test_models.py 37.8 KB
Newer Older
1
import contextlib
2
3
4
import functools
import operator
import os
5
import pkgutil
6
import platform
7
import sys
8
import warnings
9
from collections import OrderedDict
10
from tempfile import TemporaryDirectory
11
from typing import Any
12
13

import pytest
14
import torch
15
import torch.fx
16
import torch.nn as nn
17
from _utils_internal import get_relative_path
18
from common_utils import cpu_and_gpu, freeze_rng_state, map_nested_tensor_object, needs_cuda, set_rng_seed
19
20
from PIL import Image
from torchvision import models, transforms
21
from torchvision.models import get_model_builder, list_models
22

23

24
ACCEPT = os.getenv("EXPECTTEST_ACCEPT", "0") == "1"
25
SKIP_BIG_MODEL = os.getenv("SKIP_BIG_MODEL", "1") == "1"
26
27


28
29
30
31
32
33
34
35
@contextlib.contextmanager
def disable_tf32():
    previous = torch.backends.cudnn.allow_tf32
    torch.backends.cudnn.allow_tf32 = False
    yield
    torch.backends.cudnn.allow_tf32 = previous


36
def list_model_fns(module):
37
    return [get_model_builder(name) for name in list_models(module)]
38
39


40
def _get_image(input_shape, real_image, device, dtype=None):
41
42
43
44
45
46
47
48
49
50
    """This routine loads a real or random image based on `real_image` argument.
    Currently, the real image is utilized for the following list of models:
    - `retinanet_resnet50_fpn`,
    - `retinanet_resnet50_fpn_v2`,
    - `keypointrcnn_resnet50_fpn`,
    - `fasterrcnn_resnet50_fpn`,
    - `fasterrcnn_resnet50_fpn_v2`,
    - `fcos_resnet50_fpn`,
    - `maskrcnn_resnet50_fpn`,
    - `maskrcnn_resnet50_fpn_v2`,
Aidyn-A's avatar
Aidyn-A committed
51
    in `test_classification_model` and `test_detection_model`.
52
53
54
    To do so, a keyword argument `real_image` was added to the abovelisted models in `_model_params`
    """
    if real_image:
55
56
57
        # TODO: Maybe unify file discovery logic with test_image.py
        GRACE_HOPPER = os.path.join(
            os.path.dirname(os.path.abspath(__file__)), "assets", "encode_jpeg", "grace_hopper_517x606.jpg"
58
        )
59

60
61
62
63
64
65
66
67
68
69
70
        img = Image.open(GRACE_HOPPER)

        original_width, original_height = img.size

        # make the image square
        img = img.crop((0, 0, original_width, original_width))
        img = img.resize(input_shape[1:3])

        convert_tensor = transforms.ToTensor()
        image = convert_tensor(img)
        assert tuple(image.size()) == input_shape
71
        return image.to(device=device, dtype=dtype)
72
73

    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
74
    return torch.rand(input_shape).to(device=device, dtype=dtype)
75
76


77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
@pytest.fixture
def disable_weight_loading(mocker):
    """When testing models, the two slowest operations are the downloading of the weights to a file and loading them
    into the model. Unless, you want to test against specific weights, these steps can be disabled without any
    drawbacks.

    Including this fixture into the signature of your test, i.e. `test_foo(disable_weight_loading)`, will recurse
    through all models in `torchvision.models` and will patch all occurrences of the function
    `download_state_dict_from_url` as well as the method `load_state_dict` on all subclasses of `nn.Module` to be
    no-ops.

    .. warning:

        Loaded models are still executable as normal, but will always have random weights. Make sure to not use this
        fixture if you want to compare the model output against reference values.

    """
    starting_point = models
    function_name = "load_state_dict_from_url"
    method_name = "load_state_dict"

    module_names = {info.name for info in pkgutil.walk_packages(starting_point.__path__, f"{starting_point.__name__}.")}
    targets = {f"torchvision._internally_replaced_utils.{function_name}", f"torch.nn.Module.{method_name}"}
    for name in module_names:
        module = sys.modules.get(name)
        if not module:
            continue

        if function_name in module.__dict__:
            targets.add(f"{module.__name__}.{function_name}")

        targets.update(
            {
                f"{module.__name__}.{obj.__name__}.{method_name}"
                for obj in module.__dict__.values()
                if isinstance(obj, type) and issubclass(obj, nn.Module) and method_name in obj.__dict__
            }
        )

    for target in targets:
        # See https://github.com/pytorch/vision/pull/4867#discussion_r743677802 for details
        with contextlib.suppress(AttributeError):
            mocker.patch(target)


122
123
124
125
126
127
def _get_expected_file(name=None):
    # Determine expected file based on environment
    expected_file_base = get_relative_path(os.path.realpath(__file__), "expect")

