test_models.py 34.2 KB
Newer Older
1
import contextlib
2
3
4
import functools
import operator
import os
5
import pkgutil
6
import platform
7
import sys
8
import warnings
9
from collections import OrderedDict
10
from tempfile import TemporaryDirectory
11
from typing import Any
12
13

import pytest
14
import torch
15
import torch.fx
16
import torch.nn as nn
17
from _utils_internal import get_relative_path
18
from common_utils import cpu_and_gpu, freeze_rng_state, map_nested_tensor_object, needs_cuda, set_rng_seed
19
from torchvision import models
20
from torchvision.models import get_model_builder, list_models
21

22

23
ACCEPT = os.getenv("EXPECTTEST_ACCEPT", "0") == "1"
24
SKIP_BIG_MODEL = os.getenv("SKIP_BIG_MODEL", "1") == "1"
25
26


27
def list_model_fns(module):
28
    return [get_model_builder(name) for name in list_models(module)]
29
30


31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
@pytest.fixture
def disable_weight_loading(mocker):
    """When testing models, the two slowest operations are the downloading of the weights to a file and loading them
    into the model. Unless, you want to test against specific weights, these steps can be disabled without any
    drawbacks.

    Including this fixture into the signature of your test, i.e. `test_foo(disable_weight_loading)`, will recurse
    through all models in `torchvision.models` and will patch all occurrences of the function
    `download_state_dict_from_url` as well as the method `load_state_dict` on all subclasses of `nn.Module` to be
    no-ops.

    .. warning:

        Loaded models are still executable as normal, but will always have random weights. Make sure to not use this
        fixture if you want to compare the model output against reference values.

    """
    starting_point = models
    function_name = "load_state_dict_from_url"
    method_name = "load_state_dict"

    module_names = {info.name for info in pkgutil.walk_packages(starting_point.__path__, f"{starting_point.__name__}.")}
    targets = {f"torchvision._internally_replaced_utils.{function_name}", f"torch.nn.Module.{method_name}"}
    for name in module_names:
        module = sys.modules.get(name)
        if not module:
            continue

        if function_name in module.__dict__:
            targets.add(f"{module.__name__}.{function_name}")

        targets.update(
            {
                f"{module.__name__}.{obj.__name__}.{method_name}"
                for obj in module.__dict__.values()
                if isinstance(obj, type) and issubclass(obj, nn.Module) and method_name in obj.__dict__
            }
        )

    for target in targets:
        # See https://github.com/pytorch/vision/pull/4867#discussion_r743677802 for details
        with contextlib.suppress(AttributeError):
            mocker.patch(target)


76
77
78
79
80
81
def _get_expected_file(name=None):
    # Determine expected file based on environment
    expected_file_base = get_relative_path(os.path.realpath(__file__), "expect")

    # Note: for legacy reasons, the reference file names all had "ModelTest.test_" in their names
    # We hardcode it here to avoid having to re-generate the reference files
82
    expected_file = os.path.join(expected_file_base, "ModelTester.test_" + name)
83
84
85
86
87
88
89
90
91
92
93
94
    expected_file += "_expect.pkl"

    if not ACCEPT and not os.path.exists(expected_file):
        raise RuntimeError(
            f"No expect file exists for {os.path.basename(expected_file)} in {expected_file}; "
            "to accept the current output, re-run the failing test after setting the EXPECTTEST_ACCEPT "
            "env variable. For example: EXPECTTEST_ACCEPT=1 pytest test/test_models.py -k alexnet"
        )

    return expected_file


95
def _assert_expected(output, name, prec=None, atol=None, rtol=None):
96
97
98
99
100
101
102
103
104
105
106
    """Test that a python value matches the recorded contents of a file
    based on a "check" name. The value must be
    pickable with `torch.save`. This file
    is placed in the 'expect' directory in the same directory
    as the test script. You can automatically update the recorded test
    output using an EXPECTTEST_ACCEPT=1 env variable.
    """
    expected_file = _get_expected_file(name)

    if ACCEPT:
        filename = {os.path.basename(expected_file)}
107
        print(f"Accepting updated output for {filename}:\n\n{output}")
108
109
110
111
        torch.save(output, expected_file)
        MAX_PICKLE_SIZE = 50 * 1000  # 50 KB
        binary_size = os.path.getsize(expected_file)
        if binary_size > MAX_PICKLE_SIZE:
112
            raise RuntimeError(f"The output for {filename}, is larger than 50kb - got {binary_size}kb")
113
114
    else:
        expected = torch.load(expected_file)
115
116
        rtol = rtol or prec  # keeping prec param for legacy reason, but could be removed ideally
        atol = atol or prec
117
        torch.testing.assert_close(output, expected, rtol=rtol, atol=atol, check_dtype=False, check_device=False)
118
119


