test_models.py 37.8 KB
Newer Older
1
import contextlib
2
3
4
import functools
import operator
import os
5
import pkgutil
6
import platform
7
import sys
8
import warnings
9
from collections import OrderedDict
10
from tempfile import TemporaryDirectory
11
from typing import Any
12
13

import pytest
14
import torch
15
import torch.fx
16
import torch.nn as nn
17
from _utils_internal import get_relative_path
18
from common_utils import cpu_and_cuda, freeze_rng_state, map_nested_tensor_object, needs_cuda, set_rng_seed
19
20
from PIL import Image
from torchvision import models, transforms
21
from torchvision.models import get_model_builder, list_models
22

23

24
ACCEPT = os.getenv("EXPECTTEST_ACCEPT", "0") == "1"
25
SKIP_BIG_MODEL = os.getenv("SKIP_BIG_MODEL", "1") == "1"
26
27


28
29
30
31
@contextlib.contextmanager
def disable_tf32():
    previous = torch.backends.cudnn.allow_tf32
    torch.backends.cudnn.allow_tf32 = False
32
33
34
35
    try:
        yield
    finally:
        torch.backends.cudnn.allow_tf32 = previous
36
37


38
def list_model_fns(module):
39
    return [get_model_builder(name) for name in list_models(module)]
40
41


42
def _get_image(input_shape, real_image, device, dtype=None):
43
44
45
46
47
48
49
50
51
52
    """This routine loads a real or random image based on `real_image` argument.
    Currently, the real image is utilized for the following list of models:
    - `retinanet_resnet50_fpn`,
    - `retinanet_resnet50_fpn_v2`,
    - `keypointrcnn_resnet50_fpn`,
    - `fasterrcnn_resnet50_fpn`,
    - `fasterrcnn_resnet50_fpn_v2`,
    - `fcos_resnet50_fpn`,
    - `maskrcnn_resnet50_fpn`,
    - `maskrcnn_resnet50_fpn_v2`,
Aidyn-A's avatar
Aidyn-A committed
53
    in `test_classification_model` and `test_detection_model`.
54
55
56
    To do so, a keyword argument `real_image` was added to the abovelisted models in `_model_params`
    """
    if real_image:
57
58
59
        # TODO: Maybe unify file discovery logic with test_image.py
        GRACE_HOPPER = os.path.join(
            os.path.dirname(os.path.abspath(__file__)), "assets", "encode_jpeg", "grace_hopper_517x606.jpg"
60
        )
61

62
63
64
65
66
67
68
69
70
71
72
        img = Image.open(GRACE_HOPPER)

        original_width, original_height = img.size

        # make the image square
        img = img.crop((0, 0, original_width, original_width))
        img = img.resize(input_shape[1:3])

        convert_tensor = transforms.ToTensor()
        image = convert_tensor(img)
        assert tuple(image.size()) == input_shape
73
        return image.to(device=device, dtype=dtype)
74
75

    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
76
    return torch.rand(input_shape).to(device=device, dtype=dtype)
77
78


79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
@pytest.fixture
def disable_weight_loading(mocker):
    """When testing models, the two slowest operations are the downloading of the weights to a file and loading them
    into the model. Unless, you want to test against specific weights, these steps can be disabled without any
    drawbacks.

    Including this fixture into the signature of your test, i.e. `test_foo(disable_weight_loading)`, will recurse
    through all models in `torchvision.models` and will patch all occurrences of the function
    `download_state_dict_from_url` as well as the method `load_state_dict` on all subclasses of `nn.Module` to be
    no-ops.

    .. warning:

        Loaded models are still executable as normal, but will always have random weights. Make sure to not use this
        fixture if you want to compare the model output against reference values.

    """
    starting_point = models
    function_name = "load_state_dict_from_url"
    method_name = "load_state_dict"

    module_names = {info.name for info in pkgutil.walk_packages(starting_point.__path__, f"{starting_point.__name__}.")}
    targets = {f"torchvision._internally_replaced_utils.{function_name}", f"torch.nn.Module.{method_name}"}
    for name in module_names:
        module = sys.modules.get(name)
        if not module:
            continue

        if function_name in module.__dict__:
            targets.add(f"{module.__name__}.{function_name}")

        targets.update(
            {
                f"{module.__name__}.{obj.__name__}.{method_name}"
                for obj in module.__dict__.values()
                if isinstance(obj, type) and issubclass(obj, nn.Module) and method_name in obj.__dict__
            }
        )

    for target in targets:
        # See https://github.com/pytorch/vision/pull/4867#discussion_r743677802 for details
        with contextlib.suppress(AttributeError):
            mocker.patch(target)


124
125
126
127
128
129
def _get_expected_file(name=None):
    # Determine expected file based on environment
    expected_file_base = get_relative_path(os.path.realpath(__file__), "expect")