    # Note: for legacy reasons, the reference file names all had "ModelTest.test_" in their names
    # We hardcode it here to avoid having to re-generate the reference files
128
    expected_file = os.path.join(expected_file_base, "ModelTester.test_" + name)
129
130
131
132
133
134
135
136
137
138
139
140
    expected_file += "_expect.pkl"

    if not ACCEPT and not os.path.exists(expected_file):
        raise RuntimeError(
            f"No expect file exists for {os.path.basename(expected_file)} in {expected_file}; "
            "to accept the current output, re-run the failing test after setting the EXPECTTEST_ACCEPT "
            "env variable. For example: EXPECTTEST_ACCEPT=1 pytest test/test_models.py -k alexnet"
        )

    return expected_file


141
def _assert_expected(output, name, prec=None, atol=None, rtol=None):
142
143
144
145
146
147
148
149
150
151
152
    """Test that a python value matches the recorded contents of a file
    based on a "check" name. The value must be
    pickable with `torch.save`. This file
    is placed in the 'expect' directory in the same directory
    as the test script. You can automatically update the recorded test
    output using an EXPECTTEST_ACCEPT=1 env variable.
    """
    expected_file = _get_expected_file(name)

    if ACCEPT:
        filename = {os.path.basename(expected_file)}
153
        print(f"Accepting updated output for {filename}:\n\n{output}")
154
155
156
157
        torch.save(output, expected_file)
        MAX_PICKLE_SIZE = 50 * 1000  # 50 KB
        binary_size = os.path.getsize(expected_file)
        if binary_size > MAX_PICKLE_SIZE:
158
            raise RuntimeError(f"The output for {filename}, is larger than 50kb - got {binary_size}kb")
159
160
    else:
        expected = torch.load(expected_file)
161
162
        rtol = rtol or prec  # keeping prec param for legacy reason, but could be removed ideally
        atol = atol or prec
163
        torch.testing.assert_close(output, expected, rtol=rtol, atol=atol, check_dtype=False, check_device=False)
164
165


166
def _check_jit_scriptable(nn_module, args, unwrapper=None, eager_out=None):
167
168
    """Check that a nn.Module's results in TorchScript match eager and that it can be exported"""

169
170
171
172
173
174
175
    def get_export_import_copy(m):
        """Save and load a TorchScript model"""
        with TemporaryDirectory() as dir:
            path = os.path.join(dir, "script.pt")
            m.save(path)
            imported = torch.jit.load(path)
        return imported
176
177

    sm = torch.jit.script(nn_module)
Aidyn-A's avatar
Aidyn-A committed
178
    sm.eval()
179

180
181
    if eager_out is None:
        with torch.no_grad(), freeze_rng_state():
182
            eager_out = nn_module(*args)
183

184
    with torch.no_grad(), freeze_rng_state():
185
186
187
188
189
        script_out = sm(*args)
        if unwrapper:
            script_out = unwrapper(script_out)

    torch.testing.assert_close(eager_out, script_out, atol=1e-4, rtol=1e-4)
190
191
192
193
194
195
196
197

    m_import = get_export_import_copy(sm)
    with torch.no_grad(), freeze_rng_state():
        imported_script_out = m_import(*args)
        if unwrapper:
            imported_script_out = unwrapper(imported_script_out)

    torch.testing.assert_close(script_out, imported_script_out, atol=3e-4, rtol=3e-4)
198
199


200
def _check_fx_compatible(model, inputs, eager_out=None):
201
    model_fx = torch.fx.symbolic_trace(model)
202
203
    if eager_out is None:
        eager_out = model(inputs)
Aidyn-A's avatar
Aidyn-A committed
204
205
    with torch.no_grad(), freeze_rng_state():
        fx_out = model_fx(inputs)
206
    torch.testing.assert_close(eager_out, fx_out)
207
208


209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
def _check_input_backprop(model, inputs):
    if isinstance(inputs, list):
        requires_grad = list()
        for inp in inputs:
            requires_grad.append(inp.requires_grad)
            inp.requires_grad_(True)
    else:
        requires_grad = inputs.requires_grad
        inputs.requires_grad_(True)

    out = model(inputs)

    if isinstance(out, dict):
        out["out"].sum().backward()
    else:
        if isinstance(out[0], dict):
            out[0]["scores"].sum().backward()
        else:
            out[0].sum().backward()

    if isinstance(inputs, list):
        for i, inp in enumerate(inputs):
            assert inputs[i].grad is not None
            inp.requires_grad_(requires_grad[i])
    else:
        assert inputs.grad is not None
        inputs.requires_grad_(requires_grad)


238
239
240
# If 'unwrapper' is provided it will be called with the script model outputs
# before they are compared to the eager model outputs. This is useful if the
# model outputs are different between TorchScript / Eager mode
241
script_model_unwrapper = {
242
243
    "googlenet": lambda x: x.logits,
    "inception_v3": lambda x: x.logits,
244
    "fasterrcnn_resnet50_fpn": lambda x: x[1],
245
    "fasterrcnn_resnet50_fpn_v2": lambda x: x[1],
246
    "fasterrcnn_mobilenet_v3_large_fpn": lambda x: x[1],
247
    "fasterrcnn_mobilenet_v3_large_320_fpn": lambda x: x[1],
248
    "maskrcnn_resnet50_fpn": lambda x: x[1],
249
    "maskrcnn_resnet50_fpn_v2": lambda x: x[1],
250
251
    "keypointrcnn_resnet50_fpn": lambda x: x[1],
    "retinanet_resnet50_fpn": lambda x: x[1],
252
    "retinanet_resnet50_fpn_v2": lambda x: x[1],
253
    "ssd300_vgg16": lambda x: x[1],
254
    "ssdlite320_mobilenet_v3_large": lambda x: x[1],
Hu Ye's avatar
Hu Ye committed
255
    "fcos_resnet50_fpn": lambda x: x[1],
256
}
257
258


