test_models.py 26.4 KB
Newer Older
1
import functools
2
import io
3
4
5
6
import operator
import os
import traceback
import warnings
7
from collections import OrderedDict
8
9

import pytest
10
import torch
11
import torch.fx
12
import torch.nn as nn
13
import torchvision
14
15
from _utils_internal import get_relative_path
from common_utils import map_nested_tensor_object, freeze_rng_state, set_rng_seed, cpu_and_gpu, needs_cuda
16
from torchvision import models
17

eellison's avatar
eellison committed
18

19
ACCEPT = os.getenv("EXPECTTEST_ACCEPT", "0") == "1"
20
21


22
23
24
def get_available_classification_models():
    # TODO add a registration mechanism to torchvision.models
    return [k for k, v in models.__dict__.items() if callable(v) and k[0].lower() == k[0] and k[0] != "_"]
25
26
27
28
29


def get_available_segmentation_models():
    # TODO add a registration mechanism to torchvision.models
    return [k for k, v in models.segmentation.__dict__.items() if callable(v) and k[0].lower() == k[0] and k[0] != "_"]
30
31


32
33
34
35
36
def get_available_detection_models():
    # TODO add a registration mechanism to torchvision.models
    return [k for k, v in models.detection.__dict__.items() if callable(v) and k[0].lower() == k[0] and k[0] != "_"]


37
38
39
40
41
def get_available_video_models():
    # TODO add a registration mechanism to torchvision.models
    return [k for k, v in models.video.__dict__.items() if callable(v) and k[0].lower() == k[0] and k[0] != "_"]


42
43
44
45
46
def get_available_quantizable_models():
    # TODO add a registration mechanism to torchvision.models
    return [k for k, v in models.quantization.__dict__.items() if callable(v) and k[0].lower() == k[0] and k[0] != "_"]


47
48
49
50
51
52
def _get_expected_file(name=None):
    # Determine expected file based on environment
    expected_file_base = get_relative_path(os.path.realpath(__file__), "expect")

    # Note: for legacy reasons, the reference file names all had "ModelTest.test_" in their names
    # We hardcode it here to avoid having to re-generate the reference files
53
    expected_file = expected_file = os.path.join(expected_file_base, "ModelTester.test_" + name)
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    expected_file += "_expect.pkl"

    if not ACCEPT and not os.path.exists(expected_file):
        raise RuntimeError(
            f"No expect file exists for {os.path.basename(expected_file)} in {expected_file}; "
            "to accept the current output, re-run the failing test after setting the EXPECTTEST_ACCEPT "
            "env variable. For example: EXPECTTEST_ACCEPT=1 pytest test/test_models.py -k alexnet"
        )

    return expected_file


def _assert_expected(output, name, prec):
    """Test that a python value matches the recorded contents of a file
    based on a "check" name. The value must be
    pickable with `torch.save`. This file
    is placed in the 'expect' directory in the same directory
    as the test script. You can automatically update the recorded test
    output using an EXPECTTEST_ACCEPT=1 env variable.
    """
    expected_file = _get_expected_file(name)

    if ACCEPT:
        filename = {os.path.basename(expected_file)}
        print("Accepting updated output for {}:\n\n{}".format(filename, output))
        torch.save(output, expected_file)
        MAX_PICKLE_SIZE = 50 * 1000  # 50 KB
        binary_size = os.path.getsize(expected_file)
        if binary_size > MAX_PICKLE_SIZE:
            raise RuntimeError("The output for {}, is larger than 50kb".format(filename))
    else:
        expected = torch.load(expected_file)
        rtol = atol = prec
        torch.testing.assert_close(output, expected, rtol=rtol, atol=atol, check_dtype=False)


def _check_jit_scriptable(nn_module, args, unwrapper=None, skip=False):
    """Check that a nn.Module's results in TorchScript match eager and that it can be exported"""

    def assert_export_import_module(m, args):
        """Check that the results of a model are the same after saving and loading"""
95

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
        def get_export_import_copy(m):
            """Save and load a TorchScript model"""
            buffer = io.BytesIO()
            torch.jit.save(m, buffer)
            buffer.seek(0)
            imported = torch.jit.load(buffer)
            return imported

        m_import = get_export_import_copy(m)
        with freeze_rng_state():
            results = m(*args)
        with freeze_rng_state():
            results_from_imported = m_import(*args)
        tol = 3e-4
        try:
            torch.testing.assert_close(results, results_from_imported, atol=tol, rtol=tol)
112
        except ValueError:
113
114
115
116
117
118
            # custom check for the models that return named tuples:
            # we compare field by field while ignoring None as assert_close can't handle None
            for a, b in zip(results, results_from_imported):
                if a is not None:
                    torch.testing.assert_close(a, b, atol=tol, rtol=tol)