120
def _check_jit_scriptable(nn_module, args, unwrapper=None, eager_out=None):
121
122
    """Check that a nn.Module's results in TorchScript match eager and that it can be exported"""

123
124
125
126
127
128
129
    def get_export_import_copy(m):
        """Save and load a TorchScript model"""
        with TemporaryDirectory() as dir:
            path = os.path.join(dir, "script.pt")
            m.save(path)
            imported = torch.jit.load(path)
        return imported
130
131
132

    sm = torch.jit.script(nn_module)

133
134
    if eager_out is None:
        with torch.no_grad(), freeze_rng_state():
135
            eager_out = nn_module(*args)
136

137
    with torch.no_grad(), freeze_rng_state():
138
139
140
141
142
        script_out = sm(*args)
        if unwrapper:
            script_out = unwrapper(script_out)

    torch.testing.assert_close(eager_out, script_out, atol=1e-4, rtol=1e-4)
143
144
145
146
147
148
149
150

    m_import = get_export_import_copy(sm)
    with torch.no_grad(), freeze_rng_state():
        imported_script_out = m_import(*args)
        if unwrapper:
            imported_script_out = unwrapper(imported_script_out)

    torch.testing.assert_close(script_out, imported_script_out, atol=3e-4, rtol=3e-4)
151
152


153
def _check_fx_compatible(model, inputs, eager_out=None):
154
    model_fx = torch.fx.symbolic_trace(model)
155
156
157
158
    if eager_out is None:
        eager_out = model(inputs)
    fx_out = model_fx(inputs)
    torch.testing.assert_close(eager_out, fx_out)
159
160


161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
def _check_input_backprop(model, inputs):
    if isinstance(inputs, list):
        requires_grad = list()
        for inp in inputs:
            requires_grad.append(inp.requires_grad)
            inp.requires_grad_(True)
    else:
        requires_grad = inputs.requires_grad
        inputs.requires_grad_(True)

    out = model(inputs)

    if isinstance(out, dict):
        out["out"].sum().backward()
    else:
        if isinstance(out[0], dict):
            out[0]["scores"].sum().backward()
        else:
            out[0].sum().backward()

    if isinstance(inputs, list):
        for i, inp in enumerate(inputs):
            assert inputs[i].grad is not None
            inp.requires_grad_(requires_grad[i])
    else:
        assert inputs.grad is not None
        inputs.requires_grad_(requires_grad)


190
191
192
# If 'unwrapper' is provided it will be called with the script model outputs
# before they are compared to the eager model outputs. This is useful if the
# model outputs are different between TorchScript / Eager mode
193
script_model_unwrapper = {
194
195
    "googlenet": lambda x: x.logits,
    "inception_v3": lambda x: x.logits,
196
    "fasterrcnn_resnet50_fpn": lambda x: x[1],
197
    "fasterrcnn_resnet50_fpn_v2": lambda x: x[1],
198
    "fasterrcnn_mobilenet_v3_large_fpn": lambda x: x[1],
199
    "fasterrcnn_mobilenet_v3_large_320_fpn": lambda x: x[1],
200
    "maskrcnn_resnet50_fpn": lambda x: x[1],
201
    "maskrcnn_resnet50_fpn_v2": lambda x: x[1],
202
203
    "keypointrcnn_resnet50_fpn": lambda x: x[1],
    "retinanet_resnet50_fpn": lambda x: x[1],
204
    "retinanet_resnet50_fpn_v2": lambda x: x[1],
205
    "ssd300_vgg16": lambda x: x[1],
206
    "ssdlite320_mobilenet_v3_large": lambda x: x[1],
Hu Ye's avatar
Hu Ye committed
207
    "fcos_resnet50_fpn": lambda x: x[1],
208
}
209
210


