if ENABLE_PYTORCH_ATTENTION:
200
201
202
    torch.backends.cuda.enable_math_sdp(True)
    torch.backends.cuda.enable_flash_sdp(True)
    torch.backends.cuda.enable_mem_efficient_sdp(True)
203

204
205
if args.lowvram:
    set_vram_to = VRAMState.LOW_VRAM
206
    lowvram_available = True
207
208
elif args.novram:
    set_vram_to = VRAMState.NO_VRAM
209
elif args.highvram or args.gpu_only:
210
    vram_state = VRAMState.HIGH_VRAM
211

212
FORCE_FP32 = False
213
FORCE_FP16 = False
214
if args.force_fp32:
215
    logging.warning("Forcing FP32, if this improves things please report it.")
216
217
    FORCE_FP32 = True

218
if args.force_fp16:
219
    logging.warning("Forcing FP16.")
220
221
    FORCE_FP16 = True

222
if lowvram_available:
223
224
    if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
        vram_state = set_vram_to
225

226

227
228
if cpu_state != CPUState.GPU:
    vram_state = VRAMState.DISABLED
229

230
231
if cpu_state == CPUState.MPS:
    vram_state = VRAMState.SHARED
232

233
logging.warning(f"Set vram state to: {vram_state.name}")
234

235
236
237
DISABLE_SMART_MEMORY = args.disable_smart_memory

if DISABLE_SMART_MEMORY:
238
    logging.warning("Disabling smart memory management")
239

240
241
def get_torch_device_name(device):
    if hasattr(device, 'type'):
242
        if device.type == "cuda":
243
244
245
246
247
            try:
                allocator_backend = torch.cuda.get_allocator_backend()
            except:
                allocator_backend = ""
            return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
248
249
        else:
            return "{}".format(device.type)
250
    elif is_intel_xpu():
251
        return "{} {}".format(device, torch.xpu.get_device_name(device))
252
253
    else:
        return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
254
255

try:
256
    logging.warning("Device: {}".format(get_torch_device_name(get_torch_device())))
257
except:
258
    logging.warning("Could not pick default device.")
259

260
logging.warning("VAE dtype: {}".format(VAE_DTYPE))
261

comfyanonymous's avatar
comfyanonymous committed
262
current_loaded_models = []
263

264
265
266
267
268
269
270
271
def module_size(module):
    module_mem = 0
    sd = module.state_dict()
    for k in sd:
        t = sd[k]
        module_mem += t.nelement() * t.element_size()
    return module_mem

comfyanonymous's avatar
comfyanonymous committed
272
273
274
275
276
class LoadedModel:
    def __init__(self, model):
        self.model = model
        self.model_accelerated = False
        self.device = model.load_device
277

comfyanonymous's avatar
comfyanonymous committed
278
279
    def model_memory(self):
        return self.model.model_size()
280

comfyanonymous's avatar
comfyanonymous committed
281
282
283
284
285
    def model_memory_required(self, device):
        if device == self.model.current_device:
            return 0
        else:
            return self.model_memory()
286

comfyanonymous's avatar
comfyanonymous committed
287
288
289
290
    def model_load(self, lowvram_model_memory=0):
        patch_model_to = None
        if lowvram_model_memory == 0:
            patch_model_to = self.device
291

comfyanonymous's avatar
comfyanonymous committed
292
293
        self.model.model_patches_to(self.device)
        self.model.model_patches_to(self.model.model_dtype())
294

comfyanonymous's avatar
comfyanonymous committed
295
296
297
298
299
300
        try:
            self.real_model = self.model.patch_model(device_to=patch_model_to) #TODO: do something with loras and offloading to CPU
        except Exception as e:
            self.model.unpatch_model(self.model.offload_device)
            self.model_unload()
            raise e
301

