test_models.py 28.2 KB
Newer Older
1
import functools
2
import io
3
4
5
6
import operator
import os
import traceback
import warnings
7
from collections import OrderedDict
8
9

import pytest
10
import torch
11
import torch.fx
12
import torch.nn as nn
13
import torchvision
14
15
from _utils_internal import get_relative_path
from common_utils import map_nested_tensor_object, freeze_rng_state, set_rng_seed, cpu_and_gpu, needs_cuda
16
from torchvision import models
17

eellison's avatar
eellison committed
18

19
ACCEPT = os.getenv("EXPECTTEST_ACCEPT", "0") == "1"
20
21


22
23
24
def get_available_classification_models():
    # TODO add a registration mechanism to torchvision.models
    return [k for k, v in models.__dict__.items() if callable(v) and k[0].lower() == k[0] and k[0] != "_"]
25
26
27
28
29


def get_available_segmentation_models():
    # TODO add a registration mechanism to torchvision.models
    return [k for k, v in models.segmentation.__dict__.items() if callable(v) and k[0].lower() == k[0] and k[0] != "_"]
30
31


32
33
34
35
36
def get_available_detection_models():
    # TODO add a registration mechanism to torchvision.models
    return [k for k, v in models.detection.__dict__.items() if callable(v) and k[0].lower() == k[0] and k[0] != "_"]


37
38
39
40
41
def get_available_video_models():
    # TODO add a registration mechanism to torchvision.models
    return [k for k, v in models.video.__dict__.items() if callable(v) and k[0].lower() == k[0] and k[0] != "_"]


42
43
44
45
46
def get_available_quantizable_models():
    # TODO add a registration mechanism to torchvision.models
    return [k for k, v in models.quantization.__dict__.items() if callable(v) and k[0].lower() == k[0] and k[0] != "_"]


47
48
49
50
51
52
def _get_expected_file(name=None):
    # Determine expected file based on environment
    expected_file_base = get_relative_path(os.path.realpath(__file__), "expect")

    # Note: for legacy reasons, the reference file names all had "ModelTest.test_" in their names
    # We hardcode it here to avoid having to re-generate the reference files
53
    expected_file = expected_file = os.path.join(expected_file_base, "ModelTester.test_" + name)
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    expected_file += "_expect.pkl"

    if not ACCEPT and not os.path.exists(expected_file):
        raise RuntimeError(
            f"No expect file exists for {os.path.basename(expected_file)} in {expected_file}; "
            "to accept the current output, re-run the failing test after setting the EXPECTTEST_ACCEPT "
            "env variable. For example: EXPECTTEST_ACCEPT=1 pytest test/test_models.py -k alexnet"
        )

    return expected_file


def _assert_expected(output, name, prec):
    """Test that a python value matches the recorded contents of a file
    based on a "check" name. The value must be
    pickable with `torch.save`. This file
    is placed in the 'expect' directory in the same directory
    as the test script. You can automatically update the recorded test
    output using an EXPECTTEST_ACCEPT=1 env variable.
    """
    expected_file = _get_expected_file(name)

    if ACCEPT:
        filename = {os.path.basename(expected_file)}
        print("Accepting updated output for {}:\n\n{}".format(filename, output))
        torch.save(output, expected_file)
        MAX_PICKLE_SIZE = 50 * 1000  # 50 KB
        binary_size = os.path.getsize(expected_file)
        if binary_size > MAX_PICKLE_SIZE:
            raise RuntimeError("The output for {}, is larger than 50kb".format(filename))
    else:
        expected = torch.load(expected_file)
        rtol = atol = prec
        torch.testing.assert_close(output, expected, rtol=rtol, atol=atol, check_dtype=False)


def _check_jit_scriptable(nn_module, args, unwrapper=None, skip=False):
    """Check that a nn.Module's results in TorchScript match eager and that it can be exported"""

    def assert_export_import_module(m, args):
        """Check that the results of a model are the same after saving and loading"""
95