211
212
213
214
215
216
217
218
219
220
221
222
223
224
# The following models exhibit flaky numerics under autocast in _test_*_model harnesses.
# This may be caused by the harness environment (e.g. num classes, input initialization
# via torch.rand), and does not prove autocast is unsuitable when training with real data
# (autocast has been used successfully with real data for some of these models).
# TODO:  investigate why autocast numerics are flaky in the harnesses.
#
# For the following models, _test_*_model harnesses skip numerical checks on outputs when
# trying autocast. However, they still try an autocasted forward pass, so they still ensure
# autocast coverage suffices to prevent dtype errors in each model.
autocast_flaky_numerics = (
    "inception_v3",
    "resnet101",
    "resnet152",
    "wide_resnet101_2",
225
226
    "deeplabv3_resnet50",
    "deeplabv3_resnet101",
227
    "deeplabv3_mobilenet_v3_large",
228
229
    "fcn_resnet50",
    "fcn_resnet101",
230
    "lraspp_mobilenet_v3_large",
231
    "maskrcnn_resnet50_fpn",
232
    "maskrcnn_resnet50_fpn_v2",
233
    "keypointrcnn_resnet50_fpn",
234
235
)

236
237
autocast_custom_prec = {"fasterrcnn_resnet50_fpn": 0.012} if platform.system() == "Windows" else {}

238
239
240
# The tests for the following quantized models are flaky possibly due to inconsistent
# rounding errors in different platforms. For this reason the input/output consistency
# tests under test_quantized_classification_model will be skipped for the following models.
241
quantized_flaky_models = ("inception_v3", "resnet50")
242

243

244
245
246
# The following contains configuration parameters for all models which are used by
# the _test_*_model methods.
_model_params = {
247
248
249
250
251
252
253
    "inception_v3": {"input_shape": (1, 3, 299, 299)},
    "retinanet_resnet50_fpn": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
254
    },
255
256
257
258
259
260
261
    "retinanet_resnet50_fpn_v2": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
262
263
264
265
    "keypointrcnn_resnet50_fpn": {
        "num_classes": 2,
        "min_size": 224,
        "max_size": 224,
266
        "box_score_thresh": 0.17,
267
        "input_shape": (3, 224, 224),
268
    },
269
270
271
272
273
    "fasterrcnn_resnet50_fpn": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
274
    },
275
276
277
278
279
280
    "fasterrcnn_resnet50_fpn_v2": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
Hu Ye's avatar
Hu Ye committed
281
282
283
284
285
286
287
    "fcos_resnet50_fpn": {
        "num_classes": 2,
        "score_thresh": 0.05,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
288
289
290
291
292
    "maskrcnn_resnet50_fpn": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
293
    },
294
295
296
297
298
299
    "maskrcnn_resnet50_fpn_v2": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
300
301
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "box_score_thresh": 0.02076,
302
    },
303
304
305
306
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "box_score_thresh": 0.02076,
        "rpn_pre_nms_top_n_test": 1000,
        "rpn_post_nms_top_n_test": 1000,
307
    },
308
309
310
311
    "vit_h_14": {
        "image_size": 56,
        "input_shape": (1, 3, 56, 56),
    },
312
313
314
    "mvit_v1_b": {
        "input_shape": (1, 3, 16, 224, 224),
    },
315
316
317
    "mvit_v2_s": {
        "input_shape": (1, 3, 16, 224, 224),
    },
318
319
320
    "s3d": {
        "input_shape": (1, 3, 16, 224, 224),
    },
321
}
322
323
324
325
326
# speeding up slow models:
slow_models = [
    "convnext_base",
    "convnext_large",
    "resnext101_32x8d",
327
    "resnext101_64x4d",
328
329
330
331
332
333
334
335
336
337
    "wide_resnet101_2",
    "efficientnet_b6",
    "efficientnet_b7",
    "efficientnet_v2_m",
    "efficientnet_v2_l",
    "regnet_y_16gf",
    "regnet_y_32gf",
    "regnet_y_128gf",
    "regnet_x_16gf",
    "regnet_x_32gf",
Joao Gomes's avatar
Joao Gomes committed
338
    "swin_t",
339
340
    "swin_s",
    "swin_b",
Local State's avatar
Local State committed
341
342
343
    "swin_v2_t",
    "swin_v2_s",
    "swin_v2_b",
344
345
346
]
for m in slow_models:
    _model_params[m] = {"input_shape": (1, 3, 64, 64)}
347
348