comfyanonymous's avatar
comfyanonymous committed
302
        if lowvram_model_memory > 0:
303
            logging.warning("loading in lowvram mode {}".format(lowvram_model_memory/(1024 * 1024)))
304
305
306
307
308
            mem_counter = 0
            for m in self.real_model.modules():
                if hasattr(m, "comfy_cast_weights"):
                    m.prev_comfy_cast_weights = m.comfy_cast_weights
                    m.comfy_cast_weights = True
309
                    module_mem = module_size(m)
310
311
312
                    if mem_counter + module_mem < lowvram_model_memory:
                        m.to(self.device)
                        mem_counter += module_mem
313
314
315
                elif hasattr(m, "weight"): #only modules with comfy_cast_weights can be set to lowvram mode
                    m.to(self.device)
                    mem_counter += module_size(m)
316
                    logging.warning("lowvram: loaded module regularly {}".format(m))
317

comfyanonymous's avatar
comfyanonymous committed
318
            self.model_accelerated = True
319

320
        if is_intel_xpu() and not args.disable_ipex_optimize:
321
            self.real_model = torch.xpu.optimize(self.real_model.eval(), inplace=True, auto_kernel_selection=True, graph_mode=True)
322

comfyanonymous's avatar
comfyanonymous committed
323
        return self.real_model
324

comfyanonymous's avatar
comfyanonymous committed
325
326
    def model_unload(self):
        if self.model_accelerated:
327
328
329
330
331
            for m in self.real_model.modules():
                if hasattr(m, "prev_comfy_cast_weights"):
                    m.comfy_cast_weights = m.prev_comfy_cast_weights
                    del m.prev_comfy_cast_weights

comfyanonymous's avatar
comfyanonymous committed
332
            self.model_accelerated = False
333

comfyanonymous's avatar
comfyanonymous committed
334
335
        self.model.unpatch_model(self.model.offload_device)
        self.model.model_patches_to(self.model.offload_device)
336

comfyanonymous's avatar
comfyanonymous committed
337
338
    def __eq__(self, other):
        return self.model is other.model
comfyanonymous's avatar
comfyanonymous committed
339

comfyanonymous's avatar
comfyanonymous committed
340
341
342
343
344
345
346
347
348
349
def minimum_inference_memory():
    return (1024 * 1024 * 1024)

def unload_model_clones(model):
    to_unload = []
    for i in range(len(current_loaded_models)):
        if model.is_clone(current_loaded_models[i].model):
            to_unload = [i] + to_unload

    for i in to_unload:
350
        logging.warning("unload clone {}".format(i))
comfyanonymous's avatar
comfyanonymous committed
351
352
353
354
355
        current_loaded_models.pop(i).model_unload()

def free_memory(memory_required, device, keep_loaded=[]):
    unloaded_model = False
    for i in range(len(current_loaded_models) -1, -1, -1):
comfyanonymous's avatar
comfyanonymous committed
356
357
358
        if not DISABLE_SMART_MEMORY:
            if get_free_memory(device) > memory_required:
                break
comfyanonymous's avatar
comfyanonymous committed
359
360
361
        shift_model = current_loaded_models[i]
        if shift_model.device == device:
            if shift_model not in keep_loaded:
comfyanonymous's avatar
comfyanonymous committed
362
363
364
                m = current_loaded_models.pop(i)
                m.model_unload()
                del m
comfyanonymous's avatar
comfyanonymous committed
365
366
367
368
                unloaded_model = True

    if unloaded_model:
        soft_empty_cache()
369
370
371
372
373
    else:
        if vram_state != VRAMState.HIGH_VRAM:
            mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True)
            if mem_free_torch > mem_free_total * 0.25:
                soft_empty_cache()
comfyanonymous's avatar
comfyanonymous committed
374
375

def load_models_gpu(models, memory_required=0):
376
377
    global vram_state

comfyanonymous's avatar
comfyanonymous committed
378
379
380
381
382
383
384
385
386
387
388
389
390
    inference_memory = minimum_inference_memory()
    extra_mem = max(inference_memory, memory_required)

    models_to_load = []
    models_already_loaded = []
    for x in models:
        loaded_model = LoadedModel(x)

        if loaded_model in current_loaded_models:
            index = current_loaded_models.index(loaded_model)
            current_loaded_models.insert(0, current_loaded_models.pop(index))
            models_already_loaded.append(loaded_model)
        else:
391
            if hasattr(x, "model"):
392
                logging.warning(f"Requested to load {x.model.__class__.__name__}")
comfyanonymous's avatar
comfyanonymous committed
393
394
395
396
397
398
399
            models_to_load.append(loaded_model)

    if len(models_to_load) == 0:
        devs = set(map(lambda a: a.device, models_already_loaded))
        for d in devs:
            if d != torch.device("cpu"):
                free_memory(extra_mem, d, models_already_loaded)
400
401
        return

