test_models.py 33.4 KB
Newer Older
1
import contextlib
2
3
4
import functools
import operator
import os
5
6
import pkgutil
import sys
7
import warnings
8
from collections import OrderedDict
9
from tempfile import TemporaryDirectory
10
from typing import Any
11
12

import pytest
13
import torch
14
import torch.fx
15
import torch.nn as nn
16
from _utils_internal import get_relative_path
17
from common_utils import cpu_and_gpu, freeze_rng_state, map_nested_tensor_object, needs_cuda, set_rng_seed
18
from torchvision import models
19
20
from torchvision.models._api import find_model, list_models

21

22
ACCEPT = os.getenv("EXPECTTEST_ACCEPT", "0") == "1"
23
SKIP_BIG_MODEL = os.getenv("SKIP_BIG_MODEL", "1") == "1"
24
25


26
27
def list_model_fns(module):
    return [find_model(name) for name in list_models(module)]
28
29


30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
@pytest.fixture
def disable_weight_loading(mocker):
    """When testing models, the two slowest operations are the downloading of the weights to a file and loading them
    into the model. Unless, you want to test against specific weights, these steps can be disabled without any
    drawbacks.

    Including this fixture into the signature of your test, i.e. `test_foo(disable_weight_loading)`, will recurse
    through all models in `torchvision.models` and will patch all occurrences of the function
    `download_state_dict_from_url` as well as the method `load_state_dict` on all subclasses of `nn.Module` to be
    no-ops.

    .. warning:

        Loaded models are still executable as normal, but will always have random weights. Make sure to not use this
        fixture if you want to compare the model output against reference values.

    """
    starting_point = models
    function_name = "load_state_dict_from_url"
    method_name = "load_state_dict"

    module_names = {info.name for info in pkgutil.walk_packages(starting_point.__path__, f"{starting_point.__name__}.")}
    targets = {f"torchvision._internally_replaced_utils.{function_name}", f"torch.nn.Module.{method_name}"}
    for name in module_names:
        module = sys.modules.get(name)
        if not module:
            continue

        if function_name in module.__dict__:
            targets.add(f"{module.__name__}.{function_name}")

        targets.update(
            {
                f"{module.__name__}.{obj.__name__}.{method_name}"
                for obj in module.__dict__.values()
                if isinstance(obj, type) and issubclass(obj, nn.Module) and method_name in obj.__dict__
            }
        )

    for target in targets:
        # See https://github.com/pytorch/vision/pull/4867#discussion_r743677802 for details
        with contextlib.suppress(AttributeError):
            mocker.patch(target)


75
76
77
78
79
80
def _get_expected_file(name=None):
    # Determine expected file based on environment
    expected_file_base = get_relative_path(os.path.realpath(__file__), "expect")

    # Note: for legacy reasons, the reference file names all had "ModelTest.test_" in their names
    # We hardcode it here to avoid having to re-generate the reference files
81
    expected_file = os.path.join(expected_file_base, "ModelTester.test_" + name)
82
83
84
85
86
87
88
89
90
91
92
93
    expected_file += "_expect.pkl"

    if not ACCEPT and not os.path.exists(expected_file):
        raise RuntimeError(
            f"No expect file exists for {os.path.basename(expected_file)} in {expected_file}; "
            "to accept the current output, re-run the failing test after setting the EXPECTTEST_ACCEPT "
            "env variable. For example: EXPECTTEST_ACCEPT=1 pytest test/test_models.py -k alexnet"
        )

    return expected_file


94
def _assert_expected(output, name, prec=None, atol=None, rtol=None):
95
96
97
98
99
100
101
102
103
104
105
    """Test that a python value matches the recorded contents of a file
    based on a "check" name. The value must be
    pickable with `torch.save`. This file
    is placed in the 'expect' directory in the same directory
    as the test script. You can automatically update the recorded test
    output using an EXPECTTEST_ACCEPT=1 env variable.
    """
    expected_file = _get_expected_file(name)

    if ACCEPT:
        filename = {os.path.basename(expected_file)}
106
        print(f"Accepting updated output for {filename}:\n\n{output}")
107
108
109
110
        torch.save(output, expected_file)
        MAX_PICKLE_SIZE = 50 * 1000  # 50 KB
        binary_size = os.path.getsize(expected_file)
        if binary_size > MAX_PICKLE_SIZE:
111
            raise RuntimeError(f"The output for {filename}, is larger than 50kb - got {binary_size}kb")
112
113
    else:
        expected = torch.load(expected_file)
114
115
        rtol = rtol or prec  # keeping prec param for legacy reason, but could be removed ideally
        atol = atol or prec
116
117
118
        torch.testing.assert_close(output, expected, rtol=rtol, atol=atol, check_dtype=False)