349
# skip big models to reduce memory usage on CI test. We can exclude combinations of (platform-system, device).
350
skipped_big_models = {
351
352
    "vit_h_14": {("Windows", "cpu"), ("Windows", "cuda")},
    "regnet_y_128gf": {("Windows", "cpu"), ("Windows", "cuda")},
353
354
    "mvit_v1_b": {("Windows", "cuda"), ("Linux", "cuda")},
    "mvit_v2_s": {("Windows", "cuda"), ("Linux", "cuda")},
355
356
}

357
358
359
360
361
362
363
364
365
366
367

def is_skippable(model_name, device):
    if model_name not in skipped_big_models:
        return False

    platform_system = platform.system()
    device_name = str(device).split(":")[0]

    return (platform_system, device_name) in skipped_big_models[model_name]


368
369
370
371
372
373
# The following contains configuration and expected values to be used tests that are model specific
_model_tests_values = {
    "retinanet_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [36, 46, 65, 78, 88, 89],
    },
374
375
376
377
    "retinanet_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [44, 74, 131, 170, 200, 203],
    },
378
379
380
381
382
383
384
385
    "keypointrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [48, 58, 77, 90, 100, 101],
    },
    "fasterrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [30, 40, 59, 72, 82, 83],
    },
386
387
388
389
    "fasterrcnn_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [50, 80, 137, 176, 206, 209],
    },
390
391
392
393
    "maskrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [42, 52, 71, 84, 94, 95],
    },
394
395
396
397
    "maskrcnn_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [66, 96, 153, 192, 222, 225],
    },
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "ssd300_vgg16": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [45, 51, 57, 63, 67, 71],
    },
    "ssdlite320_mobilenet_v3_large": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [96, 99, 138, 200, 239, 257, 266],
    },
Hu Ye's avatar
Hu Ye committed
414
415
416
417
    "fcos_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [54, 64, 83, 96, 106, 107],
    },
418
419
420
}


Anirudh's avatar
Anirudh committed
421
422
423
424
425
426
427
428
429
430
def _make_sliced_model(model, stop_layer):
    layers = OrderedDict()
    for name, layer in model.named_children():
        layers[name] = layer
        if name == stop_layer:
            break
    new_model = torch.nn.Sequential(layers)
    return new_model


431
432
@pytest.mark.parametrize("model_fn", [models.densenet121, models.densenet169, models.densenet201, models.densenet161])
def test_memory_efficient_densenet(model_fn):
Anirudh's avatar
Anirudh committed
433
434
435
    input_shape = (1, 3, 300, 300)
    x = torch.rand(input_shape)

436
    model1 = model_fn(num_classes=50, memory_efficient=True)
Anirudh's avatar
Anirudh committed
437
    params = model1.state_dict()
438
    num_params = sum(x.numel() for x in model1.parameters())
Anirudh's avatar
Anirudh committed
439
440
441
    model1.eval()
    out1 = model1(x)
    out1.sum().backward()
442
    num_grad = sum(x.grad.numel() for x in model1.parameters() if x.grad is not None)
Anirudh's avatar
Anirudh committed
443

444
    model2 = model_fn(num_classes=50, memory_efficient=False)
Anirudh's avatar
Anirudh committed
445
446
447
448
449
450
451
    model2.load_state_dict(params)
    model2.eval()
    out2 = model2(x)

    assert num_params == num_grad
    torch.testing.assert_close(out1, out2, rtol=0.0, atol=1e-5)

452
453
454
    _check_input_backprop(model1, x)
    _check_input_backprop(model2, x)

Anirudh's avatar
Anirudh committed
455

456
457
458
@pytest.mark.parametrize("dilate_layer_2", (True, False))
@pytest.mark.parametrize("dilate_layer_3", (True, False))
@pytest.mark.parametrize("dilate_layer_4", (True, False))
Anirudh's avatar
Anirudh committed
459
460
def test_resnet_dilation(dilate_layer_2, dilate_layer_3, dilate_layer_4):
    # TODO improve tests to also check that each layer has the right dimensionality
461
    model = models.resnet50(replace_stride_with_dilation=(dilate_layer_2, dilate_layer_3, dilate_layer_4))
Anirudh's avatar
Anirudh committed
462
463
464
465
466
467
468
469
470
    model = _make_sliced_model(model, stop_layer="layer4")
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    f = 2 ** sum((dilate_layer_2, dilate_layer_3, dilate_layer_4))
    assert out.shape == (1, 2048, 7 * f, 7 * f)


def test_mobilenet_v2_residual_setting():
471
    model = models.mobilenet_v2(inverted_residual_setting=[[1, 16, 1, 1], [6, 24, 2, 2]])
Anirudh's avatar
Anirudh committed
472
473
474
475
476
477
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    assert out.shape[-1] == 1000