402
    logging.warning(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}")
403

comfyanonymous's avatar
comfyanonymous committed
404
405
406
407
    total_memory_required = {}
    for loaded_model in models_to_load:
        unload_model_clones(loaded_model.model)
        total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
comfyanonymous's avatar
comfyanonymous committed
408

comfyanonymous's avatar
comfyanonymous committed
409
410
411
    for device in total_memory_required:
        if device != torch.device("cpu"):
            free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
comfyanonymous's avatar
comfyanonymous committed
412

comfyanonymous's avatar
comfyanonymous committed
413
414
415
416
417
418
419
420
421
422
423
    for loaded_model in models_to_load:
        model = loaded_model.model
        torch_dev = model.load_device
        if is_device_cpu(torch_dev):
            vram_set_state = VRAMState.DISABLED
        else:
            vram_set_state = vram_state
        lowvram_model_memory = 0
        if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
            model_size = loaded_model.model_memory_required(torch_dev)
            current_free_mem = get_free_memory(torch_dev)
424
            lowvram_model_memory = int(max(64 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
comfyanonymous's avatar
comfyanonymous committed
425
426
427
428
            if model_size > (current_free_mem - inference_memory): #only switch to lowvram if really necessary
                vram_set_state = VRAMState.LOW_VRAM
            else:
                lowvram_model_memory = 0
429

comfyanonymous's avatar
comfyanonymous committed
430
        if vram_set_state == VRAMState.NO_VRAM:
431
            lowvram_model_memory = 64 * 1024 * 1024
432

comfyanonymous's avatar
comfyanonymous committed
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
        cur_loaded_model = loaded_model.model_load(lowvram_model_memory)
        current_loaded_models.insert(0, loaded_model)
    return


def load_model_gpu(model):
    return load_models_gpu([model])

def cleanup_models():
    to_delete = []
    for i in range(len(current_loaded_models)):
        if sys.getrefcount(current_loaded_models[i].model) <= 2:
            to_delete = [i] + to_delete

    for i in to_delete:
        x = current_loaded_models.pop(i)
        x.model_unload()
        del x
451

452
453
454
455
def dtype_size(dtype):
    dtype_size = 4
    if dtype == torch.float16 or dtype == torch.bfloat16:
        dtype_size = 2
456
457
458
459
460
461
462
    elif dtype == torch.float32:
        dtype_size = 4
    else:
        try:
            dtype_size = dtype.itemsize
        except: #Old pytorch doesn't have .itemsize
            pass
463
464
    return dtype_size

465
def unet_offload_device():
comfyanonymous's avatar
comfyanonymous committed
466
    if vram_state == VRAMState.HIGH_VRAM:
467
468
469
470
        return get_torch_device()
    else:
        return torch.device("cpu")

comfyanonymous's avatar
comfyanonymous committed
471
472
473
474
475
476
def unet_inital_load_device(parameters, dtype):
    torch_dev = get_torch_device()
    if vram_state == VRAMState.HIGH_VRAM:
        return torch_dev

    cpu_dev = torch.device("cpu")
477
478
479
    if DISABLE_SMART_MEMORY:
        return cpu_dev

