"examples/self_supervised_learning/train_hubert.py" did not exist on "c4f12526512675b4522481b48661639d1bd52889"
test_models.py 28.8 KB
Newer Older
1
import contextlib
2
import functools
3
import io
4
5
import operator
import os
6
7
import pkgutil
import sys
8
9
import traceback
import warnings
10
from collections import OrderedDict
11
12

import pytest
13
import torch
14
import torch.fx
15
import torch.nn as nn
16
17
from _utils_internal import get_relative_path
from common_utils import map_nested_tensor_object, freeze_rng_state, set_rng_seed, cpu_and_gpu, needs_cuda
18
from torchvision import models
19

20
ACCEPT = os.getenv("EXPECTTEST_ACCEPT", "0") == "1"
21
22


23
def get_models_from_module(module):
24
    # TODO add a registration mechanism to torchvision.models
25
26
27
28
29
    return [
        v
        for k, v in module.__dict__.items()
        if callable(v) and k[0].lower() == k[0] and k[0] != "_" and k != "get_weight"
    ]
30
31


32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
@pytest.fixture
def disable_weight_loading(mocker):
    """When testing models, the two slowest operations are the downloading of the weights to a file and loading them
    into the model. Unless, you want to test against specific weights, these steps can be disabled without any
    drawbacks.

    Including this fixture into the signature of your test, i.e. `test_foo(disable_weight_loading)`, will recurse
    through all models in `torchvision.models` and will patch all occurrences of the function
    `download_state_dict_from_url` as well as the method `load_state_dict` on all subclasses of `nn.Module` to be
    no-ops.

    .. warning:

        Loaded models are still executable as normal, but will always have random weights. Make sure to not use this
        fixture if you want to compare the model output against reference values.

    """
    starting_point = models
    function_name = "load_state_dict_from_url"
    method_name = "load_state_dict"

    module_names = {info.name for info in pkgutil.walk_packages(starting_point.__path__, f"{starting_point.__name__}.")}
    targets = {f"torchvision._internally_replaced_utils.{function_name}", f"torch.nn.Module.{method_name}"}
    for name in module_names:
        module = sys.modules.get(name)
        if not module:
            continue

        if function_name in module.__dict__:
            targets.add(f"{module.__name__}.{function_name}")

        targets.update(
            {
                f"{module.__name__}.{obj.__name__}.{method_name}"
                for obj in module.__dict__.values()
                if isinstance(obj, type) and issubclass(obj, nn.Module) and method_name in obj.__dict__
            }
        )

    for target in targets:
        # See https://github.com/pytorch/vision/pull/4867#discussion_r743677802 for details
        with contextlib.suppress(AttributeError):
            mocker.patch(target)


77
78
79
80
81
82
def _get_expected_file(name=None):
    # Determine expected file based on environment
    expected_file_base = get_relative_path(os.path.realpath(__file__), "expect")

    # Note: for legacy reasons, the reference file names all had "ModelTest.test_" in their names
    # We hardcode it here to avoid having to re-generate the reference files
83
    expected_file = expected_file = os.path.join(expected_file_base, "ModelTester.test_" + name)
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    expected_file += "_expect.pkl"

    if not ACCEPT and not os.path.exists(expected_file):
        raise RuntimeError(
            f"No expect file exists for {os.path.basename(expected_file)} in {expected_file}; "
            "to accept the current output, re-run the failing test after setting the EXPECTTEST_ACCEPT "
            "env variable. For example: EXPECTTEST_ACCEPT=1 pytest test/test_models.py -k alexnet"
        )

    return expected_file


def _assert_expected(output, name, prec):
    """Test that a python value matches the recorded contents of a file
    based on a "check" name. The value must be
    pickable with `torch.save`. This file
    is placed in the 'expect' directory in the same directory
    as the test script. You can automatically update the recorded test
    output using an EXPECTTEST_ACCEPT=1 env variable.
    """
    expected_file = _get_expected_file(name)