    # Note: for legacy reasons, the reference file names all had "ModelTest.test_" in their names
    # We hardcode it here to avoid having to re-generate the reference files
130
    expected_file = os.path.join(expected_file_base, "ModelTester.test_" + name)
131
132
133
134
135
136
137
138
139
140
141
142
    expected_file += "_expect.pkl"

    if not ACCEPT and not os.path.exists(expected_file):
        raise RuntimeError(
            f"No expect file exists for {os.path.basename(expected_file)} in {expected_file}; "
            "to accept the current output, re-run the failing test after setting the EXPECTTEST_ACCEPT "
            "env variable. For example: EXPECTTEST_ACCEPT=1 pytest test/test_models.py -k alexnet"
        )

    return expected_file


143
def _assert_expected(output, name, prec=None, atol=None, rtol=None):
144
145
146
147
148
149
150
151
152
153
154
    """Test that a python value matches the recorded contents of a file
    based on a "check" name. The value must be
    pickable with `torch.save`. This file
    is placed in the 'expect' directory in the same directory
    as the test script. You can automatically update the recorded test
    output using an EXPECTTEST_ACCEPT=1 env variable.
    """
    expected_file = _get_expected_file(name)

    if ACCEPT:
        filename = {os.path.basename(expected_file)}
155
        print(f"Accepting updated output for {filename}:\n\n{output}")
156
157
158
159
        torch.save(output, expected_file)
        MAX_PICKLE_SIZE = 50 * 1000  # 50 KB
        binary_size = os.path.getsize(expected_file)
        if binary_size > MAX_PICKLE_SIZE:
160
            raise RuntimeError(f"The output for {filename}, is larger than 50kb - got {binary_size}kb")
161
162
    else:
        expected = torch.load(expected_file)
163
164
        rtol = rtol or prec  # keeping prec param for legacy reason, but could be removed ideally
        atol = atol or prec
165
        torch.testing.assert_close(output, expected, rtol=rtol, atol=atol, check_dtype=False, check_device=False)
166
167


168
def _check_jit_scriptable(nn_module, args, unwrapper=None, eager_out=None):
169
170
    """Check that a nn.Module's results in TorchScript match eager and that it can be exported"""

171
172
173
174
175
176
177
    def get_export_import_copy(m):
        """Save and load a TorchScript model"""
        with TemporaryDirectory() as dir:
            path = os.path.join(dir, "script.pt")
            m.save(path)
            imported = torch.jit.load(path)
        return imported
178
179

    sm = torch.jit.script(nn_module)
Aidyn-A's avatar
Aidyn-A committed
180
    sm.eval()
181

182
183
    if eager_out is None:
        with torch.no_grad(), freeze_rng_state():
184
            eager_out = nn_module(*args)
185

186
    with torch.no_grad(), freeze_rng_state():
187
188
189
190
191
        script_out = sm(*args)
        if unwrapper:
            script_out = unwrapper(script_out)

    torch.testing.assert_close(eager_out, script_out, atol=1e-4, rtol=1e-4)
192
193
194
195
196
197
198
199

    m_import = get_export_import_copy(sm)
    with torch.no_grad(), freeze_rng_state():
        imported_script_out = m_import(*args)
        if unwrapper:
            imported_script_out = unwrapper(imported_script_out)

    torch.testing.assert_close(script_out, imported_script_out, atol=3e-4, rtol=3e-4)
200
201


202
def _check_fx_compatible(model, inputs, eager_out=None):
203
    model_fx = torch.fx.symbolic_trace(model)
204
205
    if eager_out is None:
        eager_out = model(inputs)
Aidyn-A's avatar
Aidyn-A committed
206
207
    with torch.no_grad(), freeze_rng_state():
        fx_out = model_fx(inputs)
208
    torch.testing.assert_close(eager_out, fx_out)
209
210


211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
def _check_input_backprop(model, inputs):
    if isinstance(inputs, list):
        requires_grad = list()
        for inp in inputs:
            requires_grad.append(inp.requires_grad)
            inp.requires_grad_(True)
    else:
        requires_grad = inputs.requires_grad
        inputs.requires_grad_(True)

    out = model(inputs)

    if isinstance(out, dict):
        out["out"].sum().backward()
    else:
        if isinstance(out[0], dict):
            out[0]["scores"].sum().backward()
        else:
            out[0].sum().backward()

    if isinstance(inputs, list):
        for i, inp in enumerate(inputs):
            assert inputs[i].grad is not None
            inp.requires_grad_(requires_grad[i])
    else:
        assert inputs.grad is not None
        inputs.requires_grad_(requires_grad)


240
241
242
# If 'unwrapper' is provided it will be called with the script model outputs
# before they are compared to the eager model outputs. This is useful if the
# model outputs are different between TorchScript / Eager mode
243
script_model_unwrapper = {
244
245
    "googlenet": lambda x: x.logits,
    "inception_v3": lambda x: x.logits,
246
    "fasterrcnn_resnet50_fpn": lambda x: x[1],
247
    "fasterrcnn_resnet50_fpn_v2": lambda x: x[1],
248
    "fasterrcnn_mobilenet_v3_large_fpn": lambda x: x[1],
249
    "fasterrcnn_mobilenet_v3_large_320_fpn": lambda x: x[1],
250
    "maskrcnn_resnet50_fpn": lambda x: x[1],
251
    "maskrcnn_resnet50_fpn_v2": lambda x: x[1],
252
253
    "keypointrcnn_resnet50_fpn": lambda x: x[1],
    "retinanet_resnet50_fpn": lambda x: x[1],
254
    "retinanet_resnet50_fpn_v2": lambda x: x[1],
255
    "ssd300_vgg16": lambda x: x[1],
256
    "ssdlite320_mobilenet_v3_large": lambda x: x[1],
Hu Ye's avatar
Hu Ye committed
257
    "fcos_resnet50_fpn": lambda x: x[1],
258
}
259
260