480
    model_size = dtype_size(dtype) * parameters
comfyanonymous's avatar
comfyanonymous committed
481
482
483
484
485
486
487
488

    mem_dev = get_free_memory(torch_dev)
    mem_cpu = get_free_memory(cpu_dev)
    if mem_dev > mem_cpu and model_size < mem_dev:
        return torch_dev
    else:
        return cpu_dev

comfyanonymous's avatar
comfyanonymous committed
489
def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
490
491
    if args.bf16_unet:
        return torch.bfloat16
492
493
    if args.fp16_unet:
        return torch.float16
494
495
496
497
    if args.fp8_e4m3fn_unet:
        return torch.float8_e4m3fn
    if args.fp8_e5m2_unet:
        return torch.float8_e5m2
498
    if should_use_fp16(device=device, model_params=model_params, manual_cast=True):
comfyanonymous's avatar
comfyanonymous committed
499
500
        if torch.float16 in supported_dtypes:
            return torch.float16
501
    if should_use_bf16(device, model_params=model_params, manual_cast=True):
comfyanonymous's avatar
comfyanonymous committed
502
503
        if torch.bfloat16 in supported_dtypes:
            return torch.bfloat16
504
505
    return torch.float32

506
# None means no manual cast
comfyanonymous's avatar
comfyanonymous committed
507
def unet_manual_cast(weight_dtype, inference_device, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
508
509
510
    if weight_dtype == torch.float32:
        return None

comfyanonymous's avatar
comfyanonymous committed
511
    fp16_supported = should_use_fp16(inference_device, prioritize_performance=False)
512
513
514
    if fp16_supported and weight_dtype == torch.float16:
        return None

comfyanonymous's avatar
comfyanonymous committed
515
516
517
518
519
    bf16_supported = should_use_bf16(inference_device)
    if bf16_supported and weight_dtype == torch.bfloat16:
        return None

    if fp16_supported and torch.float16 in supported_dtypes:
520
        return torch.float16
comfyanonymous's avatar
comfyanonymous committed
521
522
523

    elif bf16_supported and torch.bfloat16 in supported_dtypes:
        return torch.bfloat16
524
525
526
    else:
        return torch.float32

527
def text_encoder_offload_device():
comfyanonymous's avatar
comfyanonymous committed
528
    if args.gpu_only:
529
530
531
532
        return get_torch_device()
    else:
        return torch.device("cpu")

533
def text_encoder_device():
comfyanonymous's avatar
comfyanonymous committed
534
    if args.gpu_only:
535
        return get_torch_device()
536
    elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
537
538
        if is_intel_xpu():
            return torch.device("cpu")
539
        if should_use_fp16(prioritize_performance=False):
540
541
542
            return get_torch_device()
        else:
            return torch.device("cpu")
543
544
545
    else:
        return torch.device("cpu")

546
547
548
549
550
551
552
553
554
555
def text_encoder_dtype(device=None):
    if args.fp8_e4m3fn_text_enc:
        return torch.float8_e4m3fn
    elif args.fp8_e5m2_text_enc:
        return torch.float8_e5m2
    elif args.fp16_text_enc:
        return torch.float16
    elif args.fp32_text_enc:
        return torch.float32

556
557
558
    if is_device_cpu(device):
        return torch.float16

559
560
    return torch.float16

561

562
563
564
565
566
567
def intermediate_device():
    if args.gpu_only:
        return get_torch_device()
    else:
        return torch.device("cpu")

568
def vae_device():
569
570
    if args.cpu_vae:
        return torch.device("cpu")
571
572
573
    return get_torch_device()

def vae_offload_device():
comfyanonymous's avatar
comfyanonymous committed
574
    if args.gpu_only:
575
576
577
578
        return get_torch_device()
    else:
        return torch.device("cpu")

579
def vae_dtype():
580
581
    global VAE_DTYPE
    return VAE_DTYPE
582

583
584
585
586
def get_autocast_device(dev):
    if hasattr(dev, 'type'):
        return dev.type
    return "cuda"
587

588
589
590
def supports_dtype(device, dtype): #TODO
    if dtype == torch.float32:
        return True
591
    if is_device_cpu(device):
592
593
594
595
596
597
598
        return False
    if dtype == torch.float16:
        return True
    if dtype == torch.bfloat16:
        return True
    return False