    if ACCEPT:
        filename = {os.path.basename(expected_file)}
108
        print(f"Accepting updated output for {filename}:\n\n{output}")
109
110
111
112
        torch.save(output, expected_file)
        MAX_PICKLE_SIZE = 50 * 1000  # 50 KB
        binary_size = os.path.getsize(expected_file)
        if binary_size > MAX_PICKLE_SIZE:
113
            raise RuntimeError(f"The output for {filename}, is larger than 50kb")
114
115
116
117
118
119
120
121
122
123
124
    else:
        expected = torch.load(expected_file)
        rtol = atol = prec
        torch.testing.assert_close(output, expected, rtol=rtol, atol=atol, check_dtype=False)


def _check_jit_scriptable(nn_module, args, unwrapper=None, skip=False):
    """Check that a nn.Module's results in TorchScript match eager and that it can be exported"""

    def assert_export_import_module(m, args):
        """Check that the results of a model are the same after saving and loading"""
125

126
127
128
129
130
131
132
133
134
135
136
137
138
139
        def get_export_import_copy(m):
            """Save and load a TorchScript model"""
            buffer = io.BytesIO()
            torch.jit.save(m, buffer)
            buffer.seek(0)
            imported = torch.jit.load(buffer)
            return imported

        m_import = get_export_import_copy(m)
        with freeze_rng_state():
            results = m(*args)
        with freeze_rng_state():
            results_from_imported = m_import(*args)
        tol = 3e-4
140
        torch.testing.assert_close(results, results_from_imported, atol=tol, rtol=tol)
141

142
    TEST_WITH_SLOW = os.getenv("PYTORCH_TEST_WITH_SLOW", "0") == "1"
143
144
    if not TEST_WITH_SLOW or skip:
        # TorchScript is not enabled, skip these tests
145
        msg = (
146
            f"The check_jit_scriptable test for {nn_module.__class__.__name__} was skipped. "
147
148
149
150
            "This test checks if the module's results in TorchScript "
            "match eager and that it can be exported. To run these "
            "tests make sure you set the environment variable "
            "PYTORCH_TEST_WITH_SLOW=1 and that the test is not "
151
            "manually skipped."
152
        )
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
        warnings.warn(msg, RuntimeWarning)
        return None

    sm = torch.jit.script(nn_module)

    with freeze_rng_state():
        eager_out = nn_module(*args)

    with freeze_rng_state():
        script_out = sm(*args)
        if unwrapper:
            script_out = unwrapper(script_out)

    torch.testing.assert_close(eager_out, script_out, atol=1e-4, rtol=1e-4)
    assert_export_import_module(sm, args)


170
171
172
173
174
175
176
def _check_fx_compatible(model, inputs):
    model_fx = torch.fx.symbolic_trace(model)
    out = model(inputs)
    out_fx = model_fx(inputs)
    torch.testing.assert_close(out, out_fx)


177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
def _check_input_backprop(model, inputs):
    if isinstance(inputs, list):
        requires_grad = list()
        for inp in inputs:
            requires_grad.append(inp.requires_grad)
            inp.requires_grad_(True)
    else:
        requires_grad = inputs.requires_grad
        inputs.requires_grad_(True)

    out = model(inputs)

    if isinstance(out, dict):
        out["out"].sum().backward()
    else:
        if isinstance(out[0], dict):
            out[0]["scores"].sum().backward()
        else:
            out[0].sum().backward()

    if isinstance(inputs, list):
        for i, inp in enumerate(inputs):
            assert inputs[i].grad is not None
            inp.requires_grad_(requires_grad[i])
    else:
        assert inputs.grad is not None
        inputs.requires_grad_(requires_grad)


206
207
208
# If 'unwrapper' is provided it will be called with the script model outputs
# before they are compared to the eager model outputs. This is useful if the
# model outputs are different between TorchScript / Eager mode
209
script_model_unwrapper = {
210
211
    "googlenet": lambda x: x.logits,
    "inception_v3": lambda x: x.logits,
212
    "fasterrcnn_resnet50_fpn": lambda x: x[1],
213
    "fasterrcnn_mobilenet_v3_large_fpn": lambda x: x[1],
214
    "fasterrcnn_mobilenet_v3_large_320_fpn": lambda x: x[1],
215
216
217
    "maskrcnn_resnet50_fpn": lambda x: x[1],
    "keypointrcnn_resnet50_fpn": lambda x: x[1],
    "retinanet_resnet50_fpn": lambda x: x[1],
218
    "ssd300_vgg16": lambda x: x[1],
219
    "ssdlite320_mobilenet_v3_large": lambda x: x[1],
220
}
221
222


