test_models.py 33.4 KB
Newer Older
1
import contextlib
2
3
4
import functools
import operator
import os
5
6
import pkgutil
import sys
7
import warnings
8
from collections import OrderedDict
9
from tempfile import TemporaryDirectory
10
from typing import Any
11
12

import pytest
13
import torch
14
import torch.fx
15
import torch.nn as nn
16
from _utils_internal import get_relative_path
17
from common_utils import cpu_and_gpu, freeze_rng_state, map_nested_tensor_object, needs_cuda, set_rng_seed
18
from torchvision import models
19
20
from torchvision.models._api import find_model, list_models

21

22
ACCEPT = os.getenv("EXPECTTEST_ACCEPT", "0") == "1"
23
SKIP_BIG_MODEL = os.getenv("SKIP_BIG_MODEL", "1") == "1"
24
25


26
27
def list_model_fns(module):
    return [find_model(name) for name in list_models(module)]
28
29


30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
@pytest.fixture
def disable_weight_loading(mocker):
    """When testing models, the two slowest operations are the downloading of the weights to a file and loading them
    into the model. Unless, you want to test against specific weights, these steps can be disabled without any
    drawbacks.

    Including this fixture into the signature of your test, i.e. `test_foo(disable_weight_loading)`, will recurse
    through all models in `torchvision.models` and will patch all occurrences of the function
    `download_state_dict_from_url` as well as the method `load_state_dict` on all subclasses of `nn.Module` to be
    no-ops.

    .. warning:

        Loaded models are still executable as normal, but will always have random weights. Make sure to not use this
        fixture if you want to compare the model output against reference values.

    """
    starting_point = models
    function_name = "load_state_dict_from_url"
    method_name = "load_state_dict"

    module_names = {info.name for info in pkgutil.walk_packages(starting_point.__path__, f"{starting_point.__name__}.")}
    targets = {f"torchvision._internally_replaced_utils.{function_name}", f"torch.nn.Module.{method_name}"}
    for name in module_names:
        module = sys.modules.get(name)
        if not module:
            continue

        if function_name in module.__dict__:
            targets.add(f"{module.__name__}.{function_name}")

        targets.update(
            {
                f"{module.__name__}.{obj.__name__}.{method_name}"
                for obj in module.__dict__.values()
                if isinstance(obj, type) and issubclass(obj, nn.Module) and method_name in obj.__dict__
            }
        )

    for target in targets:
        # See https://github.com/pytorch/vision/pull/4867#discussion_r743677802 for details
        with contextlib.suppress(AttributeError):
            mocker.patch(target)


75
76
77
78
79
80
def _get_expected_file(name=None):
    # Determine expected file based on environment
    expected_file_base = get_relative_path(os.path.realpath(__file__), "expect")

    # Note: for legacy reasons, the reference file names all had "ModelTest.test_" in their names
    # We hardcode it here to avoid having to re-generate the reference files
81
    expected_file = os.path.join(expected_file_base, "ModelTester.test_" + name)
82
83
84
85
86
87
88
89
90
91
92
93
    expected_file += "_expect.pkl"

    if not ACCEPT and not os.path.exists(expected_file):
        raise RuntimeError(
            f"No expect file exists for {os.path.basename(expected_file)} in {expected_file}; "
            "to accept the current output, re-run the failing test after setting the EXPECTTEST_ACCEPT "
            "env variable. For example: EXPECTTEST_ACCEPT=1 pytest test/test_models.py -k alexnet"
        )

    return expected_file


94
def _assert_expected(output, name, prec=None, atol=None, rtol=None):
95
96
97
98
99
100
101
102
103
104
105
    """Test that a python value matches the recorded contents of a file
    based on a "check" name. The value must be
    pickable with `torch.save`. This file
    is placed in the 'expect' directory in the same directory
    as the test script. You can automatically update the recorded test
    output using an EXPECTTEST_ACCEPT=1 env variable.
    """
    expected_file = _get_expected_file(name)