119
def _check_jit_scriptable(nn_module, args, unwrapper=None, eager_out=None):
120
121
    """Check that a nn.Module's results in TorchScript match eager and that it can be exported"""

122
123
124
125
126
127
128
    def get_export_import_copy(m):
        """Save and load a TorchScript model"""
        with TemporaryDirectory() as dir:
            path = os.path.join(dir, "script.pt")
            m.save(path)
            imported = torch.jit.load(path)
        return imported
129
130
131

    sm = torch.jit.script(nn_module)

132
133
    if eager_out is None:
        with torch.no_grad(), freeze_rng_state():
134
            eager_out = nn_module(*args)
135

136
    with torch.no_grad(), freeze_rng_state():
137
138
139
140
141
        script_out = sm(*args)
        if unwrapper:
            script_out = unwrapper(script_out)

    torch.testing.assert_close(eager_out, script_out, atol=1e-4, rtol=1e-4)
142
143
144
145
146
147
148
149

    m_import = get_export_import_copy(sm)
    with torch.no_grad(), freeze_rng_state():
        imported_script_out = m_import(*args)
        if unwrapper:
            imported_script_out = unwrapper(imported_script_out)

    torch.testing.assert_close(script_out, imported_script_out, atol=3e-4, rtol=3e-4)
150
151


152
def _check_fx_compatible(model, inputs, eager_out=None):
153
    model_fx = torch.fx.symbolic_trace(model)
154
155
156
157
    if eager_out is None:
        eager_out = model(inputs)
    fx_out = model_fx(inputs)
    torch.testing.assert_close(eager_out, fx_out)
158
159


160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
def _check_input_backprop(model, inputs):
    if isinstance(inputs, list):
        requires_grad = list()
        for inp in inputs:
            requires_grad.append(inp.requires_grad)
            inp.requires_grad_(True)
    else:
        requires_grad = inputs.requires_grad
        inputs.requires_grad_(True)

    out = model(inputs)

    if isinstance(out, dict):
        out["out"].sum().backward()
    else:
        if isinstance(out[0], dict):
            out[0]["scores"].sum().backward()
        else:
            out[0].sum().backward()

    if isinstance(inputs, list):
        for i, inp in enumerate(inputs):
            assert inputs[i].grad is not None
            inp.requires_grad_(requires_grad[i])
    else:
        assert inputs.grad is not None
        inputs.requires_grad_(requires_grad)


189
190
191
# If 'unwrapper' is provided it will be called with the script model outputs
# before they are compared to the eager model outputs. This is useful if the
# model outputs are different between TorchScript / Eager mode
192
script_model_unwrapper = {
193
194
    "googlenet": lambda x: x.logits,
    "inception_v3": lambda x: x.logits,
195
    "fasterrcnn_resnet50_fpn": lambda x: x[1],
196
    "fasterrcnn_resnet50_fpn_v2": lambda x: x[1],
197
    "fasterrcnn_mobilenet_v3_large_fpn": lambda x: x[1],
198
    "fasterrcnn_mobilenet_v3_large_320_fpn": lambda x: x[1],
199
    "maskrcnn_resnet50_fpn": lambda x: x[1],
200
    "maskrcnn_resnet50_fpn_v2": lambda x: x[1],
201
202
    "keypointrcnn_resnet50_fpn": lambda x: x[1],
    "retinanet_resnet50_fpn": lambda x: x[1],
203
    "retinanet_resnet50_fpn_v2": lambda x: x[1],
204
    "ssd300_vgg16": lambda x: x[1],
205
    "ssdlite320_mobilenet_v3_large": lambda x: x[1],
Hu Ye's avatar
Hu Ye committed
206
    "fcos_resnet50_fpn": lambda x: x[1],
207
}
208
209