223
224
225
226
227
228
229
230
231
232
233
234
235
236
# The following models exhibit flaky numerics under autocast in _test_*_model harnesses.
# This may be caused by the harness environment (e.g. num classes, input initialization
# via torch.rand), and does not prove autocast is unsuitable when training with real data
# (autocast has been used successfully with real data for some of these models).
# TODO:  investigate why autocast numerics are flaky in the harnesses.
#
# For the following models, _test_*_model harnesses skip numerical checks on outputs when
# trying autocast. However, they still try an autocasted forward pass, so they still ensure
# autocast coverage suffices to prevent dtype errors in each model.
autocast_flaky_numerics = (
    "inception_v3",
    "resnet101",
    "resnet152",
    "wide_resnet101_2",
237
238
    "deeplabv3_resnet50",
    "deeplabv3_resnet101",
239
    "deeplabv3_mobilenet_v3_large",
240
241
    "fcn_resnet50",
    "fcn_resnet101",
242
    "lraspp_mobilenet_v3_large",
243
    "maskrcnn_resnet50_fpn",
244
245
)

246
247
248
# The tests for the following quantized models are flaky possibly due to inconsistent
# rounding errors in different platforms. For this reason the input/output consistency
# tests under test_quantized_classification_model will be skipped for the following models.
249
quantized_flaky_models = ("inception_v3", "resnet50")
250

251

252
253
254
# The following contains configuration parameters for all models which are used by
# the _test_*_model methods.
_model_params = {
255
256
257
258
259
260
261
    "inception_v3": {"input_shape": (1, 3, 299, 299)},
    "retinanet_resnet50_fpn": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
262
    },
263
264
265
266
267
268
    "keypointrcnn_resnet50_fpn": {
        "num_classes": 2,
        "min_size": 224,
        "max_size": 224,
        "box_score_thresh": 0.15,
        "input_shape": (3, 224, 224),
269
    },
270
271
272
273
274
    "fasterrcnn_resnet50_fpn": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
275
    },
276
277
278
279
280
    "maskrcnn_resnet50_fpn": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
281
    },
282
283
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "box_score_thresh": 0.02076,
284
    },
285
286
287
288
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "box_score_thresh": 0.02076,
        "rpn_pre_nms_top_n_test": 1000,
        "rpn_post_nms_top_n_test": 1000,
289
290
291
292
    },
}


293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# The following contains configuration and expected values to be used tests that are model specific
_model_tests_values = {
    "retinanet_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [36, 46, 65, 78, 88, 89],
    },
    "keypointrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [48, 58, 77, 90, 100, 101],
    },
    "fasterrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [30, 40, 59, 72, 82, 83],
    },
    "maskrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [42, 52, 71, 84, 94, 95],
    },
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "ssd300_vgg16": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [45, 51, 57, 63, 67, 71],
    },
    "ssdlite320_mobilenet_v3_large": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [96, 99, 138, 200, 239, 257, 266],
    },
}


Anirudh's avatar
Anirudh committed
330
331
332
333
334
335
336
337
338
339
def _make_sliced_model(model, stop_layer):
    layers = OrderedDict()
    for name, layer in model.named_children():
        layers[name] = layer
        if name == stop_layer:
            break
    new_model = torch.nn.Sequential(layers)
    return new_model


340
341
@pytest.mark.parametrize("model_fn", [models.densenet121, models.densenet169, models.densenet201, models.densenet161])
def test_memory_efficient_densenet(model_fn):
Anirudh's avatar
Anirudh committed
342
343
344
    input_shape = (1, 3, 300, 300)
    x = torch.rand(input_shape)