478
479
480
@pytest.mark.parametrize("model_fn", [models.mobilenet_v2, models.mobilenet_v3_large, models.mobilenet_v3_small])
def test_mobilenet_norm_layer(model_fn):
    model = model_fn()
Anirudh's avatar
Anirudh committed
481
482
483
    assert any(isinstance(x, nn.BatchNorm2d) for x in model.modules())

    def get_gn(num_channels):
484
        return nn.GroupNorm(1, num_channels)
Anirudh's avatar
Anirudh committed
485

486
    model = model_fn(norm_layer=get_gn)
487
    assert not (any(isinstance(x, nn.BatchNorm2d) for x in model.modules()))
Anirudh's avatar
Anirudh committed
488
489
490
491
492
    assert any(isinstance(x, nn.GroupNorm) for x in model.modules())


def test_inception_v3_eval():
    kwargs = {}
493
494
495
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
496
497
498
499
500
501
502
    name = "inception_v3"
    model = models.Inception3(**kwargs)
    model.aux_logits = False
    model.AuxLogits = None
    model = model.eval()
    x = torch.rand(1, 3, 299, 299)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
503
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
504
505
506


def test_fasterrcnn_double():
507
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
508
509
510
511
512
513
514
515
516
517
518
    model.double()
    model.eval()
    input_shape = (3, 300, 300)
    x = torch.rand(input_shape, dtype=torch.float64)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x
    assert len(out) == 1
    assert "boxes" in out[0]
    assert "scores" in out[0]
    assert "labels" in out[0]
519
    _check_input_backprop(model, model_input)
Anirudh's avatar
Anirudh committed
520
521
522
523


def test_googlenet_eval():
    kwargs = {}
524
525
526
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
527
528
529
530
531
532
533
534
    name = "googlenet"
    model = models.GoogLeNet(**kwargs)
    model.aux_logits = False
    model.aux1 = None
    model.aux2 = None
    model = model.eval()
    x = torch.rand(1, 3, 224, 224)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
535
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
536
537
538
539
540
541
542
543
544
545


@needs_cuda
def test_fasterrcnn_switch_devices():
    def checkOut(out):
        assert len(out) == 1
        assert "boxes" in out[0]
        assert "scores" in out[0]
        assert "labels" in out[0]

546
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
547
548
549
    model.cuda()
    model.eval()
    input_shape = (3, 300, 300)
550
    x = torch.rand(input_shape, device="cuda")
Anirudh's avatar
Anirudh committed
551
552
553
554
555
556
557
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    checkOut(out)

    with torch.cuda.amp.autocast():
558
        out = model(model_input)
559

Anirudh's avatar
Anirudh committed
560
    checkOut(out)
561

562
563
    _check_input_backprop(model, model_input)

Anirudh's avatar
Anirudh committed
564
565
566
567
    # now switch to cpu and make sure it works
    model.cpu()
    x = x.cpu()
    out_cpu = model([x])
568

Anirudh's avatar
Anirudh committed
569
    checkOut(out_cpu)
570

571
572
    _check_input_backprop(model, [x])

573

Anirudh's avatar
Anirudh committed
574
def test_generalizedrcnn_transform_repr():
575

Anirudh's avatar
Anirudh committed
576
577
578
    min_size, max_size = 224, 299
    image_mean = [0.485, 0.456, 0.406]
    image_std = [0.229, 0.224, 0.225]
579

580
581
582
    t = models.detection.transform.GeneralizedRCNNTransform(
        min_size=min_size, max_size=max_size, image_mean=image_mean, image_std=image_std
    )
583

Anirudh's avatar
Anirudh committed
584
    # Check integrity of object __repr__ attribute
585
586
    expected_string = "GeneralizedRCNNTransform("
    _indent = "\n    "
587
588
    expected_string += f"{_indent}Normalize(mean={image_mean}, std={image_std})"
    expected_string += f"{_indent}Resize(min_size=({min_size},), max_size={max_size}, "
Anirudh's avatar
Anirudh committed
589
590
    expected_string += "mode='bilinear')\n)"
    assert t.__repr__() == expected_string
591
592