210
211
212
213
214
215
216
217
218
219
220
221
222
223
# The following models exhibit flaky numerics under autocast in _test_*_model harnesses.
# This may be caused by the harness environment (e.g. num classes, input initialization
# via torch.rand), and does not prove autocast is unsuitable when training with real data
# (autocast has been used successfully with real data for some of these models).
# TODO:  investigate why autocast numerics are flaky in the harnesses.
#
# For the following models, _test_*_model harnesses skip numerical checks on outputs when
# trying autocast. However, they still try an autocasted forward pass, so they still ensure
# autocast coverage suffices to prevent dtype errors in each model.
autocast_flaky_numerics = (
    "inception_v3",
    "resnet101",
    "resnet152",
    "wide_resnet101_2",
224
225
    "deeplabv3_resnet50",
    "deeplabv3_resnet101",
226
    "deeplabv3_mobilenet_v3_large",
227
228
    "fcn_resnet50",
    "fcn_resnet101",
229
    "lraspp_mobilenet_v3_large",
230
    "maskrcnn_resnet50_fpn",
231
    "maskrcnn_resnet50_fpn_v2",
232
    "keypointrcnn_resnet50_fpn",
233
234
)

235
236
237
# The tests for the following quantized models are flaky possibly due to inconsistent
# rounding errors in different platforms. For this reason the input/output consistency
# tests under test_quantized_classification_model will be skipped for the following models.
238
quantized_flaky_models = ("inception_v3", "resnet50")
239

240

241
242
243
# The following contains configuration parameters for all models which are used by
# the _test_*_model methods.
_model_params = {
244
245
246
247
248
249
250
    "inception_v3": {"input_shape": (1, 3, 299, 299)},
    "retinanet_resnet50_fpn": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
251
    },
252
253
254
255
256
257
258
    "retinanet_resnet50_fpn_v2": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
259
260
261
262
    "keypointrcnn_resnet50_fpn": {
        "num_classes": 2,
        "min_size": 224,
        "max_size": 224,
263
        "box_score_thresh": 0.17,
264
        "input_shape": (3, 224, 224),
265
    },
266
267
268
269
270
    "fasterrcnn_resnet50_fpn": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
271
    },
272
273
274
275
276
277
    "fasterrcnn_resnet50_fpn_v2": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
Hu Ye's avatar
Hu Ye committed
278
279
280
281
282
283
284
    "fcos_resnet50_fpn": {
        "num_classes": 2,
        "score_thresh": 0.05,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
285
286
287
288
289
    "maskrcnn_resnet50_fpn": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
290
    },
291
292
293
294
295
296
    "maskrcnn_resnet50_fpn_v2": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
297
298
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "box_score_thresh": 0.02076,
299
    },
300
301
302
303
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "box_score_thresh": 0.02076,
        "rpn_pre_nms_top_n_test": 1000,
        "rpn_post_nms_top_n_test": 1000,
304
    },
305
306
307
308
    "vit_h_14": {
        "image_size": 56,
        "input_shape": (1, 3, 56, 56),
    },
309
310
311
    "mvit_v1_b": {
        "input_shape": (1, 3, 16, 224, 224),
    },
312
313
314
    "mvit_v2_s": {
        "input_shape": (1, 3, 16, 224, 224),
    },
315
316
317
    "s3d": {
        "input_shape": (1, 3, 16, 224, 224),
    },
318
}
319
320
321
322
323
# speeding up slow models:
slow_models = [
    "convnext_base",
    "convnext_large",
    "resnext101_32x8d",
324
    "resnext101_64x4d",
325
326
327
328
329
330
331
332
333
334
    "wide_resnet101_2",
    "efficientnet_b6",
    "efficientnet_b7",
    "efficientnet_v2_m",
    "efficientnet_v2_l",
    "regnet_y_16gf",
    "regnet_y_32gf",
    "regnet_y_128gf",
    "regnet_x_16gf",
    "regnet_x_32gf",
Joao Gomes's avatar
Joao Gomes committed
335
    "swin_t",
336
337
    "swin_s",
    "swin_b",
Local State's avatar
Local State committed
338
339
340
    "swin_v2_t",
    "swin_v2_s",
    "swin_v2_b",
341
342
343
]
for m in slow_models:
    _model_params[m] = {"input_shape": (1, 3, 64, 64)}
344
345