345
    model1 = model_fn(num_classes=50, memory_efficient=True)
Anirudh's avatar
Anirudh committed
346
    params = model1.state_dict()
347
    num_params = sum(x.numel() for x in model1.parameters())
Anirudh's avatar
Anirudh committed
348
349
350
    model1.eval()
    out1 = model1(x)
    out1.sum().backward()
351
    num_grad = sum(x.grad.numel() for x in model1.parameters() if x.grad is not None)
Anirudh's avatar
Anirudh committed
352

353
    model2 = model_fn(num_classes=50, memory_efficient=False)
Anirudh's avatar
Anirudh committed
354
355
356
357
358
359
360
    model2.load_state_dict(params)
    model2.eval()
    out2 = model2(x)

    assert num_params == num_grad
    torch.testing.assert_close(out1, out2, rtol=0.0, atol=1e-5)

361
362
363
    _check_input_backprop(model1, x)
    _check_input_backprop(model2, x)

Anirudh's avatar
Anirudh committed
364

365
366
367
@pytest.mark.parametrize("dilate_layer_2", (True, False))
@pytest.mark.parametrize("dilate_layer_3", (True, False))
@pytest.mark.parametrize("dilate_layer_4", (True, False))
Anirudh's avatar
Anirudh committed
368
369
def test_resnet_dilation(dilate_layer_2, dilate_layer_3, dilate_layer_4):
    # TODO improve tests to also check that each layer has the right dimensionality
370
    model = models.resnet50(replace_stride_with_dilation=(dilate_layer_2, dilate_layer_3, dilate_layer_4))
Anirudh's avatar
Anirudh committed
371
372
373
374
375
376
377
378
379
    model = _make_sliced_model(model, stop_layer="layer4")
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    f = 2 ** sum((dilate_layer_2, dilate_layer_3, dilate_layer_4))
    assert out.shape == (1, 2048, 7 * f, 7 * f)


def test_mobilenet_v2_residual_setting():
380
    model = models.mobilenet_v2(inverted_residual_setting=[[1, 16, 1, 1], [6, 24, 2, 2]])
Anirudh's avatar
Anirudh committed
381
382
383
384
385
386
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    assert out.shape[-1] == 1000


387
388
389
@pytest.mark.parametrize("model_fn", [models.mobilenet_v2, models.mobilenet_v3_large, models.mobilenet_v3_small])
def test_mobilenet_norm_layer(model_fn):
    model = model_fn()
Anirudh's avatar
Anirudh committed
390
391
392
393
394
    assert any(isinstance(x, nn.BatchNorm2d) for x in model.modules())

    def get_gn(num_channels):
        return nn.GroupNorm(32, num_channels)

395
    model = model_fn(norm_layer=get_gn)
396
    assert not (any(isinstance(x, nn.BatchNorm2d) for x in model.modules()))
Anirudh's avatar
Anirudh committed
397
398
399
400
401
402
    assert any(isinstance(x, nn.GroupNorm) for x in model.modules())


def test_inception_v3_eval():
    # replacement for models.inception_v3(pretrained=True) that does not download weights
    kwargs = {}
403
404
405
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
406
407
408
409
410
411
412
    name = "inception_v3"
    model = models.Inception3(**kwargs)
    model.aux_logits = False
    model.AuxLogits = None
    model = model.eval()
    x = torch.rand(1, 3, 299, 299)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
413
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428


def test_fasterrcnn_double():
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, pretrained_backbone=False)
    model.double()
    model.eval()
    input_shape = (3, 300, 300)
    x = torch.rand(input_shape, dtype=torch.float64)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x
    assert len(out) == 1
    assert "boxes" in out[0]
    assert "scores" in out[0]
    assert "labels" in out[0]
429
    _check_input_backprop(model, model_input)
Anirudh's avatar
Anirudh committed
430
431
432
433
434


def test_googlenet_eval():
    # replacement for models.googlenet(pretrained=True) that does not download weights
    kwargs = {}
435
436
437
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
438
439
440
441
442
443
444
445
    name = "googlenet"
    model = models.GoogLeNet(**kwargs)
    model.aux_logits = False
    model.aux1 = None
    model.aux2 = None
    model = model.eval()
    x = torch.rand(1, 3, 224, 224)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
446
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
447
448
449
450
451
452
453
454
455
456
457
458
459
460