259
260
261
262
263
264
265
266
267
268
269
270
271
272
# The following models exhibit flaky numerics under autocast in _test_*_model harnesses.
# This may be caused by the harness environment (e.g. num classes, input initialization
# via torch.rand), and does not prove autocast is unsuitable when training with real data
# (autocast has been used successfully with real data for some of these models).
# TODO:  investigate why autocast numerics are flaky in the harnesses.
#
# For the following models, _test_*_model harnesses skip numerical checks on outputs when
# trying autocast. However, they still try an autocasted forward pass, so they still ensure
# autocast coverage suffices to prevent dtype errors in each model.
autocast_flaky_numerics = (
    "inception_v3",
    "resnet101",
    "resnet152",
    "wide_resnet101_2",
273
274
    "deeplabv3_resnet50",
    "deeplabv3_resnet101",
275
    "deeplabv3_mobilenet_v3_large",
276
277
    "fcn_resnet50",
    "fcn_resnet101",
278
    "lraspp_mobilenet_v3_large",
279
    "maskrcnn_resnet50_fpn",
280
    "maskrcnn_resnet50_fpn_v2",
281
    "keypointrcnn_resnet50_fpn",
282
283
)

284
285
286
# The tests for the following quantized models are flaky possibly due to inconsistent
# rounding errors in different platforms. For this reason the input/output consistency
# tests under test_quantized_classification_model will be skipped for the following models.
287
quantized_flaky_models = ("inception_v3", "resnet50")
288

289
290
291
292
293
# The tests for the following detection models are flaky.
# We run those tests on float64 to avoid floating point errors.
# FIXME: we shouldn't have to do that :'/
detection_flaky_models = ("keypointrcnn_resnet50_fpn", "maskrcnn_resnet50_fpn", "maskrcnn_resnet50_fpn_v2")

294

295
296
297
# The following contains configuration parameters for all models which are used by
# the _test_*_model methods.
_model_params = {
298
    "inception_v3": {"input_shape": (1, 3, 299, 299), "init_weights": True},
299
300
301
302
303
304
    "retinanet_resnet50_fpn": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
305
        "real_image": True,
306
    },
307
308
309
310
311
312
    "retinanet_resnet50_fpn_v2": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
313
        "real_image": True,
314
    },
315
316
317
318
    "keypointrcnn_resnet50_fpn": {
        "num_classes": 2,
        "min_size": 224,
        "max_size": 224,
319
        "box_score_thresh": 0.17,
320
        "input_shape": (3, 224, 224),
321
        "real_image": True,
322
    },
323
324
325
326
327
    "fasterrcnn_resnet50_fpn": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
328
        "real_image": True,
329
    },
330
331
332
333
334
    "fasterrcnn_resnet50_fpn_v2": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
335
        "real_image": True,
336
    },
Hu Ye's avatar
Hu Ye committed
337
338
339
340
341
342
    "fcos_resnet50_fpn": {
        "num_classes": 2,
        "score_thresh": 0.05,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
343
        "real_image": True,
Hu Ye's avatar
Hu Ye committed
344
    },
345
346
347
348
349
    "maskrcnn_resnet50_fpn": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
350
        "real_image": True,
351
    },
352
353
354
355
356
    "maskrcnn_resnet50_fpn_v2": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
357
        "real_image": True,
358
    },
359
360
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "box_score_thresh": 0.02076,
361
    },
362
363
364
365
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "box_score_thresh": 0.02076,
        "rpn_pre_nms_top_n_test": 1000,
        "rpn_post_nms_top_n_test": 1000,
366
    },
367
368
369
370
    "vit_h_14": {
        "image_size": 56,
        "input_shape": (1, 3, 56, 56),
    },
371
372
373
    "mvit_v1_b": {
        "input_shape": (1, 3, 16, 224, 224),
    },
374
375
376
    "mvit_v2_s": {
        "input_shape": (1, 3, 16, 224, 224),
    },
377
378
379
    "s3d": {
        "input_shape": (1, 3, 16, 224, 224),
    },
380
    "googlenet": {"init_weights": True},
381
}
382
383
384
385
386
# speeding up slow models:
slow_models = [
    "convnext_base",
    "convnext_large",
    "resnext101_32x8d",
387
    "resnext101_64x4d",
388
389
390
391
392
393
394
395
396
397
    "wide_resnet101_2",
    "efficientnet_b6",
    "efficientnet_b7",
    "efficientnet_v2_m",
    "efficientnet_v2_l",
    "regnet_y_16gf",
    "regnet_y_32gf",
    "regnet_y_128gf",
    "regnet_x_16gf",
    "regnet_x_32gf",
Joao Gomes's avatar
Joao Gomes committed
398
    "swin_t",
399
400
    "swin_s",
    "swin_b",
Local State's avatar
Local State committed
401
402
403
    "swin_v2_t",
    "swin_v2_s",
    "swin_v2_b",
404
405
406
]
for m in slow_models:
    _model_params[m] = {"input_shape": (1, 3, 64, 64)}
407
408