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
        def get_export_import_copy(m):
            """Save and load a TorchScript model"""
            buffer = io.BytesIO()
            torch.jit.save(m, buffer)
            buffer.seek(0)
            imported = torch.jit.load(buffer)
            return imported

        m_import = get_export_import_copy(m)
        with freeze_rng_state():
            results = m(*args)
        with freeze_rng_state():
            results_from_imported = m_import(*args)
        tol = 3e-4
        try:
            torch.testing.assert_close(results, results_from_imported, atol=tol, rtol=tol)
112
        except ValueError:
113
114
115
116
117
118
            # custom check for the models that return named tuples:
            # we compare field by field while ignoring None as assert_close can't handle None
            for a, b in zip(results, results_from_imported):
                if a is not None:
                    torch.testing.assert_close(a, b, atol=tol, rtol=tol)

119
    TEST_WITH_SLOW = os.getenv("PYTORCH_TEST_WITH_SLOW", "0") == "1"
120
121
    if not TEST_WITH_SLOW or skip:
        # TorchScript is not enabled, skip these tests
122
123
124
125
126
127
128
129
        msg = (
            "The check_jit_scriptable test for {} was skipped. "
            "This test checks if the module's results in TorchScript "
            "match eager and that it can be exported. To run these "
            "tests make sure you set the environment variable "
            "PYTORCH_TEST_WITH_SLOW=1 and that the test is not "
            "manually skipped.".format(nn_module.__class__.__name__)
        )
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
        warnings.warn(msg, RuntimeWarning)
        return None

    sm = torch.jit.script(nn_module)

    with freeze_rng_state():
        eager_out = nn_module(*args)

    with freeze_rng_state():
        script_out = sm(*args)
        if unwrapper:
            script_out = unwrapper(script_out)

    torch.testing.assert_close(eager_out, script_out, atol=1e-4, rtol=1e-4)
    assert_export_import_module(sm, args)


147
148
149
150
151
152
153
def _check_fx_compatible(model, inputs):
    model_fx = torch.fx.symbolic_trace(model)
    out = model(inputs)
    out_fx = model_fx(inputs)
    torch.testing.assert_close(out, out_fx)


154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
def _check_input_backprop(model, inputs):
    if isinstance(inputs, list):
        requires_grad = list()
        for inp in inputs:
            requires_grad.append(inp.requires_grad)
            inp.requires_grad_(True)
    else:
        requires_grad = inputs.requires_grad
        inputs.requires_grad_(True)

    out = model(inputs)

    if isinstance(out, dict):
        out["out"].sum().backward()
    else:
        if isinstance(out[0], dict):
            out[0]["scores"].sum().backward()
        else:
            out[0].sum().backward()

    if isinstance(inputs, list):
        for i, inp in enumerate(inputs):
            assert inputs[i].grad is not None
            inp.requires_grad_(requires_grad[i])
    else:
        assert inputs.grad is not None
        inputs.requires_grad_(requires_grad)


183
184
185
# If 'unwrapper' is provided it will be called with the script model outputs
# before they are compared to the eager model outputs. This is useful if the
# model outputs are different between TorchScript / Eager mode
186
script_model_unwrapper = {
187
188
    "googlenet": lambda x: x.logits,
    "inception_v3": lambda x: x.logits,
189
    "fasterrcnn_resnet50_fpn": lambda x: x[1],
190
    "fasterrcnn_mobilenet_v3_large_fpn": lambda x: x[1],
191
    "fasterrcnn_mobilenet_v3_large_320_fpn": lambda x: x[1],
192
193
194
    "maskrcnn_resnet50_fpn": lambda x: x[1],
    "keypointrcnn_resnet50_fpn": lambda x: x[1],
    "retinanet_resnet50_fpn": lambda x: x[1],
195
    "ssd300_vgg16": lambda x: x[1],
196
    "ssdlite320_mobilenet_v3_large": lambda x: x[1],
197
}
198
199


