test_models.py 32.7 KB
Newer Older
1
import contextlib
2
3
4
import functools
import operator
import os
5
6
import pkgutil
import sys
7
import warnings
8
from collections import OrderedDict
9
from tempfile import TemporaryDirectory
10
from typing import Any
11
12

import pytest
13
import torch
14
import torch.fx
15
import torch.nn as nn
16
17
from _utils_internal import get_relative_path
from common_utils import map_nested_tensor_object, freeze_rng_state, set_rng_seed, cpu_and_gpu, needs_cuda
18
from torchvision import models
19

20
ACCEPT = os.getenv("EXPECTTEST_ACCEPT", "0") == "1"
21
SKIP_BIG_MODEL = os.getenv("SKIP_BIG_MODEL", "1") == "1"
22
23


24
def get_models_from_module(module):
25
    # TODO add a registration mechanism to torchvision.models
26
27
28
29
30
    return [
        v
        for k, v in module.__dict__.items()
        if callable(v) and k[0].lower() == k[0] and k[0] != "_" and k != "get_weight"
    ]
31
32


33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
@pytest.fixture
def disable_weight_loading(mocker):
    """When testing models, the two slowest operations are the downloading of the weights to a file and loading them
    into the model. Unless, you want to test against specific weights, these steps can be disabled without any
    drawbacks.

    Including this fixture into the signature of your test, i.e. `test_foo(disable_weight_loading)`, will recurse
    through all models in `torchvision.models` and will patch all occurrences of the function
    `download_state_dict_from_url` as well as the method `load_state_dict` on all subclasses of `nn.Module` to be
    no-ops.

    .. warning:

        Loaded models are still executable as normal, but will always have random weights. Make sure to not use this
        fixture if you want to compare the model output against reference values.

    """
    starting_point = models
    function_name = "load_state_dict_from_url"
    method_name = "load_state_dict"

    module_names = {info.name for info in pkgutil.walk_packages(starting_point.__path__, f"{starting_point.__name__}.")}
    targets = {f"torchvision._internally_replaced_utils.{function_name}", f"torch.nn.Module.{method_name}"}
    for name in module_names:
        module = sys.modules.get(name)
        if not module:
            continue

        if function_name in module.__dict__:
            targets.add(f"{module.__name__}.{function_name}")

        targets.update(
            {
                f"{module.__name__}.{obj.__name__}.{method_name}"
                for obj in module.__dict__.values()
                if isinstance(obj, type) and issubclass(obj, nn.Module) and method_name in obj.__dict__
            }
        )

    for target in targets:
        # See https://github.com/pytorch/vision/pull/4867#discussion_r743677802 for details
        with contextlib.suppress(AttributeError):
            mocker.patch(target)


78
79
80
81
82
83
def _get_expected_file(name=None):
    # Determine expected file based on environment
    expected_file_base = get_relative_path(os.path.realpath(__file__), "expect")

    # Note: for legacy reasons, the reference file names all had "ModelTest.test_" in their names
    # We hardcode it here to avoid having to re-generate the reference files
84
    expected_file = os.path.join(expected_file_base, "ModelTester.test_" + name)
85
86
87
88
89
90
91
92
93
94
95
96
    expected_file += "_expect.pkl"

    if not ACCEPT and not os.path.exists(expected_file):
        raise RuntimeError(
            f"No expect file exists for {os.path.basename(expected_file)} in {expected_file}; "
            "to accept the current output, re-run the failing test after setting the EXPECTTEST_ACCEPT "
            "env variable. For example: EXPECTTEST_ACCEPT=1 pytest test/test_models.py -k alexnet"
        )

    return expected_file


97
def _assert_expected(output, name, prec=None, atol=None, rtol=None):
98
99
100
101
102
103
104
105
106
107
108
    """Test that a python value matches the recorded contents of a file
    based on a "check" name. The value must be
    pickable with `torch.save`. This file
    is placed in the 'expect' directory in the same directory
    as the test script. You can automatically update the recorded test
    output using an EXPECTTEST_ACCEPT=1 env variable.
    """
    expected_file = _get_expected_file(name)