261
262
263
264
265
266
267
268
269
270
271
272
273
274
# The following models exhibit flaky numerics under autocast in _test_*_model harnesses.
# This may be caused by the harness environment (e.g. num classes, input initialization
# via torch.rand), and does not prove autocast is unsuitable when training with real data
# (autocast has been used successfully with real data for some of these models).
# TODO:  investigate why autocast numerics are flaky in the harnesses.
#
# For the following models, _test_*_model harnesses skip numerical checks on outputs when
# trying autocast. However, they still try an autocasted forward pass, so they still ensure
# autocast coverage suffices to prevent dtype errors in each model.
autocast_flaky_numerics = (
    "inception_v3",
    "resnet101",
    "resnet152",
    "wide_resnet101_2",
275
276
    "deeplabv3_resnet50",
    "deeplabv3_resnet101",
277
    "deeplabv3_mobilenet_v3_large",
278
279
    "fcn_resnet50",
    "fcn_resnet101",
280
    "lraspp_mobilenet_v3_large",
281
    "maskrcnn_resnet50_fpn",
282
    "maskrcnn_resnet50_fpn_v2",
283
    "keypointrcnn_resnet50_fpn",
284
285
)

286
287
288
# The tests for the following quantized models are flaky possibly due to inconsistent
# rounding errors in different platforms. For this reason the input/output consistency
# tests under test_quantized_classification_model will be skipped for the following models.
289
quantized_flaky_models = ("inception_v3", "resnet50")
290

291
292
293
294
295
# The tests for the following detection models are flaky.
# We run those tests on float64 to avoid floating point errors.
# FIXME: we shouldn't have to do that :'/
detection_flaky_models = ("keypointrcnn_resnet50_fpn", "maskrcnn_resnet50_fpn", "maskrcnn_resnet50_fpn_v2")

296

297
298
299
# The following contains configuration parameters for all models which are used by
# the _test_*_model methods.
_model_params = {
300
    "inception_v3": {"input_shape": (1, 3, 299, 299), "init_weights": True},
301
302
303
304
305
306
    "retinanet_resnet50_fpn": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
307
        "real_image": True,
308
    },
309
310
311
312
313
314
    "retinanet_resnet50_fpn_v2": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
315
        "real_image": True,
316
    },
317
318
319
320
    "keypointrcnn_resnet50_fpn": {
        "num_classes": 2,
        "min_size": 224,
        "max_size": 224,
321
        "box_score_thresh": 0.17,
322
        "input_shape": (3, 224, 224),
323
        "real_image": True,
324
    },
325
326
327
328
329
    "fasterrcnn_resnet50_fpn": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
330
        "real_image": True,
331
    },
332
333
334
335
336
    "fasterrcnn_resnet50_fpn_v2": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
337
        "real_image": True,
338
    },
Hu Ye's avatar
Hu Ye committed
339
340
341
342
343
344
    "fcos_resnet50_fpn": {
        "num_classes": 2,
        "score_thresh": 0.05,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
345
        "real_image": True,
Hu Ye's avatar
Hu Ye committed
346
    },
347
348
349
350
351
    "maskrcnn_resnet50_fpn": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
352
        "real_image": True,
353
    },
354
355
356
357
358
    "maskrcnn_resnet50_fpn_v2": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
359
        "real_image": True,
360
    },
361
362
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "box_score_thresh": 0.02076,
363
    },
364
365
366
367
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "box_score_thresh": 0.02076,
        "rpn_pre_nms_top_n_test": 1000,
        "rpn_post_nms_top_n_test": 1000,
368
    },
369
370
371
372
    "vit_h_14": {
        "image_size": 56,
        "input_shape": (1, 3, 56, 56),
    },
373
374
375
    "mvit_v1_b": {
        "input_shape": (1, 3, 16, 224, 224),
    },
376
377
378
    "mvit_v2_s": {
        "input_shape": (1, 3, 16, 224, 224),
    },
379
380
381
    "s3d": {
        "input_shape": (1, 3, 16, 224, 224),
    },
382
    "googlenet": {"init_weights": True},
383
}
384
385
386
387
388
# speeding up slow models:
slow_models = [
    "convnext_base",
    "convnext_large",
    "resnext101_32x8d",
389
    "resnext101_64x4d",
390
391
392
393
394
395
396
397
398
399
    "wide_resnet101_2",
    "efficientnet_b6",
    "efficientnet_b7",
    "efficientnet_v2_m",
    "efficientnet_v2_l",
    "regnet_y_16gf",
    "regnet_y_32gf",
    "regnet_y_128gf",
    "regnet_x_16gf",
    "regnet_x_32gf",
Joao Gomes's avatar
Joao Gomes committed
400
    "swin_t",
401
402
    "swin_s",
    "swin_b",
Local State's avatar
Local State committed
403
404
405
    "swin_v2_t",
    "swin_v2_s",
    "swin_v2_b",
406
407
408
]
for m in slow_models:
    _model_params[m] = {"input_shape": (1, 3, 64, 64)}
409
410