409
# skip big models to reduce memory usage on CI test. We can exclude combinations of (platform-system, device).
410
skipped_big_models = {
411
412
    "vit_h_14": {("Windows", "cpu"), ("Windows", "cuda")},
    "regnet_y_128gf": {("Windows", "cpu"), ("Windows", "cuda")},
413
414
    "mvit_v1_b": {("Windows", "cuda"), ("Linux", "cuda")},
    "mvit_v2_s": {("Windows", "cuda"), ("Linux", "cuda")},
415
416
}

417
418
419
420
421
422
423
424
425
426
427

def is_skippable(model_name, device):
    if model_name not in skipped_big_models:
        return False

    platform_system = platform.system()
    device_name = str(device).split(":")[0]

    return (platform_system, device_name) in skipped_big_models[model_name]


428
429
430
431
432
433
# The following contains configuration and expected values to be used tests that are model specific
_model_tests_values = {
    "retinanet_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [36, 46, 65, 78, 88, 89],
    },
434
435
436
437
    "retinanet_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [44, 74, 131, 170, 200, 203],
    },
438
439
440
441
442
443
444
445
    "keypointrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [48, 58, 77, 90, 100, 101],
    },
    "fasterrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [30, 40, 59, 72, 82, 83],
    },
446
447
448
449
    "fasterrcnn_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [50, 80, 137, 176, 206, 209],
    },
450
451
452
453
    "maskrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [42, 52, 71, 84, 94, 95],
    },
454
455
456
457
    "maskrcnn_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [66, 96, 153, 192, 222, 225],
    },
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "ssd300_vgg16": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [45, 51, 57, 63, 67, 71],
    },
    "ssdlite320_mobilenet_v3_large": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [96, 99, 138, 200, 239, 257, 266],
    },
Hu Ye's avatar
Hu Ye committed
474
475
476
477
    "fcos_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [54, 64, 83, 96, 106, 107],
    },
478
479
480
}


Anirudh's avatar
Anirudh committed
481
482
483
484
485
486
487
488
489
490
def _make_sliced_model(model, stop_layer):
    layers = OrderedDict()
    for name, layer in model.named_children():
        layers[name] = layer
        if name == stop_layer:
            break
    new_model = torch.nn.Sequential(layers)
    return new_model


491
492
@pytest.mark.parametrize("model_fn", [models.densenet121, models.densenet169, models.densenet201, models.densenet161])
def test_memory_efficient_densenet(model_fn):
Anirudh's avatar
Anirudh committed
493
494
495
    input_shape = (1, 3, 300, 300)
    x = torch.rand(input_shape)

496
    model1 = model_fn(num_classes=50, memory_efficient=True)
Anirudh's avatar
Anirudh committed
497
    params = model1.state_dict()
498
    num_params = sum(x.numel() for x in model1.parameters())
Anirudh's avatar
Anirudh committed
499
500
501
    model1.eval()
    out1 = model1(x)
    out1.sum().backward()
502
    num_grad = sum(x.grad.numel() for x in model1.parameters() if x.grad is not None)
Anirudh's avatar
Anirudh committed
503

504
    model2 = model_fn(num_classes=50, memory_efficient=False)
Anirudh's avatar
Anirudh committed
505
506
507
508
509
510
511
    model2.load_state_dict(params)
    model2.eval()
    out2 = model2(x)

    assert num_params == num_grad
    torch.testing.assert_close(out1, out2, rtol=0.0, atol=1e-5)

512
513
514
    _check_input_backprop(model1, x)
    _check_input_backprop(model2, x)

Anirudh's avatar
Anirudh committed
515

516
517
518
@pytest.mark.parametrize("dilate_layer_2", (True, False))
@pytest.mark.parametrize("dilate_layer_3", (True, False))
@pytest.mark.parametrize("dilate_layer_4", (True, False))
Anirudh's avatar
Anirudh committed
519
520
def test_resnet_dilation(dilate_layer_2, dilate_layer_3, dilate_layer_4):
    # TODO improve tests to also check that each layer has the right dimensionality
521
    model = models.resnet50(replace_stride_with_dilation=(dilate_layer_2, dilate_layer_3, dilate_layer_4))
Anirudh's avatar
Anirudh committed
522
523
524
525
526
527
528
529
530
    model = _make_sliced_model(model, stop_layer="layer4")
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    f = 2 ** sum((dilate_layer_2, dilate_layer_3, dilate_layer_4))
    assert out.shape == (1, 2048, 7 * f, 7 * f)


def test_mobilenet_v2_residual_setting():
531
    model = models.mobilenet_v2(inverted_residual_setting=[[1, 16, 1, 1], [6, 24, 2, 2]])
Anirudh's avatar
Anirudh committed
532
533
534
535
536
537
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    assert out.shape[-1] == 1000