    if ACCEPT:
        filename = {os.path.basename(expected_file)}
109
        print(f"Accepting updated output for {filename}:\n\n{output}")
110
111
112
113
        torch.save(output, expected_file)
        MAX_PICKLE_SIZE = 50 * 1000  # 50 KB
        binary_size = os.path.getsize(expected_file)
        if binary_size > MAX_PICKLE_SIZE:
114
            raise RuntimeError(f"The output for {filename}, is larger than 50kb - got {binary_size}kb")
115
116
    else:
        expected = torch.load(expected_file)
117
118
        rtol = rtol or prec  # keeping prec param for legacy reason, but could be removed ideally
        atol = atol or prec
119
120
121
        torch.testing.assert_close(output, expected, rtol=rtol, atol=atol, check_dtype=False)


122
def _check_jit_scriptable(nn_module, args, unwrapper=None, eager_out=None):
123
124
    """Check that a nn.Module's results in TorchScript match eager and that it can be exported"""

125
126
127
128
129
130
131
    def get_export_import_copy(m):
        """Save and load a TorchScript model"""
        with TemporaryDirectory() as dir:
            path = os.path.join(dir, "script.pt")
            m.save(path)
            imported = torch.jit.load(path)
        return imported
132
133
134

    sm = torch.jit.script(nn_module)

135
136
    if eager_out is None:
        with torch.no_grad(), freeze_rng_state():
137
            eager_out = nn_module(*args)
138

139
    with torch.no_grad(), freeze_rng_state():
140
141
142
143
144
        script_out = sm(*args)
        if unwrapper:
            script_out = unwrapper(script_out)

    torch.testing.assert_close(eager_out, script_out, atol=1e-4, rtol=1e-4)
145
146
147
148
149
150
151
152

    m_import = get_export_import_copy(sm)
    with torch.no_grad(), freeze_rng_state():
        imported_script_out = m_import(*args)
        if unwrapper:
            imported_script_out = unwrapper(imported_script_out)

    torch.testing.assert_close(script_out, imported_script_out, atol=3e-4, rtol=3e-4)
153
154


155
def _check_fx_compatible(model, inputs, eager_out=None):
156
    model_fx = torch.fx.symbolic_trace(model)
157
158
159
160
    if eager_out is None:
        eager_out = model(inputs)
    fx_out = model_fx(inputs)
    torch.testing.assert_close(eager_out, fx_out)
161
162


163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
def _check_input_backprop(model, inputs):
    if isinstance(inputs, list):
        requires_grad = list()
        for inp in inputs:
            requires_grad.append(inp.requires_grad)
            inp.requires_grad_(True)
    else:
        requires_grad = inputs.requires_grad
        inputs.requires_grad_(True)

    out = model(inputs)

    if isinstance(out, dict):
        out["out"].sum().backward()
    else:
        if isinstance(out[0], dict):
            out[0]["scores"].sum().backward()
        else:
            out[0].sum().backward()

    if isinstance(inputs, list):
        for i, inp in enumerate(inputs):
            assert inputs[i].grad is not None
            inp.requires_grad_(requires_grad[i])
    else:
        assert inputs.grad is not None
        inputs.requires_grad_(requires_grad)


192
193
194
# If 'unwrapper' is provided it will be called with the script model outputs
# before they are compared to the eager model outputs. This is useful if the
# model outputs are different between TorchScript / Eager mode
195
script_model_unwrapper = {
196
197
    "googlenet": lambda x: x.logits,
    "inception_v3": lambda x: x.logits,
198
    "fasterrcnn_resnet50_fpn": lambda x: x[1],
199
    "fasterrcnn_resnet50_fpn_v2": lambda x: x[1],
200
    "fasterrcnn_mobilenet_v3_large_fpn": lambda x: x[1],
201
    "fasterrcnn_mobilenet_v3_large_320_fpn": lambda x: x[1],
202
    "maskrcnn_resnet50_fpn": lambda x: x[1],
203
    "maskrcnn_resnet50_fpn_v2": lambda x: x[1],
204
205
    "keypointrcnn_resnet50_fpn": lambda x: x[1],
    "retinanet_resnet50_fpn": lambda x: x[1],
206
    "retinanet_resnet50_fpn_v2": lambda x: x[1],
207
    "ssd300_vgg16": lambda x: x[1],
208
    "ssdlite320_mobilenet_v3_large": lambda x: x[1],
Hu Ye's avatar
Hu Ye committed
209
    "fcos_resnet50_fpn": lambda x: x[1],
210
}
211
212