119
    TEST_WITH_SLOW = os.getenv("PYTORCH_TEST_WITH_SLOW", "0") == "1"
120
121
    if not TEST_WITH_SLOW or skip:
        # TorchScript is not enabled, skip these tests
122
123
124
125
126
127
128
129
        msg = (
            "The check_jit_scriptable test for {} was skipped. "
            "This test checks if the module's results in TorchScript "
            "match eager and that it can be exported. To run these "
            "tests make sure you set the environment variable "
            "PYTORCH_TEST_WITH_SLOW=1 and that the test is not "
            "manually skipped.".format(nn_module.__class__.__name__)
        )
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
        warnings.warn(msg, RuntimeWarning)
        return None

    sm = torch.jit.script(nn_module)

    with freeze_rng_state():
        eager_out = nn_module(*args)

    with freeze_rng_state():
        script_out = sm(*args)
        if unwrapper:
            script_out = unwrapper(script_out)

    torch.testing.assert_close(eager_out, script_out, atol=1e-4, rtol=1e-4)
    assert_export_import_module(sm, args)


147
148
149
150
151
152
153
def _check_fx_compatible(model, inputs):
    model_fx = torch.fx.symbolic_trace(model)
    out = model(inputs)
    out_fx = model_fx(inputs)
    torch.testing.assert_close(out, out_fx)


154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
def _check_input_backprop(model, inputs):
    if isinstance(inputs, list):
        requires_grad = list()
        for inp in inputs:
            requires_grad.append(inp.requires_grad)
            inp.requires_grad_(True)
    else:
        requires_grad = inputs.requires_grad
        inputs.requires_grad_(True)

    out = model(inputs)

    if isinstance(out, dict):
        out["out"].sum().backward()
    else:
        if isinstance(out[0], dict):
            out[0]["scores"].sum().backward()
        else:
            out[0].sum().backward()

    if isinstance(inputs, list):
        for i, inp in enumerate(inputs):
            assert inputs[i].grad is not None
            inp.requires_grad_(requires_grad[i])
    else:
        assert inputs.grad is not None
        inputs.requires_grad_(requires_grad)


183
184
185
# If 'unwrapper' is provided it will be called with the script model outputs
# before they are compared to the eager model outputs. This is useful if the
# model outputs are different between TorchScript / Eager mode
186
script_model_unwrapper = {
187
188
    "googlenet": lambda x: x.logits,
    "inception_v3": lambda x: x.logits,
189
    "fasterrcnn_resnet50_fpn": lambda x: x[1],
190
    "fasterrcnn_mobilenet_v3_large_fpn": lambda x: x[1],
191
    "fasterrcnn_mobilenet_v3_large_320_fpn": lambda x: x[1],
192
193
194
    "maskrcnn_resnet50_fpn": lambda x: x[1],
    "keypointrcnn_resnet50_fpn": lambda x: x[1],
    "retinanet_resnet50_fpn": lambda x: x[1],
195
    "ssd300_vgg16": lambda x: x[1],
196
    "ssdlite320_mobilenet_v3_large": lambda x: x[1],
197
}
198
199


200
201
202
203
204
205
206
207
208
209
210
211
212
213
# The following models exhibit flaky numerics under autocast in _test_*_model harnesses.
# This may be caused by the harness environment (e.g. num classes, input initialization
# via torch.rand), and does not prove autocast is unsuitable when training with real data
# (autocast has been used successfully with real data for some of these models).
# TODO:  investigate why autocast numerics are flaky in the harnesses.
#
# For the following models, _test_*_model harnesses skip numerical checks on outputs when
# trying autocast. However, they still try an autocasted forward pass, so they still ensure
# autocast coverage suffices to prevent dtype errors in each model.
autocast_flaky_numerics = (
    "inception_v3",
    "resnet101",
    "resnet152",
    "wide_resnet101_2",
214
215
    "deeplabv3_resnet50",
    "deeplabv3_resnet101",
216
    "deeplabv3_mobilenet_v3_large",
217
218
    "fcn_resnet50",
    "fcn_resnet101",
219
    "lraspp_mobilenet_v3_large",
220
    "maskrcnn_resnet50_fpn",
221
222
)