@needs_cuda
def test_fasterrcnn_switch_devices():
    def checkOut(out):
        assert len(out) == 1
        assert "boxes" in out[0]
        assert "scores" in out[0]
        assert "labels" in out[0]

    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, pretrained_backbone=False)
    model.cuda()
    model.eval()
    input_shape = (3, 300, 300)
461
    x = torch.rand(input_shape, device="cuda")
Anirudh's avatar
Anirudh committed
462
463
464
465
466
467
468
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    checkOut(out)

    with torch.cuda.amp.autocast():
469
        out = model(model_input)
470

Anirudh's avatar
Anirudh committed
471
    checkOut(out)
472

473
474
    _check_input_backprop(model, model_input)

Anirudh's avatar
Anirudh committed
475
476
477
478
    # now switch to cpu and make sure it works
    model.cpu()
    x = x.cpu()
    out_cpu = model([x])
479

Anirudh's avatar
Anirudh committed
480
    checkOut(out_cpu)
481

482
483
    _check_input_backprop(model, [x])

484

Anirudh's avatar
Anirudh committed
485
def test_generalizedrcnn_transform_repr():
486

Anirudh's avatar
Anirudh committed
487
488
489
    min_size, max_size = 224, 299
    image_mean = [0.485, 0.456, 0.406]
    image_std = [0.229, 0.224, 0.225]
490

491
492
493
    t = models.detection.transform.GeneralizedRCNNTransform(
        min_size=min_size, max_size=max_size, image_mean=image_mean, image_std=image_std
    )
494

Anirudh's avatar
Anirudh committed
495
    # Check integrity of object __repr__ attribute
496
497
    expected_string = "GeneralizedRCNNTransform("
    _indent = "\n    "
498
499
    expected_string += f"{_indent}Normalize(mean={image_mean}, std={image_std})"
    expected_string += f"{_indent}Resize(min_size=({min_size},), max_size={max_size}, "
Anirudh's avatar
Anirudh committed
500
501
    expected_string += "mode='bilinear')\n)"
    assert t.__repr__() == expected_string
502
503


504
@pytest.mark.parametrize("model_fn", get_models_from_module(models))
505
@pytest.mark.parametrize("dev", cpu_and_gpu())
506
def test_classification_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
507
508
    set_rng_seed(0)
    defaults = {
509
510
        "num_classes": 50,
        "input_shape": (1, 3, 224, 224),
Anirudh's avatar
Anirudh committed
511
    }
512
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
513
    kwargs = {**defaults, **_model_params.get(model_name, {})}
514
    num_classes = kwargs.get("num_classes")
515
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
516

517
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
518
519
520
521
522
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
    _assert_expected(out.cpu(), model_name, prec=0.1)
523
    assert out.shape[-1] == num_classes
Anirudh's avatar
Anirudh committed
524
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None))
525
    _check_fx_compatible(model, x)
Anirudh's avatar
Anirudh committed
526
527
528
529
530
531
532
533

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(x)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == 50
534

535
536
    _check_input_backprop(model, x)

537

538
@pytest.mark.parametrize("model_fn", get_models_from_module(models.segmentation))
539
@pytest.mark.parametrize("dev", cpu_and_gpu())
540
def test_segmentation_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
541
542
    set_rng_seed(0)
    defaults = {
543
544
545
        "num_classes": 10,
        "pretrained_backbone": False,
        "input_shape": (1, 3, 32, 32),
Anirudh's avatar
Anirudh committed
546
    }
547
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
548
    kwargs = {**defaults, **_model_params.get(model_name, {})}
549
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
550

551
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)["out"]

    def check_out(out):
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(out.cpu(), model_name, prec=prec)
        except AssertionError:
            # Unfortunately some segmentation models are flaky with autocast
            # so instead of validating the probability scores, check that the class
            # predictions match.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
            torch.testing.assert_close(out.argmax(dim=1), expected.argmax(dim=1), rtol=prec, atol=prec)
            return False  # Partial validation performed

        return True  # Full validation performed

    full_validation = check_out(out)