213
214
215
216
217
218
219
220
221
222
223
224
225
226
# The following models exhibit flaky numerics under autocast in _test_*_model harnesses.
# This may be caused by the harness environment (e.g. num classes, input initialization
# via torch.rand), and does not prove autocast is unsuitable when training with real data
# (autocast has been used successfully with real data for some of these models).
# TODO:  investigate why autocast numerics are flaky in the harnesses.
#
# For the following models, _test_*_model harnesses skip numerical checks on outputs when
# trying autocast. However, they still try an autocasted forward pass, so they still ensure
# autocast coverage suffices to prevent dtype errors in each model.
autocast_flaky_numerics = (
    "inception_v3",
    "resnet101",
    "resnet152",
    "wide_resnet101_2",
227
228
    "deeplabv3_resnet50",
    "deeplabv3_resnet101",
229
    "deeplabv3_mobilenet_v3_large",
230
231
    "fcn_resnet50",
    "fcn_resnet101",
232
    "lraspp_mobilenet_v3_large",
233
    "maskrcnn_resnet50_fpn",
234
    "maskrcnn_resnet50_fpn_v2",
235
    "keypointrcnn_resnet50_fpn",
236
237
)

238
239
240
# The tests for the following quantized models are flaky possibly due to inconsistent
# rounding errors in different platforms. For this reason the input/output consistency
# tests under test_quantized_classification_model will be skipped for the following models.
241
quantized_flaky_models = ("inception_v3", "resnet50")
242

243

244
245
246
# The following contains configuration parameters for all models which are used by
# the _test_*_model methods.
_model_params = {
247
248
249
250
251
252
253
    "inception_v3": {"input_shape": (1, 3, 299, 299)},
    "retinanet_resnet50_fpn": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
254
    },
255
256
257
258
259
260
261
    "retinanet_resnet50_fpn_v2": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
262
263
264
265
    "keypointrcnn_resnet50_fpn": {
        "num_classes": 2,
        "min_size": 224,
        "max_size": 224,
266
        "box_score_thresh": 0.17,
267
        "input_shape": (3, 224, 224),
268
    },
269
270
271
272
273
    "fasterrcnn_resnet50_fpn": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
274
    },
275
276
277
278
279
280
    "fasterrcnn_resnet50_fpn_v2": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
Hu Ye's avatar
Hu Ye committed
281
282
283
284
285
286
287
    "fcos_resnet50_fpn": {
        "num_classes": 2,
        "score_thresh": 0.05,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
288
289
290
291
292
    "maskrcnn_resnet50_fpn": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
293
    },
294
295
296
297
298
299
    "maskrcnn_resnet50_fpn_v2": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
300
301
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "box_score_thresh": 0.02076,
302
    },
303
304
305
306
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "box_score_thresh": 0.02076,
        "rpn_pre_nms_top_n_test": 1000,
        "rpn_post_nms_top_n_test": 1000,
307
    },
308
309
310
311
    "vit_h_14": {
        "image_size": 56,
        "input_shape": (1, 3, 56, 56),
    },
312
}
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
# speeding up slow models:
slow_models = [
    "convnext_base",
    "convnext_large",
    "resnext101_32x8d",
    "wide_resnet101_2",
    "efficientnet_b6",
    "efficientnet_b7",
    "efficientnet_v2_m",
    "efficientnet_v2_l",
    "regnet_y_16gf",
    "regnet_y_32gf",
    "regnet_y_128gf",
    "regnet_x_16gf",
    "regnet_x_32gf",
Joao Gomes's avatar
Joao Gomes committed
328
    "swin_t",
329
330
331
]
for m in slow_models:
    _model_params[m] = {"input_shape": (1, 3, 64, 64)}
332
333