346
347
348
349
350
351
# skip big models to reduce memory usage on CI test
skipped_big_models = {
    "vit_h_14",
    "regnet_y_128gf",
}

352
353
354
355
356
357
# The following contains configuration and expected values to be used tests that are model specific
_model_tests_values = {
    "retinanet_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [36, 46, 65, 78, 88, 89],
    },
358
359
360
361
    "retinanet_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [44, 74, 131, 170, 200, 203],
    },
362
363
364
365
366
367
368
369
    "keypointrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [48, 58, 77, 90, 100, 101],
    },
    "fasterrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [30, 40, 59, 72, 82, 83],
    },
370
371
372
373
    "fasterrcnn_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [50, 80, 137, 176, 206, 209],
    },
374
375
376
377
    "maskrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [42, 52, 71, 84, 94, 95],
    },
378
379
380
381
    "maskrcnn_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [66, 96, 153, 192, 222, 225],
    },
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "ssd300_vgg16": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [45, 51, 57, 63, 67, 71],
    },
    "ssdlite320_mobilenet_v3_large": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [96, 99, 138, 200, 239, 257, 266],
    },
Hu Ye's avatar
Hu Ye committed
398
399
400
401
    "fcos_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [54, 64, 83, 96, 106, 107],
    },
402
403
404
}


Anirudh's avatar
Anirudh committed
405
406
407
408
409
410
411
412
413
414
def _make_sliced_model(model, stop_layer):
    layers = OrderedDict()
    for name, layer in model.named_children():
        layers[name] = layer
        if name == stop_layer:
            break
    new_model = torch.nn.Sequential(layers)
    return new_model


415
416
@pytest.mark.parametrize("model_fn", [models.densenet121, models.densenet169, models.densenet201, models.densenet161])
def test_memory_efficient_densenet(model_fn):
Anirudh's avatar
Anirudh committed
417
418
419
    input_shape = (1, 3, 300, 300)
    x = torch.rand(input_shape)

420
    model1 = model_fn(num_classes=50, memory_efficient=True)
Anirudh's avatar
Anirudh committed
421
    params = model1.state_dict()
422
    num_params = sum(x.numel() for x in model1.parameters())
Anirudh's avatar
Anirudh committed
423
424
425
    model1.eval()
    out1 = model1(x)
    out1.sum().backward()
426
    num_grad = sum(x.grad.numel() for x in model1.parameters() if x.grad is not None)
Anirudh's avatar
Anirudh committed
427

428
    model2 = model_fn(num_classes=50, memory_efficient=False)
Anirudh's avatar
Anirudh committed
429
430
431
432
433
434
435
    model2.load_state_dict(params)
    model2.eval()
    out2 = model2(x)

    assert num_params == num_grad
    torch.testing.assert_close(out1, out2, rtol=0.0, atol=1e-5)

436
437
438
    _check_input_backprop(model1, x)
    _check_input_backprop(model2, x)

Anirudh's avatar
Anirudh committed
439

440
441
442
@pytest.mark.parametrize("dilate_layer_2", (True, False))
@pytest.mark.parametrize("dilate_layer_3", (True, False))
@pytest.mark.parametrize("dilate_layer_4", (True, False))
Anirudh's avatar
Anirudh committed
443
444
def test_resnet_dilation(dilate_layer_2, dilate_layer_3, dilate_layer_4):
    # TODO improve tests to also check that each layer has the right dimensionality
445
    model = models.resnet50(replace_stride_with_dilation=(dilate_layer_2, dilate_layer_3, dilate_layer_4))
Anirudh's avatar
Anirudh committed
446
447
448
449
450
451
452
453
454
    model = _make_sliced_model(model, stop_layer="layer4")
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    f = 2 ** sum((dilate_layer_2, dilate_layer_3, dilate_layer_4))
    assert out.shape == (1, 2048, 7 * f, 7 * f)


def test_mobilenet_v2_residual_setting():
455
    model = models.mobilenet_v2(inverted_residual_setting=[[1, 16, 1, 1], [6, 24, 2, 2]])
Anirudh's avatar
Anirudh committed
456
457
458
459
460
461
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    assert out.shape[-1] == 1000