    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None))
578
    _check_fx_compatible(model, x)
Anirudh's avatar
Anirudh committed
579
580
581
582
583
584
585
586
587

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(x)["out"]
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                full_validation &= check_out(out)

    if not full_validation:
588
        msg = (
589
            f"The output of {test_segmentation_model.__name__} could only be partially validated. "
590
591
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
592
            "significant changes to the codebase."
593
        )
Anirudh's avatar
Anirudh committed
594
595
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
596

597
598
    _check_input_backprop(model, x)

599

600
@pytest.mark.parametrize("model_fn", get_models_from_module(models.detection))
601
@pytest.mark.parametrize("dev", cpu_and_gpu())
602
def test_detection_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
603
604
    set_rng_seed(0)
    defaults = {
605
606
607
        "num_classes": 50,
        "pretrained_backbone": False,
        "input_shape": (3, 300, 300),
Anirudh's avatar
Anirudh committed
608
    }
609
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
610
    kwargs = {**defaults, **_model_params.get(model_name, {})}
611
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
612

613
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    def check_out(out):
        assert len(out) == 1

        def compact(tensor):
            size = tensor.size()
            elements_per_sample = functools.reduce(operator.mul, size[1:], 1)
            if elements_per_sample > 30:
                return compute_mean_std(tensor)
            else:
                return subsample_tensor(tensor)

        def subsample_tensor(tensor):
            num_elems = tensor.size(0)
            num_samples = 20
            if num_elems <= num_samples:
                return tensor

            ith_index = num_elems // num_samples
639
            return tensor[ith_index - 1 :: ith_index]
Anirudh's avatar
Anirudh committed
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661

        def compute_mean_std(tensor):
            # can't compute mean of integral tensor
            tensor = tensor.to(torch.double)
            mean = torch.mean(tensor)
            std = torch.std(tensor)
            return {"mean": mean, "std": std}

        output = map_nested_tensor_object(out, tensor_map_fn=compact)
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(output, model_name, prec=prec)
        except AssertionError:
            # Unfortunately detection models are flaky due to the unstable sort
            # in NMS. If matching across all outputs fails, use the same approach
            # as in NMSTester.test_nms_cuda to see if this is caused by duplicate
            # scores.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
662
663
664
            torch.testing.assert_close(
                output[0]["scores"], expected[0]["scores"], rtol=prec, atol=prec, check_device=False, check_dtype=False
            )
Anirudh's avatar
Anirudh committed
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684

            # Note: Fmassa proposed turning off NMS by adapting the threshold
            # and then using the Hungarian algorithm as in DETR to find the
            # best match between output and expected boxes and eliminate some
            # of the flakiness. Worth exploring.
            return False  # Partial validation performed

        return True  # Full validation performed

    full_validation = check_out(out)
    _check_jit_scriptable(model, ([x],), unwrapper=script_model_unwrapper.get(model_name, None))

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(model_input)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                full_validation &= check_out(out)

    if not full_validation:
685
        msg = (
686
            f"The output of {test_detection_model.__name__} could only be partially validated. "
687
688
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
689
            "significant changes to the codebase."
690
        )
Anirudh's avatar
Anirudh committed
691
692
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
693

694
695
    _check_input_backprop(model, model_input)

696

697
698
@pytest.mark.parametrize("model_fn", get_models_from_module(models.detection))
def test_detection_model_validation(model_fn):
Anirudh's avatar
Anirudh committed
699
    set_rng_seed(0)
700
    model = model_fn(num_classes=50, pretrained_backbone=False)
Anirudh's avatar
Anirudh committed
701
702
703
704
705
706
707
708
    input_shape = (3, 300, 300)
    x = [torch.rand(input_shape)]

    # validate that targets are present in training
    with pytest.raises(ValueError):
        model(x)

    # validate type
709
    targets = [{"boxes": 0.0}]
Anirudh's avatar
Anirudh committed
710
711
712
713
714
    with pytest.raises(ValueError):
        model(x, targets=targets)

    # validate boxes shape
    for boxes in (torch.rand((4,)), torch.rand((1, 5))):
715
        targets = [{"boxes": boxes}]
Anirudh's avatar
Anirudh committed
716
717
718
719
720
        with pytest.raises(ValueError):
            model(x, targets=targets)