334
335
336
337
338
339
# skip big models to reduce memory usage on CI test
skipped_big_models = {
    "vit_h_14",
    "regnet_y_128gf",
}

340
341
342
343
344
345
# The following contains configuration and expected values to be used tests that are model specific
_model_tests_values = {
    "retinanet_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [36, 46, 65, 78, 88, 89],
    },
346
347
348
349
    "retinanet_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [44, 74, 131, 170, 200, 203],
    },
350
351
352
353
354
355
356
357
    "keypointrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [48, 58, 77, 90, 100, 101],
    },
    "fasterrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [30, 40, 59, 72, 82, 83],
    },
358
359
360
361
    "fasterrcnn_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [50, 80, 137, 176, 206, 209],
    },
362
363
364
365
    "maskrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [42, 52, 71, 84, 94, 95],
    },
366
367
368
369
    "maskrcnn_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [66, 96, 153, 192, 222, 225],
    },
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "ssd300_vgg16": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [45, 51, 57, 63, 67, 71],
    },
    "ssdlite320_mobilenet_v3_large": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [96, 99, 138, 200, 239, 257, 266],
    },
Hu Ye's avatar
Hu Ye committed
386
387
388
389
    "fcos_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [54, 64, 83, 96, 106, 107],
    },
390
391
392
}


Anirudh's avatar
Anirudh committed
393
394
395
396
397
398
399
400
401
402
def _make_sliced_model(model, stop_layer):
    layers = OrderedDict()
    for name, layer in model.named_children():
        layers[name] = layer
        if name == stop_layer:
            break
    new_model = torch.nn.Sequential(layers)
    return new_model


403
404
@pytest.mark.parametrize("model_fn", [models.densenet121, models.densenet169, models.densenet201, models.densenet161])
def test_memory_efficient_densenet(model_fn):
Anirudh's avatar
Anirudh committed
405
406
407
    input_shape = (1, 3, 300, 300)
    x = torch.rand(input_shape)

408
    model1 = model_fn(num_classes=50, memory_efficient=True)
Anirudh's avatar
Anirudh committed
409
    params = model1.state_dict()
410
    num_params = sum(x.numel() for x in model1.parameters())
Anirudh's avatar
Anirudh committed
411
412
413
    model1.eval()
    out1 = model1(x)
    out1.sum().backward()
414
    num_grad = sum(x.grad.numel() for x in model1.parameters() if x.grad is not None)
Anirudh's avatar
Anirudh committed
415

416
    model2 = model_fn(num_classes=50, memory_efficient=False)
Anirudh's avatar
Anirudh committed
417
418
419
420
421
422
423
    model2.load_state_dict(params)
    model2.eval()
    out2 = model2(x)

    assert num_params == num_grad
    torch.testing.assert_close(out1, out2, rtol=0.0, atol=1e-5)

424
425
426
    _check_input_backprop(model1, x)
    _check_input_backprop(model2, x)

Anirudh's avatar
Anirudh committed
427

428
429
430
@pytest.mark.parametrize("dilate_layer_2", (True, False))
@pytest.mark.parametrize("dilate_layer_3", (True, False))
@pytest.mark.parametrize("dilate_layer_4", (True, False))
Anirudh's avatar
Anirudh committed
431
432
def test_resnet_dilation(dilate_layer_2, dilate_layer_3, dilate_layer_4):
    # TODO improve tests to also check that each layer has the right dimensionality
433
    model = models.resnet50(replace_stride_with_dilation=(dilate_layer_2, dilate_layer_3, dilate_layer_4))
Anirudh's avatar
Anirudh committed
434
435
436
437
438
439
440
441
442
    model = _make_sliced_model(model, stop_layer="layer4")
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    f = 2 ** sum((dilate_layer_2, dilate_layer_3, dilate_layer_4))
    assert out.shape == (1, 2048, 7 * f, 7 * f)


def test_mobilenet_v2_residual_setting():
443
    model = models.mobilenet_v2(inverted_residual_setting=[[1, 16, 1, 1], [6, 24, 2, 2]])
Anirudh's avatar
Anirudh committed
444
445
446
447
448
449
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    assert out.shape[-1] == 1000