462
463
464
@pytest.mark.parametrize("model_fn", [models.mobilenet_v2, models.mobilenet_v3_large, models.mobilenet_v3_small])
def test_mobilenet_norm_layer(model_fn):
    model = model_fn()
Anirudh's avatar
Anirudh committed
465
466
467
    assert any(isinstance(x, nn.BatchNorm2d) for x in model.modules())

    def get_gn(num_channels):
468
        return nn.GroupNorm(1, num_channels)
Anirudh's avatar
Anirudh committed
469

470
    model = model_fn(norm_layer=get_gn)
471
    assert not (any(isinstance(x, nn.BatchNorm2d) for x in model.modules()))
Anirudh's avatar
Anirudh committed
472
473
474
475
476
    assert any(isinstance(x, nn.GroupNorm) for x in model.modules())


def test_inception_v3_eval():
    kwargs = {}
477
478
479
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
480
481
482
483
484
485
486
    name = "inception_v3"
    model = models.Inception3(**kwargs)
    model.aux_logits = False
    model.AuxLogits = None
    model = model.eval()
    x = torch.rand(1, 3, 299, 299)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
487
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
488
489
490


def test_fasterrcnn_double():
491
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
492
493
494
495
496
497
498
499
500
501
502
    model.double()
    model.eval()
    input_shape = (3, 300, 300)
    x = torch.rand(input_shape, dtype=torch.float64)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x
    assert len(out) == 1
    assert "boxes" in out[0]
    assert "scores" in out[0]
    assert "labels" in out[0]
503
    _check_input_backprop(model, model_input)
Anirudh's avatar
Anirudh committed
504
505
506
507


def test_googlenet_eval():
    kwargs = {}
508
509
510
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
511
512
513
514
515
516
517
518
    name = "googlenet"
    model = models.GoogLeNet(**kwargs)
    model.aux_logits = False
    model.aux1 = None
    model.aux2 = None
    model = model.eval()
    x = torch.rand(1, 3, 224, 224)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
519
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
520
521
522
523
524
525
526
527
528
529


@needs_cuda
def test_fasterrcnn_switch_devices():
    def checkOut(out):
        assert len(out) == 1
        assert "boxes" in out[0]
        assert "scores" in out[0]
        assert "labels" in out[0]

530
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
531
532
533
    model.cuda()
    model.eval()
    input_shape = (3, 300, 300)
534
    x = torch.rand(input_shape, device="cuda")
Anirudh's avatar
Anirudh committed
535
536
537
538
539
540
541
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    checkOut(out)

    with torch.cuda.amp.autocast():
542
        out = model(model_input)
543

Anirudh's avatar
Anirudh committed
544
    checkOut(out)
545

546
547
    _check_input_backprop(model, model_input)

Anirudh's avatar
Anirudh committed
548
549
550
551
    # now switch to cpu and make sure it works
    model.cpu()
    x = x.cpu()
    out_cpu = model([x])
552

Anirudh's avatar
Anirudh committed
553
    checkOut(out_cpu)
554

555
556
    _check_input_backprop(model, [x])

557

Anirudh's avatar
Anirudh committed
558
def test_generalizedrcnn_transform_repr():
559

Anirudh's avatar
Anirudh committed
560
561
562
    min_size, max_size = 224, 299
    image_mean = [0.485, 0.456, 0.406]
    image_std = [0.229, 0.224, 0.225]
563

564
565
566
    t = models.detection.transform.GeneralizedRCNNTransform(
        min_size=min_size, max_size=max_size, image_mean=image_mean, image_std=image_std
    )
567

Anirudh's avatar
Anirudh committed
568
    # Check integrity of object __repr__ attribute
569
570
    expected_string = "GeneralizedRCNNTransform("
    _indent = "\n    "
571
572
    expected_string += f"{_indent}Normalize(mean={image_mean}, std={image_std})"
    expected_string += f"{_indent}Resize(min_size=({min_size},), max_size={max_size}, "
Anirudh's avatar
Anirudh committed
573
574
    expected_string += "mode='bilinear')\n)"
    assert t.__repr__() == expected_string
575
576