411
# skip big models to reduce memory usage on CI test. We can exclude combinations of (platform-system, device).
412
skipped_big_models = {
413
414
    "vit_h_14": {("Windows", "cpu"), ("Windows", "cuda")},
    "regnet_y_128gf": {("Windows", "cpu"), ("Windows", "cuda")},
415
416
    "mvit_v1_b": {("Windows", "cuda"), ("Linux", "cuda")},
    "mvit_v2_s": {("Windows", "cuda"), ("Linux", "cuda")},
417
418
}

419
420
421
422
423
424
425
426
427
428
429

def is_skippable(model_name, device):
    if model_name not in skipped_big_models:
        return False

    platform_system = platform.system()
    device_name = str(device).split(":")[0]

    return (platform_system, device_name) in skipped_big_models[model_name]


430
431
432
433
434
435
# The following contains configuration and expected values to be used tests that are model specific
_model_tests_values = {
    "retinanet_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [36, 46, 65, 78, 88, 89],
    },
436
437
438
439
    "retinanet_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [44, 74, 131, 170, 200, 203],
    },
440
441
442
443
444
445
446
447
    "keypointrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [48, 58, 77, 90, 100, 101],
    },
    "fasterrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [30, 40, 59, 72, 82, 83],
    },
448
449
450
451
    "fasterrcnn_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [50, 80, 137, 176, 206, 209],
    },
452
453
454
455
    "maskrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [42, 52, 71, 84, 94, 95],
    },
456
457
458
459
    "maskrcnn_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [66, 96, 153, 192, 222, 225],
    },
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "ssd300_vgg16": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [45, 51, 57, 63, 67, 71],
    },
    "ssdlite320_mobilenet_v3_large": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [96, 99, 138, 200, 239, 257, 266],
    },
Hu Ye's avatar
Hu Ye committed
476
477
478
479
    "fcos_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [54, 64, 83, 96, 106, 107],
    },
480
481
482
}


Anirudh's avatar
Anirudh committed
483
484
485
486
487
488
489
490
491
492
def _make_sliced_model(model, stop_layer):
    layers = OrderedDict()
    for name, layer in model.named_children():
        layers[name] = layer
        if name == stop_layer:
            break
    new_model = torch.nn.Sequential(layers)
    return new_model


493
494
@pytest.mark.parametrize("model_fn", [models.densenet121, models.densenet169, models.densenet201, models.densenet161])
def test_memory_efficient_densenet(model_fn):
Anirudh's avatar
Anirudh committed
495
496
497
    input_shape = (1, 3, 300, 300)
    x = torch.rand(input_shape)

498
    model1 = model_fn(num_classes=50, memory_efficient=True)
Anirudh's avatar
Anirudh committed
499
    params = model1.state_dict()
500
    num_params = sum(x.numel() for x in model1.parameters())
Anirudh's avatar
Anirudh committed
501
502
503
    model1.eval()
    out1 = model1(x)
    out1.sum().backward()
504
    num_grad = sum(x.grad.numel() for x in model1.parameters() if x.grad is not None)
Anirudh's avatar
Anirudh committed
505

506
    model2 = model_fn(num_classes=50, memory_efficient=False)
Anirudh's avatar
Anirudh committed
507
508
509
510
511
512
513
    model2.load_state_dict(params)
    model2.eval()
    out2 = model2(x)

    assert num_params == num_grad
    torch.testing.assert_close(out1, out2, rtol=0.0, atol=1e-5)

514
515
516
    _check_input_backprop(model1, x)
    _check_input_backprop(model2, x)

Anirudh's avatar
Anirudh committed
517

518
519
520
@pytest.mark.parametrize("dilate_layer_2", (True, False))
@pytest.mark.parametrize("dilate_layer_3", (True, False))
@pytest.mark.parametrize("dilate_layer_4", (True, False))
Anirudh's avatar
Anirudh committed
521
522
def test_resnet_dilation(dilate_layer_2, dilate_layer_3, dilate_layer_4):
    # TODO improve tests to also check that each layer has the right dimensionality
523
    model = models.resnet50(replace_stride_with_dilation=(dilate_layer_2, dilate_layer_3, dilate_layer_4))
Anirudh's avatar
Anirudh committed
524
525
526
527
528
529
530
531
532
    model = _make_sliced_model(model, stop_layer="layer4")
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    f = 2 ** sum((dilate_layer_2, dilate_layer_3, dilate_layer_4))
    assert out.shape == (1, 2048, 7 * f, 7 * f)


def test_mobilenet_v2_residual_setting():
533
    model = models.mobilenet_v2(inverted_residual_setting=[[1, 16, 1, 1], [6, 24, 2, 2]])
Anirudh's avatar
Anirudh committed
534
535
536
537
538
539
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    assert out.shape[-1] == 1000