593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
test_vit_conv_stem_configs = [
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=64),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=512),
]


def vitc_b_16(**kwargs: Any):
    return models.VisionTransformer(
        image_size=224,
        patch_size=16,
        num_layers=12,
        num_heads=12,
        hidden_dim=768,
        mlp_dim=3072,
        conv_stem_configs=test_vit_conv_stem_configs,
        **kwargs,
    )


@pytest.mark.parametrize("model_fn", [vitc_b_16])
@pytest.mark.parametrize("dev", cpu_and_gpu())
def test_vitc_models(model_fn, dev):
    test_classification_model(model_fn, dev)


622
@pytest.mark.parametrize("model_fn", list_model_fns(models))
623
@pytest.mark.parametrize("dev", cpu_and_gpu())
624
def test_classification_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
625
626
    set_rng_seed(0)
    defaults = {
627
628
        "num_classes": 50,
        "input_shape": (1, 3, 224, 224),
Anirudh's avatar
Anirudh committed
629
    }
630
    model_name = model_fn.__name__
631
    if SKIP_BIG_MODEL and is_skippable(model_name, dev):
632
        pytest.skip("Skipped to reduce memory usage. Set env var SKIP_BIG_MODEL=0 to enable test for this model")
Anirudh's avatar
Anirudh committed
633
    kwargs = {**defaults, **_model_params.get(model_name, {})}
634
    num_classes = kwargs.get("num_classes")
635
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
636

637
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
638
639
640
641
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
642
    _assert_expected(out.cpu(), model_name, prec=1e-3)
643
    assert out.shape[-1] == num_classes
644
645
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
646

647
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
648
649
650
651
652
653
        with torch.cuda.amp.autocast():
            out = model(x)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == 50
654

655
656
    _check_input_backprop(model, x)

657

658
@pytest.mark.parametrize("model_fn", list_model_fns(models.segmentation))
659
@pytest.mark.parametrize("dev", cpu_and_gpu())
660
def test_segmentation_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
661
662
    set_rng_seed(0)
    defaults = {
663
        "num_classes": 10,
664
        "weights_backbone": None,
665
        "input_shape": (1, 3, 32, 32),
Anirudh's avatar
Anirudh committed
666
    }
667
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
668
    kwargs = {**defaults, **_model_params.get(model_name, {})}
669
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
670

671
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
672
673
674
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
675
    out = model(x)
Anirudh's avatar
Anirudh committed
676
677
678
679
680
681
682
683
684
685
686
687
688
689

    def check_out(out):
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(out.cpu(), model_name, prec=prec)
        except AssertionError:
            # Unfortunately some segmentation models are flaky with autocast
            # so instead of validating the probability scores, check that the class
            # predictions match.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
690
691
692
            torch.testing.assert_close(
                out.argmax(dim=1), expected.argmax(dim=1), rtol=prec, atol=prec, check_device=False
            )
Anirudh's avatar
Anirudh committed
693
694
695
696
            return False  # Partial validation performed

        return True  # Full validation performed

697
    full_validation = check_out(out["out"])
Anirudh's avatar
Anirudh committed
698

699
700
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
701

702
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
703
        with torch.cuda.amp.autocast():
704
            out = model(x)
Anirudh's avatar
Anirudh committed
705
706
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
707
                full_validation &= check_out(out["out"])
Anirudh's avatar
Anirudh committed
708
709

    if not full_validation:
710
        msg = (
711
            f"The output of {test_segmentation_model.__name__} could only be partially validated. "
712
713
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
714
            "significant changes to the codebase."
715
        )
Anirudh's avatar
Anirudh committed
716
717
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
718

719
720
    _check_input_backprop(model, x)

721

722
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
723
@pytest.mark.parametrize("dev", cpu_and_gpu())
724
def test_detection_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
725
726
    set_rng_seed(0)
    defaults = {
727
        "num_classes": 50,
728
        "weights_backbone": None,
729
        "input_shape": (3, 300, 300),
Anirudh's avatar
Anirudh committed
730
    }
731
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
732
    kwargs = {**defaults, **_model_params.get(model_name, {})}
733
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
734

735
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
736
737
738
739
740
741
742
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