577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
test_vit_conv_stem_configs = [
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=64),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=512),
]


def vitc_b_16(**kwargs: Any):
    return models.VisionTransformer(
        image_size=224,
        patch_size=16,
        num_layers=12,
        num_heads=12,
        hidden_dim=768,
        mlp_dim=3072,
        conv_stem_configs=test_vit_conv_stem_configs,
        **kwargs,
    )


@pytest.mark.parametrize("model_fn", [vitc_b_16])
@pytest.mark.parametrize("dev", cpu_and_gpu())
def test_vitc_models(model_fn, dev):
    test_classification_model(model_fn, dev)


606
@pytest.mark.parametrize("model_fn", list_model_fns(models))
607
@pytest.mark.parametrize("dev", cpu_and_gpu())
608
def test_classification_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
609
610
    set_rng_seed(0)
    defaults = {
611
612
        "num_classes": 50,
        "input_shape": (1, 3, 224, 224),
Anirudh's avatar
Anirudh committed
613
    }
614
    model_name = model_fn.__name__
615
    if SKIP_BIG_MODEL and model_name in skipped_big_models:
616
        pytest.skip("Skipped to reduce memory usage. Set env var SKIP_BIG_MODEL=0 to enable test for this model")
Anirudh's avatar
Anirudh committed
617
    kwargs = {**defaults, **_model_params.get(model_name, {})}
618
    num_classes = kwargs.get("num_classes")
619
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
620

621
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
622
623
624
625
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
626
    _assert_expected(out.cpu(), model_name, prec=1e-3)
627
    assert out.shape[-1] == num_classes
628
629
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
630

631
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
632
633
634
635
636
637
        with torch.cuda.amp.autocast():
            out = model(x)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == 50
638

639
640
    _check_input_backprop(model, x)

641

642
@pytest.mark.parametrize("model_fn", list_model_fns(models.segmentation))
643
@pytest.mark.parametrize("dev", cpu_and_gpu())
644
def test_segmentation_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
645
646
    set_rng_seed(0)
    defaults = {
647
        "num_classes": 10,
648
        "weights_backbone": None,
649
        "input_shape": (1, 3, 32, 32),
Anirudh's avatar
Anirudh committed
650
    }
651
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
652
    kwargs = {**defaults, **_model_params.get(model_name, {})}
653
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
654

655
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
656
657
658
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
659
    out = model(x)
Anirudh's avatar
Anirudh committed
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678

    def check_out(out):
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(out.cpu(), model_name, prec=prec)
        except AssertionError:
            # Unfortunately some segmentation models are flaky with autocast
            # so instead of validating the probability scores, check that the class
            # predictions match.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
            torch.testing.assert_close(out.argmax(dim=1), expected.argmax(dim=1), rtol=prec, atol=prec)
            return False  # Partial validation performed

        return True  # Full validation performed

679
    full_validation = check_out(out["out"])
Anirudh's avatar
Anirudh committed
680

681
682
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
683

684
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
685
        with torch.cuda.amp.autocast():
686
            out = model(x)
Anirudh's avatar
Anirudh committed
687
688
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
689
                full_validation &= check_out(out["out"])
Anirudh's avatar
Anirudh committed
690
691

    if not full_validation:
692
        msg = (
693
            f"The output of {test_segmentation_model.__name__} could only be partially validated. "
694
695
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
696
            "significant changes to the codebase."
697
        )
Anirudh's avatar
Anirudh committed
698
699
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
700

701
702
    _check_input_backprop(model, x)

703

704
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
705
@pytest.mark.parametrize("dev", cpu_and_gpu())
706
def test_detection_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
707
708
    set_rng_seed(0)
    defaults = {
709
        "num_classes": 50,
710
        "weights_backbone": None,
711
        "input_shape": (3, 300, 300),
Anirudh's avatar
Anirudh committed
712
    }
713
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
714
    kwargs = {**defaults, **_model_params.get(model_name, {})}
715
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
716