200
201
202
203
204
205
206
207
208
209
210
211
212
213
# The following models exhibit flaky numerics under autocast in _test_*_model harnesses.
# This may be caused by the harness environment (e.g. num classes, input initialization
# via torch.rand), and does not prove autocast is unsuitable when training with real data
# (autocast has been used successfully with real data for some of these models).
# TODO:  investigate why autocast numerics are flaky in the harnesses.
#
# For the following models, _test_*_model harnesses skip numerical checks on outputs when
# trying autocast. However, they still try an autocasted forward pass, so they still ensure
# autocast coverage suffices to prevent dtype errors in each model.
autocast_flaky_numerics = (
    "inception_v3",
    "resnet101",
    "resnet152",
    "wide_resnet101_2",
214
215
    "deeplabv3_resnet50",
    "deeplabv3_resnet101",
216
    "deeplabv3_mobilenet_v3_large",
217
218
    "fcn_resnet50",
    "fcn_resnet101",
219
    "lraspp_mobilenet_v3_large",
220
    "maskrcnn_resnet50_fpn",
221
222
)

223
224
225
226
227
# The tests for the following quantized models are flaky possibly due to inconsistent
# rounding errors in different platforms. For this reason the input/output consistency
# tests under test_quantized_classification_model will be skipped for the following models.
quantized_flaky_models = ("inception_v3",)

228

229
230
231
# The following contains configuration parameters for all models which are used by
# the _test_*_model methods.
_model_params = {
232
233
234
235
236
237
238
    "inception_v3": {"input_shape": (1, 3, 299, 299)},
    "retinanet_resnet50_fpn": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
239
    },
240
241
242
243
244
245
    "keypointrcnn_resnet50_fpn": {
        "num_classes": 2,
        "min_size": 224,
        "max_size": 224,
        "box_score_thresh": 0.15,
        "input_shape": (3, 224, 224),
246
    },
247
248
249
250
251
    "fasterrcnn_resnet50_fpn": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
252
    },
253
254
255
256
257
    "maskrcnn_resnet50_fpn": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
258
    },
259
260
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "box_score_thresh": 0.02076,
261
    },
262
263
264
265
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "box_score_thresh": 0.02076,
        "rpn_pre_nms_top_n_test": 1000,
        "rpn_post_nms_top_n_test": 1000,
266
267
268
269
    },
}


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# The following contains configuration and expected values to be used tests that are model specific
_model_tests_values = {
    "retinanet_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [36, 46, 65, 78, 88, 89],
    },
    "keypointrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [48, 58, 77, 90, 100, 101],
    },
    "fasterrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [30, 40, 59, 72, 82, 83],
    },
    "maskrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [42, 52, 71, 84, 94, 95],
    },
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "ssd300_vgg16": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [45, 51, 57, 63, 67, 71],
    },
    "ssdlite320_mobilenet_v3_large": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [96, 99, 138, 200, 239, 257, 266],
    },
}


Anirudh's avatar
Anirudh committed
307
308
309
310
311
312
313
314
315
316
def _make_sliced_model(model, stop_layer):
    layers = OrderedDict()
    for name, layer in model.named_children():
        layers[name] = layer
        if name == stop_layer:
            break
    new_model = torch.nn.Sequential(layers)
    return new_model


317
@pytest.mark.parametrize("model_name", ["densenet121", "densenet169", "densenet201", "densenet161"])
Anirudh's avatar
Anirudh committed
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
def test_memory_efficient_densenet(model_name):
    input_shape = (1, 3, 300, 300)
    x = torch.rand(input_shape)

    model1 = models.__dict__[model_name](num_classes=50, memory_efficient=True)
    params = model1.state_dict()
    num_params = sum([x.numel() for x in model1.parameters()])
    model1.eval()
    out1 = model1(x)
    out1.sum().backward()
    num_grad = sum([x.grad.numel() for x in model1.parameters() if x.grad is not None])

    model2 = models.__dict__[model_name](num_classes=50, memory_efficient=False)
    model2.load_state_dict(params)
    model2.eval()
    out2 = model2(x)

    assert num_params == num_grad
    torch.testing.assert_close(out1, out2, rtol=0.0, atol=1e-5)