743
    def check_out(out, prec=0.01):
Anirudh's avatar
Anirudh committed
744
745
746
        assert len(out) == 1

        def compact(tensor):
747
            tensor = tensor.cpu()
Anirudh's avatar
Anirudh committed
748
749
750
751
752
753
754
755
756
757
758
759
760
761
            size = tensor.size()
            elements_per_sample = functools.reduce(operator.mul, size[1:], 1)
            if elements_per_sample > 30:
                return compute_mean_std(tensor)
            else:
                return subsample_tensor(tensor)

        def subsample_tensor(tensor):
            num_elems = tensor.size(0)
            num_samples = 20
            if num_elems <= num_samples:
                return tensor

            ith_index = num_elems // num_samples
762
            return tensor[ith_index - 1 :: ith_index]
Anirudh's avatar
Anirudh committed
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783

        def compute_mean_std(tensor):
            # can't compute mean of integral tensor
            tensor = tensor.to(torch.double)
            mean = torch.mean(tensor)
            std = torch.std(tensor)
            return {"mean": mean, "std": std}

        output = map_nested_tensor_object(out, tensor_map_fn=compact)
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(output, model_name, prec=prec)
        except AssertionError:
            # Unfortunately detection models are flaky due to the unstable sort
            # in NMS. If matching across all outputs fails, use the same approach
            # as in NMSTester.test_nms_cuda to see if this is caused by duplicate
            # scores.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
784
785
786
            torch.testing.assert_close(
                output[0]["scores"], expected[0]["scores"], rtol=prec, atol=prec, check_device=False, check_dtype=False
            )
Anirudh's avatar
Anirudh committed
787
788
789
790
791
792
793
794
795
796

            # Note: Fmassa proposed turning off NMS by adapting the threshold
            # and then using the Hungarian algorithm as in DETR to find the
            # best match between output and expected boxes and eliminate some
            # of the flakiness. Worth exploring.
            return False  # Partial validation performed

        return True  # Full validation performed

    full_validation = check_out(out)
797
    _check_jit_scriptable(model, ([x],), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
Anirudh's avatar
Anirudh committed
798

799
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
800
801
802
803
        with torch.cuda.amp.autocast():
            out = model(model_input)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
804
                full_validation &= check_out(out, autocast_custom_prec.get(model_name, 0.01))
Anirudh's avatar
Anirudh committed
805
806

    if not full_validation:
807
        msg = (
808
            f"The output of {test_detection_model.__name__} could only be partially validated. "
809
810
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
811
            "significant changes to the codebase."
812
        )
Anirudh's avatar
Anirudh committed
813
814
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
815

816
817
    _check_input_backprop(model, model_input)

818

819
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
820
def test_detection_model_validation(model_fn):
Anirudh's avatar
Anirudh committed
821
    set_rng_seed(0)
822
    model = model_fn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
823
824
825
826
    input_shape = (3, 300, 300)
    x = [torch.rand(input_shape)]

    # validate that targets are present in training
827
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
828
829
830
        model(x)

    # validate type
831
    targets = [{"boxes": 0.0}]
832
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
833
834
835
836
        model(x, targets=targets)

    # validate boxes shape
    for boxes in (torch.rand((4,)), torch.rand((1, 5))):
837
        targets = [{"boxes": boxes}]
838
        with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
839
840
841
842
            model(x, targets=targets)

    # validate that no degenerate boxes are present
    boxes = torch.tensor([[1, 3, 1, 4], [2, 4, 3, 4]])
843
    targets = [{"boxes": boxes}]
844
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
845
        model(x, targets=targets)
846

847

848
@pytest.mark.parametrize("model_fn", list_model_fns(models.video))
849
@pytest.mark.parametrize("dev", cpu_and_gpu())
850
def test_video_model(model_fn, dev):
851
    set_rng_seed(0)
Anirudh's avatar
Anirudh committed
852
853
    # the default input shape is
    # bs * num_channels * clip_len * h *w
854
855
856
857
    defaults = {
        "input_shape": (1, 3, 4, 112, 112),
        "num_classes": 50,
    }
858
    model_name = model_fn.__name__
859
    if SKIP_BIG_MODEL and is_skippable(model_name, dev):
860
        pytest.skip("Skipped to reduce memory usage. Set env var SKIP_BIG_MODEL=0 to enable test for this model")
861
862
863
    kwargs = {**defaults, **_model_params.get(model_name, {})}
    num_classes = kwargs.get("num_classes")
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
864
    # test both basicblock and Bottleneck
865
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
866
867
868
869
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
870
    _assert_expected(out.cpu(), model_name, prec=1e-5)
871
    assert out.shape[-1] == num_classes
872
873
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
874
    assert out.shape[-1] == num_classes
Anirudh's avatar
Anirudh committed
875