223
224
225
226
227
# The tests for the following quantized models are flaky possibly due to inconsistent
# rounding errors in different platforms. For this reason the input/output consistency
# tests under test_quantized_classification_model will be skipped for the following models.
quantized_flaky_models = ("inception_v3",)

228

229
230
231
# The following contains configuration parameters for all models which are used by
# the _test_*_model methods.
_model_params = {
232
233
234
235
236
237
238
    "inception_v3": {"input_shape": (1, 3, 299, 299)},
    "retinanet_resnet50_fpn": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
239
    },
240
241
242
243
244
245
    "keypointrcnn_resnet50_fpn": {
        "num_classes": 2,
        "min_size": 224,
        "max_size": 224,
        "box_score_thresh": 0.15,
        "input_shape": (3, 224, 224),
246
    },
247
248
249
250
251
    "fasterrcnn_resnet50_fpn": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
252
    },
253
254
255
256
257
    "maskrcnn_resnet50_fpn": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
258
    },
259
260
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "box_score_thresh": 0.02076,
261
    },
262
263
264
265
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "box_score_thresh": 0.02076,
        "rpn_pre_nms_top_n_test": 1000,
        "rpn_post_nms_top_n_test": 1000,
266
267
268
269
    },
}


Anirudh's avatar
Anirudh committed
270
271
272
273
274
275
276
277
278
279
def _make_sliced_model(model, stop_layer):
    layers = OrderedDict()
    for name, layer in model.named_children():
        layers[name] = layer
        if name == stop_layer:
            break
    new_model = torch.nn.Sequential(layers)
    return new_model


280
@pytest.mark.parametrize("model_name", ["densenet121", "densenet169", "densenet201", "densenet161"])
Anirudh's avatar
Anirudh committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
def test_memory_efficient_densenet(model_name):
    input_shape = (1, 3, 300, 300)
    x = torch.rand(input_shape)

    model1 = models.__dict__[model_name](num_classes=50, memory_efficient=True)
    params = model1.state_dict()
    num_params = sum([x.numel() for x in model1.parameters()])
    model1.eval()
    out1 = model1(x)
    out1.sum().backward()
    num_grad = sum([x.grad.numel() for x in model1.parameters() if x.grad is not None])

    model2 = models.__dict__[model_name](num_classes=50, memory_efficient=False)
    model2.load_state_dict(params)
    model2.eval()
    out2 = model2(x)

    assert num_params == num_grad
    torch.testing.assert_close(out1, out2, rtol=0.0, atol=1e-5)

301
302
303
    _check_input_backprop(model1, x)
    _check_input_backprop(model2, x)

Anirudh's avatar
Anirudh committed
304

305
306
307
@pytest.mark.parametrize("dilate_layer_2", (True, False))
@pytest.mark.parametrize("dilate_layer_3", (True, False))
@pytest.mark.parametrize("dilate_layer_4", (True, False))
Anirudh's avatar
Anirudh committed
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
def test_resnet_dilation(dilate_layer_2, dilate_layer_3, dilate_layer_4):
    # TODO improve tests to also check that each layer has the right dimensionality
    model = models.__dict__["resnet50"](replace_stride_with_dilation=(dilate_layer_2, dilate_layer_3, dilate_layer_4))
    model = _make_sliced_model(model, stop_layer="layer4")
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    f = 2 ** sum((dilate_layer_2, dilate_layer_3, dilate_layer_4))
    assert out.shape == (1, 2048, 7 * f, 7 * f)


def test_mobilenet_v2_residual_setting():
    model = models.__dict__["mobilenet_v2"](inverted_residual_setting=[[1, 16, 1, 1], [6, 24, 2, 2]])
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    assert out.shape[-1] == 1000