    if ACCEPT:
        filename = {os.path.basename(expected_file)}
106
        print(f"Accepting updated output for {filename}:\n\n{output}")
107
108
109
110
        torch.save(output, expected_file)
        MAX_PICKLE_SIZE = 50 * 1000  # 50 KB
        binary_size = os.path.getsize(expected_file)
        if binary_size > MAX_PICKLE_SIZE:
111
            raise RuntimeError(f"The output for {filename}, is larger than 50kb - got {binary_size}kb")
112
113
    else:
        expected = torch.load(expected_file)
114
115
        rtol = rtol or prec  # keeping prec param for legacy reason, but could be removed ideally
        atol = atol or prec
116
117
118
        torch.testing.assert_close(output, expected, rtol=rtol, atol=atol, check_dtype=False)


119
def _check_jit_scriptable(nn_module, args, unwrapper=None, eager_out=None):
120
121
    """Check that a nn.Module's results in TorchScript match eager and that it can be exported"""

122
123
124
125
126
127
128
    def get_export_import_copy(m):
        """Save and load a TorchScript model"""
        with TemporaryDirectory() as dir:
            path = os.path.join(dir, "script.pt")
            m.save(path)
            imported = torch.jit.load(path)
        return imported
129
130
131

    sm = torch.jit.script(nn_module)

132
133
    if eager_out is None:
        with torch.no_grad(), freeze_rng_state():
134
            eager_out = nn_module(*args)
135

136
    with torch.no_grad(), freeze_rng_state():
137
138
139
140
141
        script_out = sm(*args)
        if unwrapper:
            script_out = unwrapper(script_out)

    torch.testing.assert_close(eager_out, script_out, atol=1e-4, rtol=1e-4)
142
143
144
145
146
147
148
149

    m_import = get_export_import_copy(sm)
    with torch.no_grad(), freeze_rng_state():
        imported_script_out = m_import(*args)
        if unwrapper:
            imported_script_out = unwrapper(imported_script_out)

    torch.testing.assert_close(script_out, imported_script_out, atol=3e-4, rtol=3e-4)
150
151


152
def _check_fx_compatible(model, inputs, eager_out=None):
153
    model_fx = torch.fx.symbolic_trace(model)
154
155
156
157
    if eager_out is None:
        eager_out = model(inputs)
    fx_out = model_fx(inputs)
    torch.testing.assert_close(eager_out, fx_out)
158
159


160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
def _check_input_backprop(model, inputs):
    if isinstance(inputs, list):
        requires_grad = list()
        for inp in inputs:
            requires_grad.append(inp.requires_grad)
            inp.requires_grad_(True)
    else:
        requires_grad = inputs.requires_grad
        inputs.requires_grad_(True)

    out = model(inputs)

    if isinstance(out, dict):
        out["out"].sum().backward()
    else:
        if isinstance(out[0], dict):
            out[0]["scores"].sum().backward()
        else:
            out[0].sum().backward()

    if isinstance(inputs, list):
        for i, inp in enumerate(inputs):
            assert inputs[i].grad is not None
            inp.requires_grad_(requires_grad[i])
    else:
        assert inputs.grad is not None
        inputs.requires_grad_(requires_grad)