338
339
340
    _check_input_backprop(model1, x)
    _check_input_backprop(model2, x)

Anirudh's avatar
Anirudh committed
341

342
343
344
@pytest.mark.parametrize("dilate_layer_2", (True, False))
@pytest.mark.parametrize("dilate_layer_3", (True, False))
@pytest.mark.parametrize("dilate_layer_4", (True, False))
Anirudh's avatar
Anirudh committed
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
def test_resnet_dilation(dilate_layer_2, dilate_layer_3, dilate_layer_4):
    # TODO improve tests to also check that each layer has the right dimensionality
    model = models.__dict__["resnet50"](replace_stride_with_dilation=(dilate_layer_2, dilate_layer_3, dilate_layer_4))
    model = _make_sliced_model(model, stop_layer="layer4")
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    f = 2 ** sum((dilate_layer_2, dilate_layer_3, dilate_layer_4))
    assert out.shape == (1, 2048, 7 * f, 7 * f)


def test_mobilenet_v2_residual_setting():
    model = models.__dict__["mobilenet_v2"](inverted_residual_setting=[[1, 16, 1, 1], [6, 24, 2, 2]])
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    assert out.shape[-1] == 1000


364
@pytest.mark.parametrize("model_name", ["mobilenet_v2", "mobilenet_v3_large", "mobilenet_v3_small"])
Anirudh's avatar
Anirudh committed
365
366
367
368
369
370
371
372
def test_mobilenet_norm_layer(model_name):
    model = models.__dict__[model_name]()
    assert any(isinstance(x, nn.BatchNorm2d) for x in model.modules())

    def get_gn(num_channels):
        return nn.GroupNorm(32, num_channels)

    model = models.__dict__[model_name](norm_layer=get_gn)
373
    assert not (any(isinstance(x, nn.BatchNorm2d) for x in model.modules()))
Anirudh's avatar
Anirudh committed
374
375
376
377
378
379
    assert any(isinstance(x, nn.GroupNorm) for x in model.modules())


def test_inception_v3_eval():
    # replacement for models.inception_v3(pretrained=True) that does not download weights
    kwargs = {}
380
381
382
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
383
384
385
386
387
388
389
    name = "inception_v3"
    model = models.Inception3(**kwargs)
    model.aux_logits = False
    model.AuxLogits = None
    model = model.eval()
    x = torch.rand(1, 3, 299, 299)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
390
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405


def test_fasterrcnn_double():
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, pretrained_backbone=False)
    model.double()
    model.eval()
    input_shape = (3, 300, 300)
    x = torch.rand(input_shape, dtype=torch.float64)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x
    assert len(out) == 1
    assert "boxes" in out[0]
    assert "scores" in out[0]
    assert "labels" in out[0]
406
    _check_input_backprop(model, model_input)
Anirudh's avatar
Anirudh committed
407
408
409
410
411


def test_googlenet_eval():
    # replacement for models.googlenet(pretrained=True) that does not download weights
    kwargs = {}
412
413
414
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
415
416
417
418
419
420
421
422
    name = "googlenet"
    model = models.GoogLeNet(**kwargs)
    model.aux_logits = False
    model.aux1 = None
    model.aux2 = None
    model = model.eval()
    x = torch.rand(1, 3, 224, 224)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
423
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
424
425
426
427
428
429
430
431
432
433
434
435
436
437


@needs_cuda
def test_fasterrcnn_switch_devices():
    def checkOut(out):
        assert len(out) == 1
        assert "boxes" in out[0]
        assert "scores" in out[0]
        assert "labels" in out[0]

    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, pretrained_backbone=False)
    model.cuda()
    model.eval()
    input_shape = (3, 300, 300)
438
    x = torch.rand(input_shape, device="cuda")
Anirudh's avatar
Anirudh committed
439
440
441
442
443
444
445
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    checkOut(out)

    with torch.cuda.amp.autocast():
446
        out = model(model_input)
447

Anirudh's avatar
Anirudh committed
448
    checkOut(out)
449

450
451
    _check_input_backprop(model, model_input)