    # validate that no degenerate boxes are present
    boxes = torch.tensor([[1, 3, 1, 4], [2, 4, 3, 4]])
721
    targets = [{"boxes": boxes}]
Anirudh's avatar
Anirudh committed
722
723
    with pytest.raises(ValueError):
        model(x, targets=targets)
724

725

726
@pytest.mark.parametrize("model_fn", get_models_from_module(models.video))
727
@pytest.mark.parametrize("dev", cpu_and_gpu())
728
def test_video_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
729
730
731
    # the default input shape is
    # bs * num_channels * clip_len * h *w
    input_shape = (1, 3, 4, 112, 112)
732
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
733
    # test both basicblock and Bottleneck
734
    model = model_fn(num_classes=50)
Anirudh's avatar
Anirudh committed
735
736
737
738
739
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None))
740
    _check_fx_compatible(model, x)
Anirudh's avatar
Anirudh committed
741
742
743
744
745
746
    assert out.shape[-1] == 50

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(x)
            assert out.shape[-1] == 50
747

748
749
    _check_input_backprop(model, x)

750

751
752
753
754
755
756
757
@pytest.mark.skipif(
    not (
        "fbgemm" in torch.backends.quantized.supported_engines
        and "qnnpack" in torch.backends.quantized.supported_engines
    ),
    reason="This Pytorch Build has not been built with fbgemm and qnnpack",
)
758
759
@pytest.mark.parametrize("model_fn", get_models_from_module(models.quantization))
def test_quantized_classification_model(model_fn):
760
    set_rng_seed(0)
761
    defaults = {
762
        "num_classes": 5,
763
764
765
        "input_shape": (1, 3, 224, 224),
        "pretrained": False,
        "quantize": True,
766
    }
767
    model_name = model_fn.__name__
768
    kwargs = {**defaults, **_model_params.get(model_name, {})}
769
    input_shape = kwargs.pop("input_shape")
770
771

    # First check if quantize=True provides models that can run with input data
772
    model = model_fn(**kwargs)
773
    model.eval()
774
    x = torch.rand(input_shape)
775
776
777
778
779
780
781
    out = model(x)

    if model_name not in quantized_flaky_models:
        _assert_expected(out, model_name + "_quantized", prec=0.1)
        assert out.shape[-1] == 5
        _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None))
        _check_fx_compatible(model, x)
782

783
    kwargs["quantize"] = False
784
    for eval_mode in [True, False]:
785
        model = model_fn(**kwargs)
786
787
        if eval_mode:
            model.eval()
788
            model.qconfig = torch.ao.quantization.default_qconfig
789
790
        else:
            model.train()
791
            model.qconfig = torch.ao.quantization.default_qat_qconfig
792
793
794

        model.fuse_model()
        if eval_mode:
795
            torch.ao.quantization.prepare(model, inplace=True)
796
        else:
797
            torch.ao.quantization.prepare_qat(model, inplace=True)
798
799
            model.eval()

800
        torch.ao.quantization.convert(model, inplace=True)
801
802
803
804
805
806
807
808

    try:
        torch.jit.script(model)
    except Exception as e:
        tb = traceback.format_exc()
        raise AssertionError(f"model cannot be scripted. Traceback = {str(tb)}") from e


809
@pytest.mark.parametrize("model_fn", get_models_from_module(models.detection))
810
def test_detection_model_trainable_backbone_layers(model_fn, disable_weight_loading):
811
    model_name = model_fn.__name__
812
813
814
    max_trainable = _model_tests_values[model_name]["max_trainable"]
    n_trainable_params = []
    for trainable_layers in range(0, max_trainable + 1):
815
        model = model_fn(pretrained=False, pretrained_backbone=True, trainable_backbone_layers=trainable_layers)
816
817
818
819
820

        n_trainable_params.append(len([p for p in model.parameters() if p.requires_grad]))
    assert n_trainable_params == _model_tests_values[model_name]["n_trn_params_per_layer"]


821
if __name__ == "__main__":
822
    pytest.main([__file__])