450
451
452
@pytest.mark.parametrize("model_fn", [models.mobilenet_v2, models.mobilenet_v3_large, models.mobilenet_v3_small])
def test_mobilenet_norm_layer(model_fn):
    model = model_fn()
Anirudh's avatar
Anirudh committed
453
454
455
    assert any(isinstance(x, nn.BatchNorm2d) for x in model.modules())

    def get_gn(num_channels):
456
        return nn.GroupNorm(1, num_channels)
Anirudh's avatar
Anirudh committed
457

458
    model = model_fn(norm_layer=get_gn)
459
    assert not (any(isinstance(x, nn.BatchNorm2d) for x in model.modules()))
Anirudh's avatar
Anirudh committed
460
461
462
463
464
    assert any(isinstance(x, nn.GroupNorm) for x in model.modules())


def test_inception_v3_eval():
    kwargs = {}
465
466
467
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
468
469
470
471
472
473
474
    name = "inception_v3"
    model = models.Inception3(**kwargs)
    model.aux_logits = False
    model.AuxLogits = None
    model = model.eval()
    x = torch.rand(1, 3, 299, 299)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
475
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
476
477
478


def test_fasterrcnn_double():
479
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
480
481
482
483
484
485
486
487
488
489
490
    model.double()
    model.eval()
    input_shape = (3, 300, 300)
    x = torch.rand(input_shape, dtype=torch.float64)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x
    assert len(out) == 1
    assert "boxes" in out[0]
    assert "scores" in out[0]
    assert "labels" in out[0]
491
    _check_input_backprop(model, model_input)
Anirudh's avatar
Anirudh committed
492
493
494
495


def test_googlenet_eval():
    kwargs = {}
496
497
498
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
499
500
501
502
503
504
505
506
    name = "googlenet"
    model = models.GoogLeNet(**kwargs)
    model.aux_logits = False
    model.aux1 = None
    model.aux2 = None
    model = model.eval()
    x = torch.rand(1, 3, 224, 224)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
507
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
508
509
510
511
512
513
514
515
516
517


@needs_cuda
def test_fasterrcnn_switch_devices():
    def checkOut(out):
        assert len(out) == 1
        assert "boxes" in out[0]
        assert "scores" in out[0]
        assert "labels" in out[0]

518
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
519
520
521
    model.cuda()
    model.eval()
    input_shape = (3, 300, 300)
522
    x = torch.rand(input_shape, device="cuda")
Anirudh's avatar
Anirudh committed
523
524
525
526
527
528
529
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    checkOut(out)

    with torch.cuda.amp.autocast():
530
        out = model(model_input)
531

Anirudh's avatar
Anirudh committed
532
    checkOut(out)
533

534
535
    _check_input_backprop(model, model_input)

Anirudh's avatar
Anirudh committed
536
537
538
539
    # now switch to cpu and make sure it works
    model.cpu()
    x = x.cpu()
    out_cpu = model([x])
540

Anirudh's avatar
Anirudh committed
541
    checkOut(out_cpu)
542

543
544
    _check_input_backprop(model, [x])

545

Anirudh's avatar
Anirudh committed
546
def test_generalizedrcnn_transform_repr():
547

Anirudh's avatar
Anirudh committed
548
549
550
    min_size, max_size = 224, 299
    image_mean = [0.485, 0.456, 0.406]
    image_std = [0.229, 0.224, 0.225]
551

552
553
554
    t = models.detection.transform.GeneralizedRCNNTransform(
        min_size=min_size, max_size=max_size, image_mean=image_mean, image_std=image_std
    )
555

Anirudh's avatar
Anirudh committed
556
    # Check integrity of object __repr__ attribute
557
558
    expected_string = "GeneralizedRCNNTransform("
    _indent = "\n    "
559
560
    expected_string += f"{_indent}Normalize(mean={image_mean}, std={image_std})"
    expected_string += f"{_indent}Resize(min_size=({min_size},), max_size={max_size}, "
Anirudh's avatar
Anirudh committed
561
562
    expected_string += "mode='bilinear')\n)"
    assert t.__repr__() == expected_string
563
564