717
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
718
719
720
721
722
723
724
725
726
727
728
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    def check_out(out):
        assert len(out) == 1

        def compact(tensor):
729
            tensor = tensor.cpu()
Anirudh's avatar
Anirudh committed
730
731
732
733
734
735
736
737
738
739
740
741
742
743
            size = tensor.size()
            elements_per_sample = functools.reduce(operator.mul, size[1:], 1)
            if elements_per_sample > 30:
                return compute_mean_std(tensor)
            else:
                return subsample_tensor(tensor)

        def subsample_tensor(tensor):
            num_elems = tensor.size(0)
            num_samples = 20
            if num_elems <= num_samples:
                return tensor

            ith_index = num_elems // num_samples
744
            return tensor[ith_index - 1 :: ith_index]
Anirudh's avatar
Anirudh committed
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766

        def compute_mean_std(tensor):
            # can't compute mean of integral tensor
            tensor = tensor.to(torch.double)
            mean = torch.mean(tensor)
            std = torch.std(tensor)
            return {"mean": mean, "std": std}

        output = map_nested_tensor_object(out, tensor_map_fn=compact)
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(output, model_name, prec=prec)
        except AssertionError:
            # Unfortunately detection models are flaky due to the unstable sort
            # in NMS. If matching across all outputs fails, use the same approach
            # as in NMSTester.test_nms_cuda to see if this is caused by duplicate
            # scores.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
767
768
769
            torch.testing.assert_close(
                output[0]["scores"], expected[0]["scores"], rtol=prec, atol=prec, check_device=False, check_dtype=False
            )
Anirudh's avatar
Anirudh committed
770
771
772
773
774
775
776
777
778
779

            # Note: Fmassa proposed turning off NMS by adapting the threshold
            # and then using the Hungarian algorithm as in DETR to find the
            # best match between output and expected boxes and eliminate some
            # of the flakiness. Worth exploring.
            return False  # Partial validation performed

        return True  # Full validation performed

    full_validation = check_out(out)
780
    _check_jit_scriptable(model, ([x],), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
Anirudh's avatar
Anirudh committed
781

782
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
783
784
785
786
787
788
789
        with torch.cuda.amp.autocast():
            out = model(model_input)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                full_validation &= check_out(out)

    if not full_validation:
790
        msg = (
791
            f"The output of {test_detection_model.__name__} could only be partially validated. "
792
793
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
794
            "significant changes to the codebase."
795
        )
Anirudh's avatar
Anirudh committed
796
797
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
798

799
800
    _check_input_backprop(model, model_input)

801

802
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
803
def test_detection_model_validation(model_fn):
Anirudh's avatar
Anirudh committed
804
    set_rng_seed(0)
805
    model = model_fn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
806
807
808
809
    input_shape = (3, 300, 300)
    x = [torch.rand(input_shape)]

    # validate that targets are present in training
810
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
811
812
813
        model(x)

    # validate type
814
    targets = [{"boxes": 0.0}]
815
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
816
817
818
819
        model(x, targets=targets)

    # validate boxes shape
    for boxes in (torch.rand((4,)), torch.rand((1, 5))):
820
        targets = [{"boxes": boxes}]
821
        with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
822
823
824
825
            model(x, targets=targets)

    # validate that no degenerate boxes are present
    boxes = torch.tensor([[1, 3, 1, 4], [2, 4, 3, 4]])
826
    targets = [{"boxes": boxes}]
827
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
828
        model(x, targets=targets)
829

830

831
@pytest.mark.parametrize("model_fn", list_model_fns(models.video))
832
@pytest.mark.parametrize("dev", cpu_and_gpu())
833
def test_video_model(model_fn, dev):
834
    set_rng_seed(0)
Anirudh's avatar
Anirudh committed
835
836
    # the default input shape is
    # bs * num_channels * clip_len * h *w
837
838
839
840
    defaults = {
        "input_shape": (1, 3, 4, 112, 112),
        "num_classes": 50,
    }
841
    model_name = model_fn.__name__
842
843
    if SKIP_BIG_MODEL and model_name in skipped_big_models:
        pytest.skip("Skipped to reduce memory usage. Set env var SKIP_BIG_MODEL=0 to enable test for this model")
844
845
846
    kwargs = {**defaults, **_model_params.get(model_name, {})}
    num_classes = kwargs.get("num_classes")
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
847
    # test both basicblock and Bottleneck
848
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
849
850
851
852
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
853
    _assert_expected(out.cpu(), model_name, prec=1e-5)
854
    assert out.shape[-1] == num_classes
855
856
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
857
    assert out.shape[-1] == num_classes
Anirudh's avatar
Anirudh committed
858