599
600
601
602
603
def device_supports_non_blocking(device):
    if is_device_mps(device):
        return False #pytorch bug? mps doesn't support non blocking
    return True

604
605
606
607
608
609
610
def cast_to_device(tensor, device, dtype, copy=False):
    device_supports_cast = False
    if tensor.dtype == torch.float32 or tensor.dtype == torch.float16:
        device_supports_cast = True
    elif tensor.dtype == torch.bfloat16:
        if hasattr(device, 'type') and device.type.startswith("cuda"):
            device_supports_cast = True
611
612
        elif is_intel_xpu():
            device_supports_cast = True
613

614
    non_blocking = device_supports_non_blocking(device)
comfyanonymous's avatar
comfyanonymous committed
615

616
617
618
    if device_supports_cast:
        if copy:
            if tensor.device == device:
comfyanonymous's avatar
comfyanonymous committed
619
620
                return tensor.to(dtype, copy=copy, non_blocking=non_blocking)
            return tensor.to(device, copy=copy, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
621
        else:
comfyanonymous's avatar
comfyanonymous committed
622
            return tensor.to(device, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
623
    else:
comfyanonymous's avatar
comfyanonymous committed
624
        return tensor.to(device, dtype, copy=copy, non_blocking=non_blocking)
625

626
def xformers_enabled():
627
    global directml_enabled
628
629
    global cpu_state
    if cpu_state != CPUState.GPU:
630
        return False
631
    if is_intel_xpu():
632
633
634
        return False
    if directml_enabled:
        return False
635
    return XFORMERS_IS_AVAILABLE
636

637
638
639
640
641

def xformers_enabled_vae():
    enabled = xformers_enabled()
    if not enabled:
        return False
642
643

    return XFORMERS_ENABLED_VAE
644

645
def pytorch_attention_enabled():
646
    global ENABLE_PYTORCH_ATTENTION
647
648
    return ENABLE_PYTORCH_ATTENTION

649
650
651
652
def pytorch_attention_flash_attention():
    global ENABLE_PYTORCH_ATTENTION
    if ENABLE_PYTORCH_ATTENTION:
        #TODO: more reliable way of checking for flash attention?
653
        if is_nvidia(): #pytorch flash attention only works on Nvidia
654
655
656
            return True
    return False

657
def get_free_memory(dev=None, torch_free_too=False):
658
    global directml_enabled
659
    if dev is None:
660
        dev = get_torch_device()
661

Yurii Mazurevich's avatar
Yurii Mazurevich committed
662
    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
663
664
665
        mem_free_total = psutil.virtual_memory().available
        mem_free_torch = mem_free_total
    else:
666
667
668
        if directml_enabled:
            mem_free_total = 1024 * 1024 * 1024 #TODO
            mem_free_torch = mem_free_total
669
        elif is_intel_xpu():
670
671
672
673
674
            stats = torch.xpu.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_allocated = stats['allocated_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_torch = mem_reserved - mem_active
675
            mem_free_total = torch.xpu.get_device_properties(dev).total_memory - mem_allocated
676
677
678
679
680
681
682
        else:
            stats = torch.cuda.memory_stats(dev)
            mem_active = stats['active_bytes.all.current']
            mem_reserved = stats['reserved_bytes.all.current']
            mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
            mem_free_torch = mem_reserved - mem_active
            mem_free_total = mem_free_cuda + mem_free_torch
683
684
685
686
687

    if torch_free_too:
        return (mem_free_total, mem_free_torch)
    else:
        return mem_free_total
688

689
def cpu_mode():
690
691
    global cpu_state
    return cpu_state == CPUState.CPU
692

Yurii Mazurevich's avatar
Yurii Mazurevich committed
693
def mps_mode():
694
695
    global cpu_state
    return cpu_state == CPUState.MPS
Yurii Mazurevich's avatar
Yurii Mazurevich committed
696

697
def is_device_type(device, type):
698
    if hasattr(device, 'type'):
699
        if (device.type == type):
comfyanonymous's avatar
comfyanonymous committed
700
701
702
            return True
    return False