565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
test_vit_conv_stem_configs = [
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=64),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=512),
]


def vitc_b_16(**kwargs: Any):
    return models.VisionTransformer(
        image_size=224,
        patch_size=16,
        num_layers=12,
        num_heads=12,
        hidden_dim=768,
        mlp_dim=3072,
        conv_stem_configs=test_vit_conv_stem_configs,
        **kwargs,
    )


@pytest.mark.parametrize("model_fn", [vitc_b_16])
@pytest.mark.parametrize("dev", cpu_and_gpu())
def test_vitc_models(model_fn, dev):
    test_classification_model(model_fn, dev)


594
@pytest.mark.parametrize("model_fn", get_models_from_module(models))
595
@pytest.mark.parametrize("dev", cpu_and_gpu())
596
def test_classification_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
597
598
    set_rng_seed(0)
    defaults = {
599
600
        "num_classes": 50,
        "input_shape": (1, 3, 224, 224),
Anirudh's avatar
Anirudh committed
601
    }
602
    model_name = model_fn.__name__
603
604
    if dev == "cuda" and SKIP_BIG_MODEL and model_name in skipped_big_models:
        pytest.skip("Skipped to reduce memory usage. Set env var SKIP_BIG_MODEL=0 to enable test for this model")
Anirudh's avatar
Anirudh committed
605
    kwargs = {**defaults, **_model_params.get(model_name, {})}
606
    num_classes = kwargs.get("num_classes")
607
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
608

609
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
610
611
612
613
614
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
    _assert_expected(out.cpu(), model_name, prec=0.1)
615
    assert out.shape[-1] == num_classes
616
617
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
618

619
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
620
621
622
623
624
625
        with torch.cuda.amp.autocast():
            out = model(x)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == 50
626

627
628
    _check_input_backprop(model, x)

629

630
@pytest.mark.parametrize("model_fn", get_models_from_module(models.segmentation))
631
@pytest.mark.parametrize("dev", cpu_and_gpu())
632
def test_segmentation_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
633
634
    set_rng_seed(0)
    defaults = {
635
        "num_classes": 10,
636
        "weights_backbone": None,
637
        "input_shape": (1, 3, 32, 32),
Anirudh's avatar
Anirudh committed
638
    }
639
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
640
    kwargs = {**defaults, **_model_params.get(model_name, {})}
641
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
642

643
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
644
645
646
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
647
    out = model(x)
Anirudh's avatar
Anirudh committed
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666

    def check_out(out):
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(out.cpu(), model_name, prec=prec)
        except AssertionError:
            # Unfortunately some segmentation models are flaky with autocast
            # so instead of validating the probability scores, check that the class
            # predictions match.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
            torch.testing.assert_close(out.argmax(dim=1), expected.argmax(dim=1), rtol=prec, atol=prec)
            return False  # Partial validation performed

        return True  # Full validation performed

667
    full_validation = check_out(out["out"])
Anirudh's avatar
Anirudh committed
668

669
670
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
671

672
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
673
        with torch.cuda.amp.autocast():
674
            out = model(x)
Anirudh's avatar
Anirudh committed
675
676
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
677
                full_validation &= check_out(out["out"])
Anirudh's avatar
Anirudh committed
678
679

    if not full_validation:
680
        msg = (
681
            f"The output of {test_segmentation_model.__name__} could only be partially validated. "
682
683
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
684
            "significant changes to the codebase."
685
        )
Anirudh's avatar
Anirudh committed
686
687
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
688

689
690
    _check_input_backprop(model, x)

691

692
@pytest.mark.parametrize("model_fn", get_models_from_module(models.detection))
693
@pytest.mark.parametrize("dev", cpu_and_gpu())
694
def test_detection_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
695
696
    set_rng_seed(0)
    defaults = {
697
        "num_classes": 50,
698
        "weights_backbone": None,
699
        "input_shape": (3, 300, 300),
Anirudh's avatar
Anirudh committed
700
    }
701
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
702
    kwargs = {**defaults, **_model_params.get(model_name, {})}
703
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
704