859
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
860
861
        with torch.cuda.amp.autocast():
            out = model(x)
862
863
864
865
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == num_classes
866

867
868
    _check_input_backprop(model, x)

869

870
871
872
873
874
875
876
@pytest.mark.skipif(
    not (
        "fbgemm" in torch.backends.quantized.supported_engines
        and "qnnpack" in torch.backends.quantized.supported_engines
    ),
    reason="This Pytorch Build has not been built with fbgemm and qnnpack",
)
877
@pytest.mark.parametrize("model_fn", list_model_fns(models.quantization))
878
def test_quantized_classification_model(model_fn):
879
    set_rng_seed(0)
880
    defaults = {
881
        "num_classes": 5,
882
883
        "input_shape": (1, 3, 224, 224),
        "quantize": True,
884
    }
885
    model_name = model_fn.__name__
886
    kwargs = {**defaults, **_model_params.get(model_name, {})}
887
    input_shape = kwargs.pop("input_shape")
888
889

    # First check if quantize=True provides models that can run with input data
890
    model = model_fn(**kwargs)
891
    model.eval()
892
    x = torch.rand(input_shape)
893
894
895
    out = model(x)

    if model_name not in quantized_flaky_models:
896
        _assert_expected(out, model_name + "_quantized", prec=2e-2)
897
        assert out.shape[-1] == 5
898
899
900
901
902
903
904
        _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
        _check_fx_compatible(model, x, eager_out=out)
    else:
        try:
            torch.jit.script(model)
        except Exception as e:
            raise AssertionError("model cannot be scripted.") from e
905

906
    kwargs["quantize"] = False
907
    for eval_mode in [True, False]:
908
        model = model_fn(**kwargs)
909
910
        if eval_mode:
            model.eval()
911
            model.qconfig = torch.ao.quantization.default_qconfig
912
913
        else:
            model.train()
914
            model.qconfig = torch.ao.quantization.default_qat_qconfig
915

916
        model.fuse_model(is_qat=not eval_mode)
917
        if eval_mode:
918
            torch.ao.quantization.prepare(model, inplace=True)
919
        else:
920
            torch.ao.quantization.prepare_qat(model, inplace=True)
921
922
            model.eval()

923
        torch.ao.quantization.convert(model, inplace=True)
924
925


926
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
927
def test_detection_model_trainable_backbone_layers(model_fn, disable_weight_loading):
928
    model_name = model_fn.__name__
929
930
931
    max_trainable = _model_tests_values[model_name]["max_trainable"]
    n_trainable_params = []
    for trainable_layers in range(0, max_trainable + 1):
932
        model = model_fn(weights=None, weights_backbone="DEFAULT", trainable_backbone_layers=trainable_layers)
933
934
935
936
937

        n_trainable_params.append(len([p for p in model.parameters() if p.requires_grad]))
    assert n_trainable_params == _model_tests_values[model_name]["n_trn_params_per_layer"]


938
@needs_cuda
939
@pytest.mark.parametrize("model_fn", list_model_fns(models.optical_flow))
940
@pytest.mark.parametrize("scripted", (False, True))
941
def test_raft(model_fn, scripted):
942
943
944
945
946
947
948
949
950

    torch.manual_seed(0)

    # We need very small images, otherwise the pickle size would exceed the 50KB
    # As a resut we need to override the correlation pyramid to not downsample
    # too much, otherwise we would get nan values (effective H and W would be
    # reduced to 1)
    corr_block = models.optical_flow.raft.CorrBlock(num_levels=2, radius=2)

951
    model = model_fn(corr_block=corr_block).eval().to("cuda")
952
953
954
955
956
957
958
959
960
961
962
    if scripted:
        model = torch.jit.script(model)

    bs = 1
    img1 = torch.rand(bs, 3, 80, 72).cuda()
    img2 = torch.rand(bs, 3, 80, 72).cuda()

    preds = model(img1, img2)
    flow_pred = preds[-1]
    # Tolerance is fairly high, but there are 2 * H * W outputs to check
    # The .pkl were generated on the AWS cluter, on the CI it looks like the resuts are slightly different
963
    _assert_expected(flow_pred, name=model_fn.__name__, atol=1e-2, rtol=1)
964
965


966
if __name__ == "__main__":
967
    pytest.main([__file__])