327
@pytest.mark.parametrize("model_name", ["mobilenet_v2", "mobilenet_v3_large", "mobilenet_v3_small"])
Anirudh's avatar
Anirudh committed
328
329
330
331
332
333
334
335
def test_mobilenet_norm_layer(model_name):
    model = models.__dict__[model_name]()
    assert any(isinstance(x, nn.BatchNorm2d) for x in model.modules())

    def get_gn(num_channels):
        return nn.GroupNorm(32, num_channels)

    model = models.__dict__[model_name](norm_layer=get_gn)
336
    assert not (any(isinstance(x, nn.BatchNorm2d) for x in model.modules()))
Anirudh's avatar
Anirudh committed
337
338
339
340
341
342
    assert any(isinstance(x, nn.GroupNorm) for x in model.modules())


def test_inception_v3_eval():
    # replacement for models.inception_v3(pretrained=True) that does not download weights
    kwargs = {}
343
344
345
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
346
347
348
349
350
351
352
    name = "inception_v3"
    model = models.Inception3(**kwargs)
    model.aux_logits = False
    model.AuxLogits = None
    model = model.eval()
    x = torch.rand(1, 3, 299, 299)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
353
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368


def test_fasterrcnn_double():
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, pretrained_backbone=False)
    model.double()
    model.eval()
    input_shape = (3, 300, 300)
    x = torch.rand(input_shape, dtype=torch.float64)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x
    assert len(out) == 1
    assert "boxes" in out[0]
    assert "scores" in out[0]
    assert "labels" in out[0]
369
    _check_input_backprop(model, model_input)
Anirudh's avatar
Anirudh committed
370
371
372
373
374


def test_googlenet_eval():
    # replacement for models.googlenet(pretrained=True) that does not download weights
    kwargs = {}
375
376
377
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
378
379
380
381
382
383
384
385
    name = "googlenet"
    model = models.GoogLeNet(**kwargs)
    model.aux_logits = False
    model.aux1 = None
    model.aux2 = None
    model = model.eval()
    x = torch.rand(1, 3, 224, 224)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
386
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
387
388
389
390
391
392
393
394
395
396
397
398
399
400


@needs_cuda
def test_fasterrcnn_switch_devices():
    def checkOut(out):
        assert len(out) == 1
        assert "boxes" in out[0]
        assert "scores" in out[0]
        assert "labels" in out[0]

    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, pretrained_backbone=False)
    model.cuda()
    model.eval()
    input_shape = (3, 300, 300)
401
    x = torch.rand(input_shape, device="cuda")
Anirudh's avatar
Anirudh committed
402
403
404
405
406
407
408
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    checkOut(out)

    with torch.cuda.amp.autocast():
409
        out = model(model_input)
410

Anirudh's avatar
Anirudh committed
411
    checkOut(out)
412

413
414
    _check_input_backprop(model, model_input)

Anirudh's avatar
Anirudh committed
415
416
417
418
    # now switch to cpu and make sure it works
    model.cpu()
    x = x.cpu()
    out_cpu = model([x])
419

Anirudh's avatar
Anirudh committed
420
    checkOut(out_cpu)
421

422
423
    _check_input_backprop(model, [x])

424

Anirudh's avatar
Anirudh committed
425
def test_generalizedrcnn_transform_repr():
426

Anirudh's avatar
Anirudh committed
427
428
429
    min_size, max_size = 224, 299
    image_mean = [0.485, 0.456, 0.406]
    image_std = [0.229, 0.224, 0.225]
430

431
432
433
    t = models.detection.transform.GeneralizedRCNNTransform(
        min_size=min_size, max_size=max_size, image_mean=image_mean, image_std=image_std
    )
434

Anirudh's avatar
Anirudh committed
435
    # Check integrity of object __repr__ attribute
436
437
438
439
    expected_string = "GeneralizedRCNNTransform("
    _indent = "\n    "
    expected_string += "{0}Normalize(mean={1}, std={2})".format(_indent, image_mean, image_std)
    expected_string += "{0}Resize(min_size=({1},), max_size={2}, ".format(_indent, min_size, max_size)
Anirudh's avatar
Anirudh committed
440
441
    expected_string += "mode='bilinear')\n)"
    assert t.__repr__() == expected_string
442
443


444
445
@pytest.mark.parametrize("model_name", get_available_classification_models())
@pytest.mark.parametrize("dev", cpu_and_gpu())
446
def test_classification_model(model_name, dev):
Anirudh's avatar
Anirudh committed
447
448
    set_rng_seed(0)
    defaults = {
449
450
        "num_classes": 50,
        "input_shape": (1, 3, 224, 224),
Anirudh's avatar
Anirudh committed
451
452
    }
    kwargs = {**defaults, **_model_params.get(model_name, {})}
453
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
454
455
456
457
458
459
460
461
462

    model = models.__dict__[model_name](**kwargs)
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
    _assert_expected(out.cpu(), model_name, prec=0.1)
    assert out.shape[-1] == 50
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None))
463
    _check_fx_compatible(model, x)
Anirudh's avatar
Anirudh committed
464
465
466
467
468
469
470
471