538
539
540
@pytest.mark.parametrize("model_fn", [models.mobilenet_v2, models.mobilenet_v3_large, models.mobilenet_v3_small])
def test_mobilenet_norm_layer(model_fn):
    model = model_fn()
Anirudh's avatar
Anirudh committed
541
542
543
    assert any(isinstance(x, nn.BatchNorm2d) for x in model.modules())

    def get_gn(num_channels):
544
        return nn.GroupNorm(1, num_channels)
Anirudh's avatar
Anirudh committed
545

546
    model = model_fn(norm_layer=get_gn)
547
    assert not (any(isinstance(x, nn.BatchNorm2d) for x in model.modules()))
Anirudh's avatar
Anirudh committed
548
549
550
551
552
    assert any(isinstance(x, nn.GroupNorm) for x in model.modules())


def test_inception_v3_eval():
    kwargs = {}
553
554
555
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
556
557
558
559
560
561
562
    name = "inception_v3"
    model = models.Inception3(**kwargs)
    model.aux_logits = False
    model.AuxLogits = None
    model = model.eval()
    x = torch.rand(1, 3, 299, 299)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
563
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
564
565
566


def test_fasterrcnn_double():
567
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
568
569
570
571
572
573
574
575
576
577
578
    model.double()
    model.eval()
    input_shape = (3, 300, 300)
    x = torch.rand(input_shape, dtype=torch.float64)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x
    assert len(out) == 1
    assert "boxes" in out[0]
    assert "scores" in out[0]
    assert "labels" in out[0]
579
    _check_input_backprop(model, model_input)
Anirudh's avatar
Anirudh committed
580
581
582
583


def test_googlenet_eval():
    kwargs = {}
584
585
586
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
587
588
589
590
591
592
593
594
    name = "googlenet"
    model = models.GoogLeNet(**kwargs)
    model.aux_logits = False
    model.aux1 = None
    model.aux2 = None
    model = model.eval()
    x = torch.rand(1, 3, 224, 224)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
595
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
596
597
598
599
600
601
602
603
604
605


@needs_cuda
def test_fasterrcnn_switch_devices():
    def checkOut(out):
        assert len(out) == 1
        assert "boxes" in out[0]
        assert "scores" in out[0]
        assert "labels" in out[0]

606
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
607
608
609
    model.cuda()
    model.eval()
    input_shape = (3, 300, 300)
610
    x = torch.rand(input_shape, device="cuda")
Anirudh's avatar
Anirudh committed
611
612
613
614
615
616
617
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    checkOut(out)

    with torch.cuda.amp.autocast():
618
        out = model(model_input)
619

Anirudh's avatar
Anirudh committed
620
    checkOut(out)
621

622
623
    _check_input_backprop(model, model_input)

Anirudh's avatar
Anirudh committed
624
625
626
627
    # now switch to cpu and make sure it works
    model.cpu()
    x = x.cpu()
    out_cpu = model([x])
628

Anirudh's avatar
Anirudh committed
629
    checkOut(out_cpu)
630

631
632
    _check_input_backprop(model, [x])

633

Anirudh's avatar
Anirudh committed
634
def test_generalizedrcnn_transform_repr():
635

Anirudh's avatar
Anirudh committed
636
637
638
    min_size, max_size = 224, 299
    image_mean = [0.485, 0.456, 0.406]
    image_std = [0.229, 0.224, 0.225]
639

640
641
642
    t = models.detection.transform.GeneralizedRCNNTransform(
        min_size=min_size, max_size=max_size, image_mean=image_mean, image_std=image_std
    )
643

Anirudh's avatar
Anirudh committed
644
    # Check integrity of object __repr__ attribute
645
646
    expected_string = "GeneralizedRCNNTransform("
    _indent = "\n    "
647
648
    expected_string += f"{_indent}Normalize(mean={image_mean}, std={image_std})"
    expected_string += f"{_indent}Resize(min_size=({min_size},), max_size={max_size}, "
Anirudh's avatar
Anirudh committed
649
650
    expected_string += "mode='bilinear')\n)"
    assert t.__repr__() == expected_string
651
652


653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
test_vit_conv_stem_configs = [
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=64),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=512),
]


def vitc_b_16(**kwargs: Any):
    return models.VisionTransformer(
        image_size=224,
        patch_size=16,
        num_layers=12,
        num_heads=12,
        hidden_dim=768,
        mlp_dim=3072,
        conv_stem_configs=test_vit_conv_stem_configs,
        **kwargs,
    )


@pytest.mark.parametrize("model_fn", [vitc_b_16])
@pytest.mark.parametrize("dev", cpu_and_gpu())
def test_vitc_models(model_fn, dev):
    test_classification_model(model_fn, dev)