Anirudh's avatar
Anirudh committed
452
453
454
455
    # now switch to cpu and make sure it works
    model.cpu()
    x = x.cpu()
    out_cpu = model([x])
456

Anirudh's avatar
Anirudh committed
457
    checkOut(out_cpu)
458

459
460
    _check_input_backprop(model, [x])

461

Anirudh's avatar
Anirudh committed
462
def test_generalizedrcnn_transform_repr():
463

Anirudh's avatar
Anirudh committed
464
465
466
    min_size, max_size = 224, 299
    image_mean = [0.485, 0.456, 0.406]
    image_std = [0.229, 0.224, 0.225]
467

468
469
470
    t = models.detection.transform.GeneralizedRCNNTransform(
        min_size=min_size, max_size=max_size, image_mean=image_mean, image_std=image_std
    )
471

Anirudh's avatar
Anirudh committed
472
    # Check integrity of object __repr__ attribute
473
474
475
476
    expected_string = "GeneralizedRCNNTransform("
    _indent = "\n    "
    expected_string += "{0}Normalize(mean={1}, std={2})".format(_indent, image_mean, image_std)
    expected_string += "{0}Resize(min_size=({1},), max_size={2}, ".format(_indent, min_size, max_size)
Anirudh's avatar
Anirudh committed
477
478
    expected_string += "mode='bilinear')\n)"
    assert t.__repr__() == expected_string
479
480


481
482
@pytest.mark.parametrize("model_name", get_available_classification_models())
@pytest.mark.parametrize("dev", cpu_and_gpu())
483
def test_classification_model(model_name, dev):
Anirudh's avatar
Anirudh committed
484
485
    set_rng_seed(0)
    defaults = {
486
487
        "num_classes": 50,
        "input_shape": (1, 3, 224, 224),
Anirudh's avatar
Anirudh committed
488
489
    }
    kwargs = {**defaults, **_model_params.get(model_name, {})}
490
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
491
492
493
494
495
496
497
498
499

    model = models.__dict__[model_name](**kwargs)
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
    _assert_expected(out.cpu(), model_name, prec=0.1)
    assert out.shape[-1] == 50
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None))
500
    _check_fx_compatible(model, x)
Anirudh's avatar
Anirudh committed
501
502
503
504
505
506
507
508

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(x)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == 50
509

510
511
    _check_input_backprop(model, x)

512

513
514
@pytest.mark.parametrize("model_name", get_available_segmentation_models())
@pytest.mark.parametrize("dev", cpu_and_gpu())
515
def test_segmentation_model(model_name, dev):
Anirudh's avatar
Anirudh committed
516
517
    set_rng_seed(0)
    defaults = {
518
519
520
        "num_classes": 10,
        "pretrained_backbone": False,
        "input_shape": (1, 3, 32, 32),
Anirudh's avatar
Anirudh committed
521
522
    }
    kwargs = {**defaults, **_model_params.get(model_name, {})}
523
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551

    model = models.segmentation.__dict__[model_name](**kwargs)
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)["out"]

    def check_out(out):
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(out.cpu(), model_name, prec=prec)
        except AssertionError:
            # Unfortunately some segmentation models are flaky with autocast
            # so instead of validating the probability scores, check that the class
            # predictions match.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
            torch.testing.assert_close(out.argmax(dim=1), expected.argmax(dim=1), rtol=prec, atol=prec)
            return False  # Partial validation performed

        return True  # Full validation performed

    full_validation = check_out(out)

    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None))
552
    _check_fx_compatible(model, x)
Anirudh's avatar
Anirudh committed
553
554
555
556
557
558
559
560
561