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(x)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == 50
472

473
474
    _check_input_backprop(model, x)

475

476
477
@pytest.mark.parametrize("model_name", get_available_segmentation_models())
@pytest.mark.parametrize("dev", cpu_and_gpu())
478
def test_segmentation_model(model_name, dev):
Anirudh's avatar
Anirudh committed
479
480
    set_rng_seed(0)
    defaults = {
481
482
483
        "num_classes": 10,
        "pretrained_backbone": False,
        "input_shape": (1, 3, 32, 32),
Anirudh's avatar
Anirudh committed
484
485
    }
    kwargs = {**defaults, **_model_params.get(model_name, {})}
486
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514

    model = models.segmentation.__dict__[model_name](**kwargs)
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)["out"]

    def check_out(out):
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(out.cpu(), model_name, prec=prec)
        except AssertionError:
            # Unfortunately some segmentation models are flaky with autocast
            # so instead of validating the probability scores, check that the class
            # predictions match.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
            torch.testing.assert_close(out.argmax(dim=1), expected.argmax(dim=1), rtol=prec, atol=prec)
            return False  # Partial validation performed

        return True  # Full validation performed

    full_validation = check_out(out)

    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None))
515
    _check_fx_compatible(model, x)
Anirudh's avatar
Anirudh committed
516
517
518
519
520
521
522
523
524

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(x)["out"]
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                full_validation &= check_out(out)

    if not full_validation:
525
526
527
528
529
530
        msg = (
            "The output of {} could only be partially validated. "
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
            "significant changes to the codebase.".format(test_segmentation_model.__name__)
        )
Anirudh's avatar
Anirudh committed
531
532
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
533

534
535
    _check_input_backprop(model, x)

536

537
538
@pytest.mark.parametrize("model_name", get_available_detection_models())
@pytest.mark.parametrize("dev", cpu_and_gpu())
539
def test_detection_model(model_name, dev):
Anirudh's avatar
Anirudh committed
540
541
    set_rng_seed(0)
    defaults = {
542
543
544
        "num_classes": 50,
        "pretrained_backbone": False,
        "input_shape": (3, 300, 300),
Anirudh's avatar
Anirudh committed
545
546
    }
    kwargs = {**defaults, **_model_params.get(model_name, {})}
547
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574

    model = models.detection.__dict__[model_name](**kwargs)
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    def check_out(out):
        assert len(out) == 1

        def compact(tensor):
            size = tensor.size()
            elements_per_sample = functools.reduce(operator.mul, size[1:], 1)
            if elements_per_sample > 30:
                return compute_mean_std(tensor)
            else:
                return subsample_tensor(tensor)

        def subsample_tensor(tensor):
            num_elems = tensor.size(0)
            num_samples = 20
            if num_elems <= num_samples:
                return tensor

            ith_index = num_elems // num_samples
575
            return tensor[ith_index - 1 :: ith_index]
Anirudh's avatar
Anirudh committed
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597

        def compute_mean_std(tensor):
            # can't compute mean of integral tensor
            tensor = tensor.to(torch.double)
            mean = torch.mean(tensor)
            std = torch.std(tensor)
            return {"mean": mean, "std": std}

        output = map_nested_tensor_object(out, tensor_map_fn=compact)
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(output, model_name, prec=prec)
        except AssertionError:
            # Unfortunately detection models are flaky due to the unstable sort
            # in NMS. If matching across all outputs fails, use the same approach
            # as in NMSTester.test_nms_cuda to see if this is caused by duplicate
            # scores.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
598
599
600
            torch.testing.assert_close(
                output[0]["scores"], expected[0]["scores"], rtol=prec, atol=prec, check_device=False, check_dtype=False
            )
Anirudh's avatar
Anirudh committed
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620

            # Note: Fmassa proposed turning off NMS by adapting the threshold
            # and then using the Hungarian algorithm as in DETR to find the
            # best match between output and expected boxes and eliminate some
            # of the flakiness. Worth exploring.
            return False  # Partial validation performed

        return True  # Full validation performed

    full_validation = check_out(out)
    _check_jit_scriptable(model, ([x],), unwrapper=script_model_unwrapper.get(model_name, None))