705
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
706
707
708
709
710
711
712
713
714
715
716
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    def check_out(out):
        assert len(out) == 1

        def compact(tensor):
717
            tensor = tensor.cpu()
Anirudh's avatar
Anirudh committed
718
719
720
721
722
723
724
725
726
727
728
729
730
731
            size = tensor.size()
            elements_per_sample = functools.reduce(operator.mul, size[1:], 1)
            if elements_per_sample > 30:
                return compute_mean_std(tensor)
            else:
                return subsample_tensor(tensor)

        def subsample_tensor(tensor):
            num_elems = tensor.size(0)
            num_samples = 20
            if num_elems <= num_samples:
                return tensor

            ith_index = num_elems // num_samples
732
            return tensor[ith_index - 1 :: ith_index]
Anirudh's avatar
Anirudh committed
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754

        def compute_mean_std(tensor):
            # can't compute mean of integral tensor
            tensor = tensor.to(torch.double)
            mean = torch.mean(tensor)
            std = torch.std(tensor)
            return {"mean": mean, "std": std}

        output = map_nested_tensor_object(out, tensor_map_fn=compact)
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(output, model_name, prec=prec)
        except AssertionError:
            # Unfortunately detection models are flaky due to the unstable sort
            # in NMS. If matching across all outputs fails, use the same approach
            # as in NMSTester.test_nms_cuda to see if this is caused by duplicate
            # scores.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
755
756
757
            torch.testing.assert_close(
                output[0]["scores"], expected[0]["scores"], rtol=prec, atol=prec, check_device=False, check_dtype=False
            )
Anirudh's avatar
Anirudh committed
758
759
760
761
762
763
764
765
766
767

            # Note: Fmassa proposed turning off NMS by adapting the threshold
            # and then using the Hungarian algorithm as in DETR to find the
            # best match between output and expected boxes and eliminate some
            # of the flakiness. Worth exploring.
            return False  # Partial validation performed

        return True  # Full validation performed

    full_validation = check_out(out)
768
    _check_jit_scriptable(model, ([x],), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
Anirudh's avatar
Anirudh committed
769

770
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
771
772
773
774
775
776
777
        with torch.cuda.amp.autocast():
            out = model(model_input)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                full_validation &= check_out(out)

    if not full_validation:
778
        msg = (
779
            f"The output of {test_detection_model.__name__} could only be partially validated. "
780
781
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
782
            "significant changes to the codebase."
783
        )
Anirudh's avatar
Anirudh committed
784
785
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
786

787
788
    _check_input_backprop(model, model_input)

789

790
791
@pytest.mark.parametrize("model_fn", get_models_from_module(models.detection))
def test_detection_model_validation(model_fn):
Anirudh's avatar
Anirudh committed
792
    set_rng_seed(0)
793
    model = model_fn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
794
795
796
797
    input_shape = (3, 300, 300)
    x = [torch.rand(input_shape)]

    # validate that targets are present in training
798
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
799
800
801
        model(x)

    # validate type
802
    targets = [{"boxes": 0.0}]
803
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
804
805
806
807
        model(x, targets=targets)

    # validate boxes shape
    for boxes in (torch.rand((4,)), torch.rand((1, 5))):
808
        targets = [{"boxes": boxes}]
809
        with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
810
811
812
813
            model(x, targets=targets)

    # validate that no degenerate boxes are present
    boxes = torch.tensor([[1, 3, 1, 4], [2, 4, 3, 4]])
814
    targets = [{"boxes": boxes}]
815
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
816
        model(x, targets=targets)
817

818

819
@pytest.mark.parametrize("model_fn", get_models_from_module(models.video))
820
@pytest.mark.parametrize("dev", cpu_and_gpu())
821
def test_video_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
822
823
824
    # the default input shape is
    # bs * num_channels * clip_len * h *w
    input_shape = (1, 3, 4, 112, 112)
825
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
826
    # test both basicblock and Bottleneck
827
    model = model_fn(num_classes=50)
Anirudh's avatar
Anirudh committed
828
829
830
831
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
832
833
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
834
835
    assert out.shape[-1] == 50

836
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
837
838
839
        with torch.cuda.amp.autocast():
            out = model(x)
            assert out.shape[-1] == 50
840