682
@disable_tf32()  # see: https://github.com/pytorch/vision/issues/7618
683
@pytest.mark.parametrize("model_fn", list_model_fns(models))
684
@pytest.mark.parametrize("dev", cpu_and_gpu())
685
def test_classification_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
686
687
    set_rng_seed(0)
    defaults = {
688
689
        "num_classes": 50,
        "input_shape": (1, 3, 224, 224),
Anirudh's avatar
Anirudh committed
690
    }
691
    model_name = model_fn.__name__
692
    if SKIP_BIG_MODEL and is_skippable(model_name, dev):
693
        pytest.skip("Skipped to reduce memory usage. Set env var SKIP_BIG_MODEL=0 to enable test for this model")
Anirudh's avatar
Anirudh committed
694
    kwargs = {**defaults, **_model_params.get(model_name, {})}
695
    num_classes = kwargs.get("num_classes")
696
    input_shape = kwargs.pop("input_shape")
697
    real_image = kwargs.pop("real_image", False)
Anirudh's avatar
Anirudh committed
698

699
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
700
    model.eval().to(device=dev)
701
    x = _get_image(input_shape=input_shape, real_image=real_image, device=dev)
Anirudh's avatar
Anirudh committed
702
    out = model(x)
703
704
705
706
707
708
709
710
    # FIXME: this if/else is nasty and only here to please our CI prior to the
    # release. We rethink these tests altogether.
    if model_name == "resnet101":
        prec = 0.2
    else:
        # FIXME: this is probably still way too high.
        prec = 0.1
    _assert_expected(out.cpu(), model_name, prec=prec)
711
    assert out.shape[-1] == num_classes
712
713
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
714

715
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
716
717
718
719
720
721
        with torch.cuda.amp.autocast():
            out = model(x)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == 50
722

723
724
    _check_input_backprop(model, x)

725

726
@pytest.mark.parametrize("model_fn", list_model_fns(models.segmentation))
727
@pytest.mark.parametrize("dev", cpu_and_gpu())
728
def test_segmentation_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
729
730
    set_rng_seed(0)
    defaults = {
731
        "num_classes": 10,
732
        "weights_backbone": None,
733
        "input_shape": (1, 3, 32, 32),
Anirudh's avatar
Anirudh committed
734
    }
735
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
736
    kwargs = {**defaults, **_model_params.get(model_name, {})}
737
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
738

739
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
740
741
742
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
Aidyn-A's avatar
Aidyn-A committed
743
744
    with torch.no_grad(), freeze_rng_state():
        out = model(x)
Anirudh's avatar
Anirudh committed
745
746
747
748
749
750
751
752
753
754
755
756
757
758

    def check_out(out):
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(out.cpu(), model_name, prec=prec)
        except AssertionError:
            # Unfortunately some segmentation models are flaky with autocast
            # so instead of validating the probability scores, check that the class
            # predictions match.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
759
760
761
            torch.testing.assert_close(
                out.argmax(dim=1), expected.argmax(dim=1), rtol=prec, atol=prec, check_device=False
            )
Anirudh's avatar
Anirudh committed
762
763
764
765
            return False  # Partial validation performed

        return True  # Full validation performed

766
    full_validation = check_out(out["out"])
Anirudh's avatar
Anirudh committed
767

768
769
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
770

771
    if dev == "cuda":
Aidyn-A's avatar
Aidyn-A committed
772
        with torch.cuda.amp.autocast(), torch.no_grad(), freeze_rng_state():
773
            out = model(x)
Anirudh's avatar
Anirudh committed
774
775
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
776
                full_validation &= check_out(out["out"])
Anirudh's avatar
Anirudh committed
777
778

    if not full_validation:
779
        msg = (
780
            f"The output of {test_segmentation_model.__name__} could only be partially validated. "
781
782
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
783
            "significant changes to the codebase."
784
        )
Anirudh's avatar
Anirudh committed
785
786
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
787

788
789
    _check_input_backprop(model, x)

790

791
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
792
@pytest.mark.parametrize("dev", cpu_and_gpu())
793
def test_detection_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
794
795
    set_rng_seed(0)
    defaults = {
796
        "num_classes": 50,
797
        "weights_backbone": None,
798
        "input_shape": (3, 300, 300),
Anirudh's avatar
Anirudh committed
799
    }
800
    model_name = model_fn.__name__
801
802
803
804
    if model_name in detection_flaky_models:
        dtype = torch.float64
    else:
        dtype = torch.get_default_dtype()
Anirudh's avatar
Anirudh committed
805
    kwargs = {**defaults, **_model_params.get(model_name, {})}
806
    input_shape = kwargs.pop("input_shape")
807
    real_image = kwargs.pop("real_image", False)
Anirudh's avatar
Anirudh committed
808

809
    model = model_fn(**kwargs)
810
811
    model.eval().to(device=dev, dtype=dtype)
    x = _get_image(input_shape=input_shape, real_image=real_image, device=dev, dtype=dtype)
Anirudh's avatar
Anirudh committed
812
    model_input = [x]
Aidyn-A's avatar
Aidyn-A committed
813
814
    with torch.no_grad(), freeze_rng_state():
        out = model(model_input)
Anirudh's avatar
Anirudh committed
815
816
    assert model_input[0] is x