540
541
542
@pytest.mark.parametrize("model_fn", [models.mobilenet_v2, models.mobilenet_v3_large, models.mobilenet_v3_small])
def test_mobilenet_norm_layer(model_fn):
    model = model_fn()
Anirudh's avatar
Anirudh committed
543
544
545
    assert any(isinstance(x, nn.BatchNorm2d) for x in model.modules())

    def get_gn(num_channels):
546
        return nn.GroupNorm(1, num_channels)
Anirudh's avatar
Anirudh committed
547

548
    model = model_fn(norm_layer=get_gn)
549
    assert not (any(isinstance(x, nn.BatchNorm2d) for x in model.modules()))
Anirudh's avatar
Anirudh committed
550
551
552
553
554
    assert any(isinstance(x, nn.GroupNorm) for x in model.modules())


def test_inception_v3_eval():
    kwargs = {}
555
556
557
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
558
559
560
561
562
563
564
    name = "inception_v3"
    model = models.Inception3(**kwargs)
    model.aux_logits = False
    model.AuxLogits = None
    model = model.eval()
    x = torch.rand(1, 3, 299, 299)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
565
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
566
567
568


def test_fasterrcnn_double():
569
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
570
571
572
573
574
575
576
577
578
579
580
    model.double()
    model.eval()
    input_shape = (3, 300, 300)
    x = torch.rand(input_shape, dtype=torch.float64)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x
    assert len(out) == 1
    assert "boxes" in out[0]
    assert "scores" in out[0]
    assert "labels" in out[0]
581
    _check_input_backprop(model, model_input)
Anirudh's avatar
Anirudh committed
582
583
584
585


def test_googlenet_eval():
    kwargs = {}
586
587
588
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
589
590
591
592
593
594
595
596
    name = "googlenet"
    model = models.GoogLeNet(**kwargs)
    model.aux_logits = False
    model.aux1 = None
    model.aux2 = None
    model = model.eval()
    x = torch.rand(1, 3, 224, 224)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
597
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
598
599
600
601
602
603
604
605
606
607


@needs_cuda
def test_fasterrcnn_switch_devices():
    def checkOut(out):
        assert len(out) == 1
        assert "boxes" in out[0]
        assert "scores" in out[0]
        assert "labels" in out[0]

608
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
609
610
611
    model.cuda()
    model.eval()
    input_shape = (3, 300, 300)
612
    x = torch.rand(input_shape, device="cuda")
Anirudh's avatar
Anirudh committed
613
614
615
616
617
618
619
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    checkOut(out)

    with torch.cuda.amp.autocast():
620
        out = model(model_input)
621

Anirudh's avatar
Anirudh committed
622
    checkOut(out)
623

624
625
    _check_input_backprop(model, model_input)

Anirudh's avatar
Anirudh committed
626
627
628
629
    # now switch to cpu and make sure it works
    model.cpu()
    x = x.cpu()
    out_cpu = model([x])
630

Anirudh's avatar
Anirudh committed
631
    checkOut(out_cpu)
632

633
634
    _check_input_backprop(model, [x])

635

Anirudh's avatar
Anirudh committed
636
def test_generalizedrcnn_transform_repr():
637

Anirudh's avatar
Anirudh committed
638
639
640
    min_size, max_size = 224, 299
    image_mean = [0.485, 0.456, 0.406]
    image_std = [0.229, 0.224, 0.225]
641

642
643
644
    t = models.detection.transform.GeneralizedRCNNTransform(
        min_size=min_size, max_size=max_size, image_mean=image_mean, image_std=image_std
    )
645

Anirudh's avatar
Anirudh committed
646
    # Check integrity of object __repr__ attribute
647
648
    expected_string = "GeneralizedRCNNTransform("
    _indent = "\n    "
649
650
    expected_string += f"{_indent}Normalize(mean={image_mean}, std={image_std})"
    expected_string += f"{_indent}Resize(min_size=({min_size},), max_size={max_size}, "
Anirudh's avatar
Anirudh committed
651
652
    expected_string += "mode='bilinear')\n)"
    assert t.__repr__() == expected_string
653
654


655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
test_vit_conv_stem_configs = [
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=64),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=512),
]


def vitc_b_16(**kwargs: Any):
    return models.VisionTransformer(
        image_size=224,
        patch_size=16,
        num_layers=12,
        num_heads=12,
        hidden_dim=768,
        mlp_dim=3072,
        conv_stem_configs=test_vit_conv_stem_configs,
        **kwargs,
    )


@pytest.mark.parametrize("model_fn", [vitc_b_16])
679
@pytest.mark.parametrize("dev", cpu_and_cuda())
680
681
682
683
def test_vitc_models(model_fn, dev):
    test_classification_model(model_fn, dev)