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(model_input)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                full_validation &= check_out(out)

    if not full_validation:
621
622
623
624
625
626
        msg = (
            "The output of {} could only be partially validated. "
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
            "significant changes to the codebase.".format(test_detection_model.__name__)
        )
Anirudh's avatar
Anirudh committed
627
628
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
629

630
631
    _check_input_backprop(model, model_input)

632

633
@pytest.mark.parametrize("model_name", get_available_detection_models())
634
def test_detection_model_validation(model_name):
Anirudh's avatar
Anirudh committed
635
636
637
638
639
640
641
642
643
644
    set_rng_seed(0)
    model = models.detection.__dict__[model_name](num_classes=50, pretrained_backbone=False)
    input_shape = (3, 300, 300)
    x = [torch.rand(input_shape)]

    # validate that targets are present in training
    with pytest.raises(ValueError):
        model(x)

    # validate type
645
    targets = [{"boxes": 0.0}]
Anirudh's avatar
Anirudh committed
646
647
648
649
650
    with pytest.raises(ValueError):
        model(x, targets=targets)

    # validate boxes shape
    for boxes in (torch.rand((4,)), torch.rand((1, 5))):
651
        targets = [{"boxes": boxes}]
Anirudh's avatar
Anirudh committed
652
653
654
655
656
        with pytest.raises(ValueError):
            model(x, targets=targets)

    # validate that no degenerate boxes are present
    boxes = torch.tensor([[1, 3, 1, 4], [2, 4, 3, 4]])
657
    targets = [{"boxes": boxes}]
Anirudh's avatar
Anirudh committed
658
659
    with pytest.raises(ValueError):
        model(x, targets=targets)
660

661

662
663
@pytest.mark.parametrize("model_name", get_available_video_models())
@pytest.mark.parametrize("dev", cpu_and_gpu())
664
def test_video_model(model_name, dev):
Anirudh's avatar
Anirudh committed
665
666
667
668
669
670
671
672
673
674
    # the default input shape is
    # bs * num_channels * clip_len * h *w
    input_shape = (1, 3, 4, 112, 112)
    # test both basicblock and Bottleneck
    model = models.video.__dict__[model_name](num_classes=50)
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None))
675
    _check_fx_compatible(model, x)
Anirudh's avatar
Anirudh committed
676
677
678
679
680
681
    assert out.shape[-1] == 50

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(x)
            assert out.shape[-1] == 50
682

683
684
    _check_input_backprop(model, x)

685

686
687
688
689
690
691
692
693
@pytest.mark.skipif(
    not (
        "fbgemm" in torch.backends.quantized.supported_engines
        and "qnnpack" in torch.backends.quantized.supported_engines
    ),
    reason="This Pytorch Build has not been built with fbgemm and qnnpack",
)
@pytest.mark.parametrize("model_name", get_available_quantizable_models())
694
def test_quantized_classification_model(model_name):
695
    set_rng_seed(0)
696
    defaults = {
697
        "num_classes": 5,
698
699
700
        "input_shape": (1, 3, 224, 224),
        "pretrained": False,
        "quantize": True,
701
702
    }
    kwargs = {**defaults, **_model_params.get(model_name, {})}
703
    input_shape = kwargs.pop("input_shape")
704
705
706

    # First check if quantize=True provides models that can run with input data
    model = torchvision.models.quantization.__dict__[model_name](**kwargs)
707
    model.eval()
708
    x = torch.rand(input_shape)
709
710
711
712
713
714
715
    out = model(x)

    if model_name not in quantized_flaky_models:
        _assert_expected(out, model_name + "_quantized", prec=0.1)
        assert out.shape[-1] == 5
        _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None))
        _check_fx_compatible(model, x)
716

717
    kwargs["quantize"] = False
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
    for eval_mode in [True, False]:
        model = torchvision.models.quantization.__dict__[model_name](**kwargs)
        if eval_mode:
            model.eval()
            model.qconfig = torch.quantization.default_qconfig
        else:
            model.train()
            model.qconfig = torch.quantization.default_qat_qconfig

        model.fuse_model()
        if eval_mode:
            torch.quantization.prepare(model, inplace=True)
        else:
            torch.quantization.prepare_qat(model, inplace=True)
            model.eval()

        torch.quantization.convert(model, inplace=True)

    try:
        torch.jit.script(model)
    except Exception as e:
        tb = traceback.format_exc()
        raise AssertionError(f"model cannot be scripted. Traceback = {str(tb)}") from e


743
if __name__ == "__main__":
744
    pytest.main([__file__])