817
    def check_out(out):
Anirudh's avatar
Anirudh committed
818
819
820
        assert len(out) == 1

        def compact(tensor):
821
            tensor = tensor.cpu()
Anirudh's avatar
Anirudh committed
822
823
824
825
826
827
828
829
830
831
832
833
834
835
            size = tensor.size()
            elements_per_sample = functools.reduce(operator.mul, size[1:], 1)
            if elements_per_sample > 30:
                return compute_mean_std(tensor)
            else:
                return subsample_tensor(tensor)

        def subsample_tensor(tensor):
            num_elems = tensor.size(0)
            num_samples = 20
            if num_elems <= num_samples:
                return tensor

            ith_index = num_elems // num_samples
836
            return tensor[ith_index - 1 :: ith_index]
Anirudh's avatar
Anirudh committed
837
838
839
840
841
842
843
844
845

        def compute_mean_std(tensor):
            # can't compute mean of integral tensor
            tensor = tensor.to(torch.double)
            mean = torch.mean(tensor)
            std = torch.std(tensor)
            return {"mean": mean, "std": std}

        output = map_nested_tensor_object(out, tensor_map_fn=compact)
846
        prec = 0.01
Anirudh's avatar
Anirudh committed
847
848
849
850
851
852
853
854
855
856
857
858
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(output, model_name, prec=prec)
        except AssertionError:
            # Unfortunately detection models are flaky due to the unstable sort
            # in NMS. If matching across all outputs fails, use the same approach
            # as in NMSTester.test_nms_cuda to see if this is caused by duplicate
            # scores.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
859
860
861
            torch.testing.assert_close(
                output[0]["scores"], expected[0]["scores"], rtol=prec, atol=prec, check_device=False, check_dtype=False
            )
Anirudh's avatar
Anirudh committed
862
863
864
865
866
867
868
869
870
871

            # Note: Fmassa proposed turning off NMS by adapting the threshold
            # and then using the Hungarian algorithm as in DETR to find the
            # best match between output and expected boxes and eliminate some
            # of the flakiness. Worth exploring.
            return False  # Partial validation performed

        return True  # Full validation performed

    full_validation = check_out(out)
872
    _check_jit_scriptable(model, ([x],), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
Anirudh's avatar
Anirudh committed
873

874
    if dev == "cuda":
Aidyn-A's avatar
Aidyn-A committed
875
        with torch.cuda.amp.autocast(), torch.no_grad(), freeze_rng_state():
Anirudh's avatar
Anirudh committed
876
877
878
            out = model(model_input)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
879
                full_validation &= check_out(out)
Anirudh's avatar
Anirudh committed
880
881

    if not full_validation:
882
        msg = (
883
            f"The output of {test_detection_model.__name__} could only be partially validated. "
884
885
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
886
            "significant changes to the codebase."
887
        )
Anirudh's avatar
Anirudh committed
888
889
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
890

891
892
    _check_input_backprop(model, model_input)

893

894
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
895
def test_detection_model_validation(model_fn):
Anirudh's avatar
Anirudh committed
896
    set_rng_seed(0)
897
    model = model_fn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
898
899
900
901
    input_shape = (3, 300, 300)
    x = [torch.rand(input_shape)]

    # validate that targets are present in training
902
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
903
904
905
        model(x)

    # validate type
906
    targets = [{"boxes": 0.0}]
907
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
908
909
910
911
        model(x, targets=targets)

    # validate boxes shape
    for boxes in (torch.rand((4,)), torch.rand((1, 5))):
912
        targets = [{"boxes": boxes}]
913
        with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
914
915
916
917
            model(x, targets=targets)

    # validate that no degenerate boxes are present
    boxes = torch.tensor([[1, 3, 1, 4], [2, 4, 3, 4]])
918
    targets = [{"boxes": boxes}]
919
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
920
        model(x, targets=targets)
921

922

923
@pytest.mark.parametrize("model_fn", list_model_fns(models.video))
924
@pytest.mark.parametrize("dev", cpu_and_gpu())
925
def test_video_model(model_fn, dev):
926
    set_rng_seed(0)
Anirudh's avatar
Anirudh committed
927
928
    # the default input shape is
    # bs * num_channels * clip_len * h *w
929
930
931
932
    defaults = {
        "input_shape": (1, 3, 4, 112, 112),
        "num_classes": 50,
    }
933
    model_name = model_fn.__name__
934
    if SKIP_BIG_MODEL and is_skippable(model_name, dev):
935
        pytest.skip("Skipped to reduce memory usage. Set env var SKIP_BIG_MODEL=0 to enable test for this model")
936
937
938
    kwargs = {**defaults, **_model_params.get(model_name, {})}
    num_classes = kwargs.get("num_classes")
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
939
    # test both basicblock and Bottleneck
940
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
941
942
943
944
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
945
    _assert_expected(out.cpu(), model_name, prec=0.1)
946
    assert out.shape[-1] == num_classes
947
948
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
949
    assert out.shape[-1] == num_classes
Anirudh's avatar
Anirudh committed
950

951
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
952
953
        with torch.cuda.amp.autocast():
            out = model(x)
954
955
956
957
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == num_classes
958

959
960
    _check_input_backprop(model, x)