684
@disable_tf32()  # see: https://github.com/pytorch/vision/issues/7618
685
@pytest.mark.parametrize("model_fn", list_model_fns(models))
686
@pytest.mark.parametrize("dev", cpu_and_cuda())
687
def test_classification_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
688
689
    set_rng_seed(0)
    defaults = {
690
691
        "num_classes": 50,
        "input_shape": (1, 3, 224, 224),
Anirudh's avatar
Anirudh committed
692
    }
693
    model_name = model_fn.__name__
694
    if SKIP_BIG_MODEL and is_skippable(model_name, dev):
695
        pytest.skip("Skipped to reduce memory usage. Set env var SKIP_BIG_MODEL=0 to enable test for this model")
Anirudh's avatar
Anirudh committed
696
    kwargs = {**defaults, **_model_params.get(model_name, {})}
697
    num_classes = kwargs.get("num_classes")
698
    input_shape = kwargs.pop("input_shape")
699
    real_image = kwargs.pop("real_image", False)
Anirudh's avatar
Anirudh committed
700

701
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
702
    model.eval().to(device=dev)
703
    x = _get_image(input_shape=input_shape, real_image=real_image, device=dev)
Anirudh's avatar
Anirudh committed
704
    out = model(x)
705
706
707
708
709
710
711
712
    # FIXME: this if/else is nasty and only here to please our CI prior to the
    # release. We rethink these tests altogether.
    if model_name == "resnet101":
        prec = 0.2
    else:
        # FIXME: this is probably still way too high.
        prec = 0.1
    _assert_expected(out.cpu(), model_name, prec=prec)
713
    assert out.shape[-1] == num_classes
714
715
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
716

717
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
718
719
720
721
722
723
        with torch.cuda.amp.autocast():
            out = model(x)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == 50
724

725
726
    _check_input_backprop(model, x)

727

728
@pytest.mark.parametrize("model_fn", list_model_fns(models.segmentation))
729
@pytest.mark.parametrize("dev", cpu_and_cuda())
730
def test_segmentation_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
731
732
    set_rng_seed(0)
    defaults = {
733
        "num_classes": 10,
734
        "weights_backbone": None,
735
        "input_shape": (1, 3, 32, 32),
Anirudh's avatar
Anirudh committed
736
    }
737
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
738
    kwargs = {**defaults, **_model_params.get(model_name, {})}
739
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
740

741
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
742
743
744
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
Aidyn-A's avatar
Aidyn-A committed
745
746
    with torch.no_grad(), freeze_rng_state():
        out = model(x)
Anirudh's avatar
Anirudh committed
747
748
749
750
751
752
753
754
755
756
757
758
759
760

    def check_out(out):
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(out.cpu(), model_name, prec=prec)
        except AssertionError:
            # Unfortunately some segmentation models are flaky with autocast
            # so instead of validating the probability scores, check that the class
            # predictions match.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
761
762
763
            torch.testing.assert_close(
                out.argmax(dim=1), expected.argmax(dim=1), rtol=prec, atol=prec, check_device=False
            )
Anirudh's avatar
Anirudh committed
764
765
766
767
            return False  # Partial validation performed

        return True  # Full validation performed

768
    full_validation = check_out(out["out"])
Anirudh's avatar
Anirudh committed
769

770
771
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
772

773
    if dev == "cuda":
Aidyn-A's avatar
Aidyn-A committed
774
        with torch.cuda.amp.autocast(), torch.no_grad(), freeze_rng_state():
775
            out = model(x)
Anirudh's avatar
Anirudh committed
776
777
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
778
                full_validation &= check_out(out["out"])
Anirudh's avatar
Anirudh committed
779
780

    if not full_validation:
781
        msg = (
782
            f"The output of {test_segmentation_model.__name__} could only be partially validated. "
783
784
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
785
            "significant changes to the codebase."
786
        )
Anirudh's avatar
Anirudh committed
787
788
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
789

790
791
    _check_input_backprop(model, x)

792

793
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
794
@pytest.mark.parametrize("dev", cpu_and_cuda())
795
def test_detection_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
796
797
    set_rng_seed(0)
    defaults = {
798
        "num_classes": 50,
799
        "weights_backbone": None,
800
        "input_shape": (3, 300, 300),
Anirudh's avatar
Anirudh committed
801
    }
802
    model_name = model_fn.__name__
803
804
805
806
    if model_name in detection_flaky_models:
        dtype = torch.float64
    else:
        dtype = torch.get_default_dtype()
Anirudh's avatar
Anirudh committed
807
    kwargs = {**defaults, **_model_params.get(model_name, {})}
808
    input_shape = kwargs.pop("input_shape")
809
    real_image = kwargs.pop("real_image", False)
Anirudh's avatar
Anirudh committed
810

811
    model = model_fn(**kwargs)
812
813
    model.eval().to(device=dev, dtype=dtype)
    x = _get_image(input_shape=input_shape, real_image=real_image, device=dev, dtype=dtype)
Anirudh's avatar
Anirudh committed
814
    model_input = [x]
Aidyn-A's avatar
Aidyn-A committed
815
816
    with torch.no_grad(), freeze_rng_state():
        out = model(model_input)
Anirudh's avatar
Anirudh committed
817
818
    assert model_input[0] is x