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(x)["out"]
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                full_validation &= check_out(out)

    if not full_validation:
562
563
564
565
566
567
        msg = (
            "The output of {} could only be partially validated. "
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
            "significant changes to the codebase.".format(test_segmentation_model.__name__)
        )
Anirudh's avatar
Anirudh committed
568
569
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
570

571
572
    _check_input_backprop(model, x)

573

574
575
@pytest.mark.parametrize("model_name", get_available_detection_models())
@pytest.mark.parametrize("dev", cpu_and_gpu())
576
def test_detection_model(model_name, dev):
Anirudh's avatar
Anirudh committed
577
578
    set_rng_seed(0)
    defaults = {
579
580
581
        "num_classes": 50,
        "pretrained_backbone": False,
        "input_shape": (3, 300, 300),
Anirudh's avatar
Anirudh committed
582
583
    }
    kwargs = {**defaults, **_model_params.get(model_name, {})}
584
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611

    model = models.detection.__dict__[model_name](**kwargs)
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    def check_out(out):
        assert len(out) == 1

        def compact(tensor):
            size = tensor.size()
            elements_per_sample = functools.reduce(operator.mul, size[1:], 1)
            if elements_per_sample > 30:
                return compute_mean_std(tensor)
            else:
                return subsample_tensor(tensor)

        def subsample_tensor(tensor):
            num_elems = tensor.size(0)
            num_samples = 20
            if num_elems <= num_samples:
                return tensor

            ith_index = num_elems // num_samples
612
            return tensor[ith_index - 1 :: ith_index]
Anirudh's avatar
Anirudh committed
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634

        def compute_mean_std(tensor):
            # can't compute mean of integral tensor
            tensor = tensor.to(torch.double)
            mean = torch.mean(tensor)
            std = torch.std(tensor)
            return {"mean": mean, "std": std}

        output = map_nested_tensor_object(out, tensor_map_fn=compact)
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(output, model_name, prec=prec)
        except AssertionError:
            # Unfortunately detection models are flaky due to the unstable sort
            # in NMS. If matching across all outputs fails, use the same approach
            # as in NMSTester.test_nms_cuda to see if this is caused by duplicate
            # scores.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
635
636
637
            torch.testing.assert_close(
                output[0]["scores"], expected[0]["scores"], rtol=prec, atol=prec, check_device=False, check_dtype=False
            )
Anirudh's avatar
Anirudh committed
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

            # Note: Fmassa proposed turning off NMS by adapting the threshold
            # and then using the Hungarian algorithm as in DETR to find the
            # best match between output and expected boxes and eliminate some
            # of the flakiness. Worth exploring.
            return False  # Partial validation performed

        return True  # Full validation performed

    full_validation = check_out(out)
    _check_jit_scriptable(model, ([x],), unwrapper=script_model_unwrapper.get(model_name, None))

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(model_input)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                full_validation &= check_out(out)

    if not full_validation:
658
659
660
661
662
663
        msg = (
            "The output of {} could only be partially validated. "
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
            "significant changes to the codebase.".format(test_detection_model.__name__)
        )
Anirudh's avatar
Anirudh committed
664
665
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
666

667
668
    _check_input_backprop(model, model_input)

669

670
@pytest.mark.parametrize("model_name", get_available_detection_models())
671
def test_detection_model_validation(model_name):
Anirudh's avatar
Anirudh committed
672
673
674
675
676
677
678
679
680
681
    set_rng_seed(0)
    model = models.detection.__dict__[model_name](num_classes=50, pretrained_backbone=False)
    input_shape = (3, 300, 300)
    x = [torch.rand(input_shape)]

    # validate that targets are present in training
    with pytest.raises(ValueError):
        model(x)

    # validate type
682
    targets = [{"boxes": 0.0}]
Anirudh's avatar
Anirudh committed
683
684
685
686
687
    with pytest.raises(ValueError):
        model(x, targets=targets)

    # validate boxes shape
    for boxes in (torch.rand((4,)), torch.rand((1, 5))):
688
        targets = [{"boxes": boxes}]
Anirudh's avatar
Anirudh committed
689
690
691
692
693
        with pytest.raises(ValueError):
            model(x, targets=targets)