703
704
705
def is_device_cpu(device):
    return is_device_type(device, 'cpu')

comfyanonymous's avatar
comfyanonymous committed
706
def is_device_mps(device):
707
708
709
710
    return is_device_type(device, 'mps')

def is_device_cuda(device):
    return is_device_type(device, 'cuda')
711

712
def should_use_fp16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
713
714
    global directml_enabled

715
716
717
718
    if device is not None:
        if is_device_cpu(device):
            return False

719
720
721
    if FORCE_FP16:
        return True

722
    if device is not None:
723
        if is_device_mps(device):
724
            return True
725

726
727
728
    if FORCE_FP32:
        return False

729
730
731
    if directml_enabled:
        return False

732
733
734
735
736
    if mps_mode():
        return True

    if cpu_mode():
        return False
737

738
    if is_intel_xpu():
comfyanonymous's avatar
comfyanonymous committed
739
740
        return True

741
    if torch.version.hip:
742
743
        return True

comfyanonymous's avatar
comfyanonymous committed
744
    props = torch.cuda.get_device_properties("cuda")
745
746
747
    if props.major >= 8:
        return True

748
749
750
751
752
753
754
    if props.major < 6:
        return False

    fp16_works = False
    #FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled
    #when the model doesn't actually fit on the card
    #TODO: actually test if GP106 and others have the same type of behavior
755
    nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050", "p40", "p100", "p6", "p4"]
756
757
758
759
    for x in nvidia_10_series:
        if x in props.name.lower():
            fp16_works = True

760
    if fp16_works or manual_cast:
761
        free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
762
        if (not prioritize_performance) or model_params * 4 > free_model_memory:
763
764
            return True

765
766
767
    if props.major < 7:
        return False

768
    #FP16 is just broken on these cards
769
    nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"]
770
771
772
773
774
775
    for x in nvidia_16_series:
        if x in props.name:
            return False

    return True

776
777
778
779
780
781
782
783
784
def should_use_bf16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
    if device is not None:
        if is_device_cpu(device): #TODO ? bf16 works on CPU but is extremely slow
            return False

    if device is not None: #TODO not sure about mps bf16 support
        if is_device_mps(device):
            return False

785
786
787
    if FORCE_FP32:
        return False

788
789
790
791
792
793
    if directml_enabled:
        return False

    if cpu_mode() or mps_mode():
        return False

comfyanonymous's avatar
comfyanonymous committed
794
795
796
797
798
799
800
801
802
803
    if is_intel_xpu():
        return True

    if device is None:
        device = torch.device("cuda")

    props = torch.cuda.get_device_properties(device)
    if props.major >= 8:
        return True

804
805
806
807
808
809
810
    bf16_works = torch.cuda.is_bf16_supported()

    if bf16_works or manual_cast:
        free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
        if (not prioritize_performance) or model_params * 4 > free_model_memory:
            return True

comfyanonymous's avatar
comfyanonymous committed
811
812
    return False

813
def soft_empty_cache(force=False):
814
815
    global cpu_state
    if cpu_state == CPUState.MPS:
comfyanonymous's avatar
comfyanonymous committed
816
        torch.mps.empty_cache()
817
    elif is_intel_xpu():
818
819
        torch.xpu.empty_cache()
    elif torch.cuda.is_available():
820
        if force or is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
821
822
823
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()

824
825
826
827
def unload_all_models():
    free_memory(1e30, get_torch_device())


828
def resolve_lowvram_weight(weight, model, key): #TODO: remove
comfyanonymous's avatar
comfyanonymous committed
829
830
    return weight

831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
#TODO: might be cleaner to put this somewhere else
import threading

class InterruptProcessingException(Exception):
    pass

interrupt_processing_mutex = threading.RLock()

interrupt_processing = False
def interrupt_current_processing(value=True):
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        interrupt_processing = value

def processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        return interrupt_processing

def throw_exception_if_processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        if interrupt_processing:
            interrupt_processing = False
            raise InterruptProcessingException()