819
    def check_out(out):
Anirudh's avatar
Anirudh committed
820
821
822
        assert len(out) == 1

        def compact(tensor):
823
            tensor = tensor.cpu()
Anirudh's avatar
Anirudh committed
824
825
826
827
828
829
830
831
832
833
834
835
836
837
            size = tensor.size()
            elements_per_sample = functools.reduce(operator.mul, size[1:], 1)
            if elements_per_sample > 30:
                return compute_mean_std(tensor)
            else:
                return subsample_tensor(tensor)

        def subsample_tensor(tensor):
            num_elems = tensor.size(0)
            num_samples = 20
            if num_elems <= num_samples:
                return tensor

            ith_index = num_elems // num_samples
838
            return tensor[ith_index - 1 :: ith_index]
Anirudh's avatar
Anirudh committed
839
840
841
842
843
844
845
846
847

        def compute_mean_std(tensor):
            # can't compute mean of integral tensor
            tensor = tensor.to(torch.double)
            mean = torch.mean(tensor)
            std = torch.std(tensor)
            return {"mean": mean, "std": std}

        output = map_nested_tensor_object(out, tensor_map_fn=compact)
848
        prec = 0.01
Anirudh's avatar
Anirudh committed
849
850
851
852
853
854
855
856
857
858
859
860
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(output, model_name, prec=prec)
        except AssertionError:
            # Unfortunately detection models are flaky due to the unstable sort
            # in NMS. If matching across all outputs fails, use the same approach
            # as in NMSTester.test_nms_cuda to see if this is caused by duplicate
            # scores.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
861
862
863
            torch.testing.assert_close(
                output[0]["scores"], expected[0]["scores"], rtol=prec, atol=prec, check_device=False, check_dtype=False
            )
Anirudh's avatar
Anirudh committed
864
865
866
867
868
869
870
871
872
873

            # Note: Fmassa proposed turning off NMS by adapting the threshold
            # and then using the Hungarian algorithm as in DETR to find the
            # best match between output and expected boxes and eliminate some
            # of the flakiness. Worth exploring.
            return False  # Partial validation performed

        return True  # Full validation performed

    full_validation = check_out(out)
874
    _check_jit_scriptable(model, ([x],), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
Anirudh's avatar
Anirudh committed
875

876
    if dev == "cuda":
Aidyn-A's avatar
Aidyn-A committed
877
        with torch.cuda.amp.autocast(), torch.no_grad(), freeze_rng_state():
Anirudh's avatar
Anirudh committed
878
879
880
            out = model(model_input)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
881
                full_validation &= check_out(out)
Anirudh's avatar
Anirudh committed
882
883

    if not full_validation:
884
        msg = (
885
            f"The output of {test_detection_model.__name__} could only be partially validated. "
886
887
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
888
            "significant changes to the codebase."
889
        )
Anirudh's avatar
Anirudh committed
890
891
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
892

893
894
    _check_input_backprop(model, model_input)

895

896
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
897
def test_detection_model_validation(model_fn):
Anirudh's avatar
Anirudh committed
898
    set_rng_seed(0)
899
    model = model_fn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
900
901
902
903
    input_shape = (3, 300, 300)
    x = [torch.rand(input_shape)]

    # validate that targets are present in training
904
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
905
906
907
        model(x)

    # validate type
908
    targets = [{"boxes": 0.0}]
909
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
910
911
912
913
        model(x, targets=targets)

    # validate boxes shape
    for boxes in (torch.rand((4,)), torch.rand((1, 5))):
914
        targets = [{"boxes": boxes}]
915
        with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
916
917
918
919
            model(x, targets=targets)

    # validate that no degenerate boxes are present
    boxes = torch.tensor([[1, 3, 1, 4], [2, 4, 3, 4]])
920
    targets = [{"boxes": boxes}]
921
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
922
        model(x, targets=targets)
923

924

925
@pytest.mark.parametrize("model_fn", list_model_fns(models.video))
926
@pytest.mark.parametrize("dev", cpu_and_cuda())
927
def test_video_model(model_fn, dev):
928
    set_rng_seed(0)
Anirudh's avatar
Anirudh committed
929
930
    # the default input shape is
    # bs * num_channels * clip_len * h *w
931
932
933
934
    defaults = {
        "input_shape": (1, 3, 4, 112, 112),
        "num_classes": 50,
    }
935
    model_name = model_fn.__name__
936
    if SKIP_BIG_MODEL and is_skippable(model_name, dev):
937
        pytest.skip("Skipped to reduce memory usage. Set env var SKIP_BIG_MODEL=0 to enable test for this model")
938
939
940
    kwargs = {**defaults, **_model_params.get(model_name, {})}
    num_classes = kwargs.get("num_classes")
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
941
    # test both basicblock and Bottleneck
942
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
943
944
945
946
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
947
    _assert_expected(out.cpu(), model_name, prec=0.1)
948
    assert out.shape[-1] == num_classes
949
950
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
951
    assert out.shape[-1] == num_classes
Anirudh's avatar
Anirudh committed
952

953
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
954
955
        with torch.cuda.amp.autocast():
            out = model(x)
956
957
958
959
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == num_classes
960

961
962
    _check_input_backprop(model, x)