876
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
877
878
        with torch.cuda.amp.autocast():
            out = model(x)
879
880
881
882
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == num_classes
883

884
885
    _check_input_backprop(model, x)

886

887
888
889
890
891
892
893
@pytest.mark.skipif(
    not (
        "fbgemm" in torch.backends.quantized.supported_engines
        and "qnnpack" in torch.backends.quantized.supported_engines
    ),
    reason="This Pytorch Build has not been built with fbgemm and qnnpack",
)
894
@pytest.mark.parametrize("model_fn", list_model_fns(models.quantization))
895
def test_quantized_classification_model(model_fn):
896
    set_rng_seed(0)
897
    defaults = {
898
        "num_classes": 5,
899
900
        "input_shape": (1, 3, 224, 224),
        "quantize": True,
901
    }
902
    model_name = model_fn.__name__
903
    kwargs = {**defaults, **_model_params.get(model_name, {})}
904
    input_shape = kwargs.pop("input_shape")
905
906

    # First check if quantize=True provides models that can run with input data
907
    model = model_fn(**kwargs)
908
    model.eval()
909
    x = torch.rand(input_shape)
910
911
912
    out = model(x)

    if model_name not in quantized_flaky_models:
913
        _assert_expected(out.cpu(), model_name + "_quantized", prec=2e-2)
914
        assert out.shape[-1] == 5
915
916
917
918
919
920
921
        _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
        _check_fx_compatible(model, x, eager_out=out)
    else:
        try:
            torch.jit.script(model)
        except Exception as e:
            raise AssertionError("model cannot be scripted.") from e
922

923
    kwargs["quantize"] = False
924
    for eval_mode in [True, False]:
925
        model = model_fn(**kwargs)
926
927
        if eval_mode:
            model.eval()
928
            model.qconfig = torch.ao.quantization.default_qconfig
929
930
        else:
            model.train()
931
            model.qconfig = torch.ao.quantization.default_qat_qconfig
932

933
        model.fuse_model(is_qat=not eval_mode)
934
        if eval_mode:
935
            torch.ao.quantization.prepare(model, inplace=True)
936
        else:
937
            torch.ao.quantization.prepare_qat(model, inplace=True)
938
939
            model.eval()

940
        torch.ao.quantization.convert(model, inplace=True)
941
942


943
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
944
def test_detection_model_trainable_backbone_layers(model_fn, disable_weight_loading):
945
    model_name = model_fn.__name__
946
947
948
    max_trainable = _model_tests_values[model_name]["max_trainable"]
    n_trainable_params = []
    for trainable_layers in range(0, max_trainable + 1):
949
        model = model_fn(weights=None, weights_backbone="DEFAULT", trainable_backbone_layers=trainable_layers)
950
951
952
953
954

        n_trainable_params.append(len([p for p in model.parameters() if p.requires_grad]))
    assert n_trainable_params == _model_tests_values[model_name]["n_trn_params_per_layer"]


955
@needs_cuda
956
@pytest.mark.parametrize("model_fn", list_model_fns(models.optical_flow))
957
@pytest.mark.parametrize("scripted", (False, True))
958
def test_raft(model_fn, scripted):
959
960
961
962
963
964
965
966
967

    torch.manual_seed(0)

    # We need very small images, otherwise the pickle size would exceed the 50KB
    # As a resut we need to override the correlation pyramid to not downsample
    # too much, otherwise we would get nan values (effective H and W would be
    # reduced to 1)
    corr_block = models.optical_flow.raft.CorrBlock(num_levels=2, radius=2)

968
    model = model_fn(corr_block=corr_block).eval().to("cuda")
969
970
971
972
973
974
975
976
977
978
979
    if scripted:
        model = torch.jit.script(model)

    bs = 1
    img1 = torch.rand(bs, 3, 80, 72).cuda()
    img2 = torch.rand(bs, 3, 80, 72).cuda()

    preds = model(img1, img2)
    flow_pred = preds[-1]
    # Tolerance is fairly high, but there are 2 * H * W outputs to check
    # The .pkl were generated on the AWS cluter, on the CI it looks like the resuts are slightly different
980
    _assert_expected(flow_pred.cpu(), name=model_fn.__name__, atol=1e-2, rtol=1)
981
982


983
if __name__ == "__main__":
984
    pytest.main([__file__])