841
842
    _check_input_backprop(model, x)

843

844
845
846
847
848
849
850
@pytest.mark.skipif(
    not (
        "fbgemm" in torch.backends.quantized.supported_engines
        and "qnnpack" in torch.backends.quantized.supported_engines
    ),
    reason="This Pytorch Build has not been built with fbgemm and qnnpack",
)
851
852
@pytest.mark.parametrize("model_fn", get_models_from_module(models.quantization))
def test_quantized_classification_model(model_fn):
853
    set_rng_seed(0)
854
    defaults = {
855
        "num_classes": 5,
856
857
        "input_shape": (1, 3, 224, 224),
        "quantize": True,
858
    }
859
    model_name = model_fn.__name__
860
    kwargs = {**defaults, **_model_params.get(model_name, {})}
861
    input_shape = kwargs.pop("input_shape")
862
863

    # First check if quantize=True provides models that can run with input data
864
    model = model_fn(**kwargs)
865
    model.eval()
866
    x = torch.rand(input_shape)
867
868
869
870
871
    out = model(x)

    if model_name not in quantized_flaky_models:
        _assert_expected(out, model_name + "_quantized", prec=0.1)
        assert out.shape[-1] == 5
872
873
874
875
876
877
878
        _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
        _check_fx_compatible(model, x, eager_out=out)
    else:
        try:
            torch.jit.script(model)
        except Exception as e:
            raise AssertionError("model cannot be scripted.") from e
879

880
    kwargs["quantize"] = False
881
    for eval_mode in [True, False]:
882
        model = model_fn(**kwargs)
883
884
        if eval_mode:
            model.eval()
885
            model.qconfig = torch.ao.quantization.default_qconfig
886
887
        else:
            model.train()
888
            model.qconfig = torch.ao.quantization.default_qat_qconfig
889

890
        model.fuse_model(is_qat=not eval_mode)
891
        if eval_mode:
892
            torch.ao.quantization.prepare(model, inplace=True)
893
        else:
894
            torch.ao.quantization.prepare_qat(model, inplace=True)
895
896
            model.eval()

897
        torch.ao.quantization.convert(model, inplace=True)
898
899


900
@pytest.mark.parametrize("model_fn", get_models_from_module(models.detection))
901
def test_detection_model_trainable_backbone_layers(model_fn, disable_weight_loading):
902
    model_name = model_fn.__name__
903
904
905
    max_trainable = _model_tests_values[model_name]["max_trainable"]
    n_trainable_params = []
    for trainable_layers in range(0, max_trainable + 1):
906
        model = model_fn(weights=None, weights_backbone="DEFAULT", trainable_backbone_layers=trainable_layers)
907
908
909
910
911

        n_trainable_params.append(len([p for p in model.parameters() if p.requires_grad]))
    assert n_trainable_params == _model_tests_values[model_name]["n_trn_params_per_layer"]


912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
@needs_cuda
@pytest.mark.parametrize("model_builder", (models.optical_flow.raft_large, models.optical_flow.raft_small))
@pytest.mark.parametrize("scripted", (False, True))
def test_raft(model_builder, scripted):

    torch.manual_seed(0)

    # We need very small images, otherwise the pickle size would exceed the 50KB
    # As a resut we need to override the correlation pyramid to not downsample
    # too much, otherwise we would get nan values (effective H and W would be
    # reduced to 1)
    corr_block = models.optical_flow.raft.CorrBlock(num_levels=2, radius=2)

    model = model_builder(corr_block=corr_block).eval().to("cuda")
    if scripted:
        model = torch.jit.script(model)

    bs = 1
    img1 = torch.rand(bs, 3, 80, 72).cuda()
    img2 = torch.rand(bs, 3, 80, 72).cuda()

    preds = model(img1, img2)
    flow_pred = preds[-1]
    # Tolerance is fairly high, but there are 2 * H * W outputs to check
    # The .pkl were generated on the AWS cluter, on the CI it looks like the resuts are slightly different
    _assert_expected(flow_pred, name=model_builder.__name__, atol=1e-2, rtol=1)


940
if __name__ == "__main__":
941
    pytest.main([__file__])