961

962
963
964
965
966
967
968
@pytest.mark.skipif(
    not (
        "fbgemm" in torch.backends.quantized.supported_engines
        and "qnnpack" in torch.backends.quantized.supported_engines
    ),
    reason="This Pytorch Build has not been built with fbgemm and qnnpack",
)
969
@pytest.mark.parametrize("model_fn", list_model_fns(models.quantization))
970
def test_quantized_classification_model(model_fn):
971
    set_rng_seed(0)
972
    defaults = {
973
        "num_classes": 5,
974
975
        "input_shape": (1, 3, 224, 224),
        "quantize": True,
976
    }
977
    model_name = model_fn.__name__
978
    kwargs = {**defaults, **_model_params.get(model_name, {})}
979
    input_shape = kwargs.pop("input_shape")
980
981

    # First check if quantize=True provides models that can run with input data
982
    model = model_fn(**kwargs)
983
    model.eval()
984
    x = torch.rand(input_shape)
985
986
987
    out = model(x)

    if model_name not in quantized_flaky_models:
988
        _assert_expected(out.cpu(), model_name + "_quantized", prec=2e-2)
989
        assert out.shape[-1] == 5
990
991
992
993
994
995
996
        _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
        _check_fx_compatible(model, x, eager_out=out)
    else:
        try:
            torch.jit.script(model)
        except Exception as e:
            raise AssertionError("model cannot be scripted.") from e
997

998
    kwargs["quantize"] = False
999
    for eval_mode in [True, False]:
1000
        model = model_fn(**kwargs)
1001
1002
        if eval_mode:
            model.eval()
1003
            model.qconfig = torch.ao.quantization.default_qconfig
1004
1005
        else:
            model.train()
1006
            model.qconfig = torch.ao.quantization.default_qat_qconfig
1007

1008
        model.fuse_model(is_qat=not eval_mode)
1009
        if eval_mode:
1010
            torch.ao.quantization.prepare(model, inplace=True)
1011
        else:
1012
            torch.ao.quantization.prepare_qat(model, inplace=True)
1013
1014
            model.eval()

1015
        torch.ao.quantization.convert(model, inplace=True)
1016
1017


1018
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
1019
def test_detection_model_trainable_backbone_layers(model_fn, disable_weight_loading):
1020
    model_name = model_fn.__name__
1021
1022
1023
    max_trainable = _model_tests_values[model_name]["max_trainable"]
    n_trainable_params = []
    for trainable_layers in range(0, max_trainable + 1):
1024
        model = model_fn(weights=None, weights_backbone="DEFAULT", trainable_backbone_layers=trainable_layers)
1025
1026
1027
1028
1029

        n_trainable_params.append(len([p for p in model.parameters() if p.requires_grad]))
    assert n_trainable_params == _model_tests_values[model_name]["n_trn_params_per_layer"]


1030
@needs_cuda
1031
@pytest.mark.parametrize("model_fn", list_model_fns(models.optical_flow))
1032
@pytest.mark.parametrize("scripted", (False, True))
1033
def test_raft(model_fn, scripted):
1034
1035
1036
1037
1038
1039
1040
1041
1042

    torch.manual_seed(0)

    # We need very small images, otherwise the pickle size would exceed the 50KB
    # As a resut we need to override the correlation pyramid to not downsample
    # too much, otherwise we would get nan values (effective H and W would be
    # reduced to 1)
    corr_block = models.optical_flow.raft.CorrBlock(num_levels=2, radius=2)

1043
    model = model_fn(corr_block=corr_block).eval().to("cuda")
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
    if scripted:
        model = torch.jit.script(model)

    bs = 1
    img1 = torch.rand(bs, 3, 80, 72).cuda()
    img2 = torch.rand(bs, 3, 80, 72).cuda()

    preds = model(img1, img2)
    flow_pred = preds[-1]
    # Tolerance is fairly high, but there are 2 * H * W outputs to check
1054
    # The .pkl were generated on the AWS cluter, on the CI it looks like the results are slightly different
1055
    _assert_expected(flow_pred.cpu(), name=model_fn.__name__, atol=1e-2, rtol=1)
1056
1057


1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
def test_presets_antialias():

    img = torch.randint(0, 256, size=(1, 3, 224, 224), dtype=torch.uint8)

    match = "The default value of the antialias parameter"
    with pytest.warns(UserWarning, match=match):
        models.ResNet18_Weights.DEFAULT.transforms()(img)
    with pytest.warns(UserWarning, match=match):
        models.segmentation.DeepLabV3_ResNet50_Weights.DEFAULT.transforms()(img)

    with warnings.catch_warnings():
        warnings.simplefilter("error")
        models.ResNet18_Weights.DEFAULT.transforms(antialias=True)(img)
        models.segmentation.DeepLabV3_ResNet50_Weights.DEFAULT.transforms(antialias=True)(img)

        models.detection.FasterRCNN_ResNet50_FPN_Weights.DEFAULT.transforms()(img)
        models.video.R3D_18_Weights.DEFAULT.transforms()(img)
        models.optical_flow.Raft_Small_Weights.DEFAULT.transforms()(img, img)


1078
if __name__ == "__main__":
1079
    pytest.main([__file__])