    # validate that no degenerate boxes are present
    boxes = torch.tensor([[1, 3, 1, 4], [2, 4, 3, 4]])
694
    targets = [{"boxes": boxes}]
Anirudh's avatar
Anirudh committed
695
696
    with pytest.raises(ValueError):
        model(x, targets=targets)
697

698

699
700
@pytest.mark.parametrize("model_name", get_available_video_models())
@pytest.mark.parametrize("dev", cpu_and_gpu())
701
def test_video_model(model_name, dev):
Anirudh's avatar
Anirudh committed
702
703
704
705
706
707
708
709
710
711
    # the default input shape is
    # bs * num_channels * clip_len * h *w
    input_shape = (1, 3, 4, 112, 112)
    # test both basicblock and Bottleneck
    model = models.video.__dict__[model_name](num_classes=50)
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None))
712
    _check_fx_compatible(model, x)
Anirudh's avatar
Anirudh committed
713
714
715
716
717
718
    assert out.shape[-1] == 50

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(x)
            assert out.shape[-1] == 50
719

720
721
    _check_input_backprop(model, x)

722

723
724
725
726
727
728
729
730
@pytest.mark.skipif(
    not (
        "fbgemm" in torch.backends.quantized.supported_engines
        and "qnnpack" in torch.backends.quantized.supported_engines
    ),
    reason="This Pytorch Build has not been built with fbgemm and qnnpack",
)
@pytest.mark.parametrize("model_name", get_available_quantizable_models())
731
def test_quantized_classification_model(model_name):
732
    set_rng_seed(0)
733
    defaults = {
734
        "num_classes": 5,
735
736
737
        "input_shape": (1, 3, 224, 224),
        "pretrained": False,
        "quantize": True,
738
739
    }
    kwargs = {**defaults, **_model_params.get(model_name, {})}
740
    input_shape = kwargs.pop("input_shape")
741
742
743

    # First check if quantize=True provides models that can run with input data
    model = torchvision.models.quantization.__dict__[model_name](**kwargs)
744
    model.eval()
745
    x = torch.rand(input_shape)
746
747
748
749
750
751
752
    out = model(x)

    if model_name not in quantized_flaky_models:
        _assert_expected(out, model_name + "_quantized", prec=0.1)
        assert out.shape[-1] == 5
        _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None))
        _check_fx_compatible(model, x)
753

754
    kwargs["quantize"] = False
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
    for eval_mode in [True, False]:
        model = torchvision.models.quantization.__dict__[model_name](**kwargs)
        if eval_mode:
            model.eval()
            model.qconfig = torch.quantization.default_qconfig
        else:
            model.train()
            model.qconfig = torch.quantization.default_qat_qconfig

        model.fuse_model()
        if eval_mode:
            torch.quantization.prepare(model, inplace=True)
        else:
            torch.quantization.prepare_qat(model, inplace=True)
            model.eval()

        torch.quantization.convert(model, inplace=True)

    try:
        torch.jit.script(model)
    except Exception as e:
        tb = traceback.format_exc()
        raise AssertionError(f"model cannot be scripted. Traceback = {str(tb)}") from e


780
781
782
783
784
785
786
787
788
789
790
791
792
@pytest.mark.parametrize("model_name", get_available_detection_models())
def test_detection_model_trainable_backbone_layers(model_name):
    max_trainable = _model_tests_values[model_name]["max_trainable"]
    n_trainable_params = []
    for trainable_layers in range(0, max_trainable + 1):
        model = torchvision.models.detection.__dict__[model_name](
            pretrained=False, pretrained_backbone=True, trainable_backbone_layers=trainable_layers
        )

        n_trainable_params.append(len([p for p in model.parameters() if p.requires_grad]))
    assert n_trainable_params == _model_tests_values[model_name]["n_trn_params_per_layer"]


793
if __name__ == "__main__":
794
    pytest.main([__file__])