963

964
965
966
967
968
969
970
@pytest.mark.skipif(
    not (
        "fbgemm" in torch.backends.quantized.supported_engines
        and "qnnpack" in torch.backends.quantized.supported_engines
    ),
    reason="This Pytorch Build has not been built with fbgemm and qnnpack",
)
971
@pytest.mark.parametrize("model_fn", list_model_fns(models.quantization))
972
def test_quantized_classification_model(model_fn):
973
    set_rng_seed(0)
974
    defaults = {
975
        "num_classes": 5,
976
977
        "input_shape": (1, 3, 224, 224),
        "quantize": True,
978
    }
979
    model_name = model_fn.__name__
980
    kwargs = {**defaults, **_model_params.get(model_name, {})}
981
    input_shape = kwargs.pop("input_shape")
982
983

    # First check if quantize=True provides models that can run with input data
984
    model = model_fn(**kwargs)
985
    model.eval()
986
    x = torch.rand(input_shape)
987
988
989
    out = model(x)

    if model_name not in quantized_flaky_models:
990
        _assert_expected(out.cpu(), model_name + "_quantized", prec=2e-2)
991
        assert out.shape[-1] == 5
992
993
994
995
996
997
998
        _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
        _check_fx_compatible(model, x, eager_out=out)
    else:
        try:
            torch.jit.script(model)
        except Exception as e:
            raise AssertionError("model cannot be scripted.") from e
999

1000
    kwargs["quantize"] = False
1001
    for eval_mode in [True, False]:
1002
        model = model_fn(**kwargs)
1003
1004
        if eval_mode:
            model.eval()
1005
            model.qconfig = torch.ao.quantization.default_qconfig
1006
1007
        else:
            model.train()
1008
            model.qconfig = torch.ao.quantization.default_qat_qconfig
1009

1010
        model.fuse_model(is_qat=not eval_mode)
1011
        if eval_mode:
1012
            torch.ao.quantization.prepare(model, inplace=True)
1013
        else:
1014
            torch.ao.quantization.prepare_qat(model, inplace=True)
1015
1016
            model.eval()

1017
        torch.ao.quantization.convert(model, inplace=True)
1018
1019


1020
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
1021
def test_detection_model_trainable_backbone_layers(model_fn, disable_weight_loading):
1022
    model_name = model_fn.__name__
1023
1024
1025
    max_trainable = _model_tests_values[model_name]["max_trainable"]
    n_trainable_params = []
    for trainable_layers in range(0, max_trainable + 1):
1026
        model = model_fn(weights=None, weights_backbone="DEFAULT", trainable_backbone_layers=trainable_layers)
1027
1028
1029
1030
1031

        n_trainable_params.append(len([p for p in model.parameters() if p.requires_grad]))
    assert n_trainable_params == _model_tests_values[model_name]["n_trn_params_per_layer"]


1032
@needs_cuda
1033
@pytest.mark.parametrize("model_fn", list_model_fns(models.optical_flow))
1034
@pytest.mark.parametrize("scripted", (False, True))
1035
def test_raft(model_fn, scripted):
1036
1037
1038
1039

    torch.manual_seed(0)

    # We need very small images, otherwise the pickle size would exceed the 50KB
1040
    # As a result we need to override the correlation pyramid to not downsample
1041
1042
1043
1044
    # too much, otherwise we would get nan values (effective H and W would be
    # reduced to 1)
    corr_block = models.optical_flow.raft.CorrBlock(num_levels=2, radius=2)

1045
    model = model_fn(corr_block=corr_block).eval().to("cuda")
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
    if scripted:
        model = torch.jit.script(model)

    bs = 1
    img1 = torch.rand(bs, 3, 80, 72).cuda()
    img2 = torch.rand(bs, 3, 80, 72).cuda()

    preds = model(img1, img2)
    flow_pred = preds[-1]
    # Tolerance is fairly high, but there are 2 * H * W outputs to check
1056
    # The .pkl were generated on the AWS cluter, on the CI it looks like the results are slightly different
1057
    _assert_expected(flow_pred.cpu(), name=model_fn.__name__, atol=1e-2, rtol=1)
1058
1059


1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
def test_presets_antialias():

    img = torch.randint(0, 256, size=(1, 3, 224, 224), dtype=torch.uint8)

    match = "The default value of the antialias parameter"
    with pytest.warns(UserWarning, match=match):
        models.ResNet18_Weights.DEFAULT.transforms()(img)
    with pytest.warns(UserWarning, match=match):
        models.segmentation.DeepLabV3_ResNet50_Weights.DEFAULT.transforms()(img)

    with warnings.catch_warnings():
        warnings.simplefilter("error")
        models.ResNet18_Weights.DEFAULT.transforms(antialias=True)(img)
        models.segmentation.DeepLabV3_ResNet50_Weights.DEFAULT.transforms(antialias=True)(img)

        models.detection.FasterRCNN_ResNet50_FPN_Weights.DEFAULT.transforms()(img)
        models.video.R3D_18_Weights.DEFAULT.transforms()(img)
        models.optical_flow.Raft_Small_Weights.DEFAULT.transforms()(img, img)


1080
if __name__ == "__main__":
1081
    pytest.main([__file__])