189
190
191
# If 'unwrapper' is provided it will be called with the script model outputs
# before they are compared to the eager model outputs. This is useful if the
# model outputs are different between TorchScript / Eager mode
192
script_model_unwrapper = {
193
194
    "googlenet": lambda x: x.logits,
    "inception_v3": lambda x: x.logits,
195
    "fasterrcnn_resnet50_fpn": lambda x: x[1],
196
    "fasterrcnn_resnet50_fpn_v2": lambda x: x[1],
197
    "fasterrcnn_mobilenet_v3_large_fpn": lambda x: x[1],
198
    "fasterrcnn_mobilenet_v3_large_320_fpn": lambda x: x[1],
199
    "maskrcnn_resnet50_fpn": lambda x: x[1],
200
    "maskrcnn_resnet50_fpn_v2": lambda x: x[1],
201
202
    "keypointrcnn_resnet50_fpn": lambda x: x[1],
    "retinanet_resnet50_fpn": lambda x: x[1],
203
    "retinanet_resnet50_fpn_v2": lambda x: x[1],
204
    "ssd300_vgg16": lambda x: x[1],
205
    "ssdlite320_mobilenet_v3_large": lambda x: x[1],
Hu Ye's avatar
Hu Ye committed
206
    "fcos_resnet50_fpn": lambda x: x[1],
207
}
208
209


210
211
212
213
214
215
216
217
218
219
220
221
222
223
# The following models exhibit flaky numerics under autocast in _test_*_model harnesses.
# This may be caused by the harness environment (e.g. num classes, input initialization
# via torch.rand), and does not prove autocast is unsuitable when training with real data
# (autocast has been used successfully with real data for some of these models).
# TODO:  investigate why autocast numerics are flaky in the harnesses.
#
# For the following models, _test_*_model harnesses skip numerical checks on outputs when
# trying autocast. However, they still try an autocasted forward pass, so they still ensure
# autocast coverage suffices to prevent dtype errors in each model.
autocast_flaky_numerics = (
    "inception_v3",
    "resnet101",
    "resnet152",
    "wide_resnet101_2",
224
225
    "deeplabv3_resnet50",
    "deeplabv3_resnet101",
226
    "deeplabv3_mobilenet_v3_large",
227
228
    "fcn_resnet50",
    "fcn_resnet101",
229
    "lraspp_mobilenet_v3_large",
230
    "maskrcnn_resnet50_fpn",
231
    "maskrcnn_resnet50_fpn_v2",
232
    "keypointrcnn_resnet50_fpn",
233
234
)

235
236
237
# The tests for the following quantized models are flaky possibly due to inconsistent
# rounding errors in different platforms. For this reason the input/output consistency
# tests under test_quantized_classification_model will be skipped for the following models.
238
quantized_flaky_models = ("inception_v3", "resnet50")
239

240

241
242
243
# The following contains configuration parameters for all models which are used by
# the _test_*_model methods.
_model_params = {
244
245
246
247
248
249
250
    "inception_v3": {"input_shape": (1, 3, 299, 299)},
    "retinanet_resnet50_fpn": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
251
    },
252
253
254
255
256
257
258
    "retinanet_resnet50_fpn_v2": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
259
260
261
262
    "keypointrcnn_resnet50_fpn": {
        "num_classes": 2,
        "min_size": 224,
        "max_size": 224,
263
        "box_score_thresh": 0.17,
264
        "input_shape": (3, 224, 224),
265
    },
266
267
268
269
270
    "fasterrcnn_resnet50_fpn": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
271
    },
272
273
274
275
276
277
    "fasterrcnn_resnet50_fpn_v2": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
Hu Ye's avatar
Hu Ye committed
278
279
280
281
282
283
284
    "fcos_resnet50_fpn": {
        "num_classes": 2,
        "score_thresh": 0.05,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
285
286
287
288
289
    "maskrcnn_resnet50_fpn": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
290
    },
291
292
293
294
295
296
    "maskrcnn_resnet50_fpn_v2": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
297
298
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "box_score_thresh": 0.02076,
299
    },
300
301
302
303
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "box_score_thresh": 0.02076,
        "rpn_pre_nms_top_n_test": 1000,
        "rpn_post_nms_top_n_test": 1000,
304
    },
305
306
307
308
    "vit_h_14": {
        "image_size": 56,
        "input_shape": (1, 3, 56, 56),
    },
309
310
311
    "mvit_v1_b": {
        "input_shape": (1, 3, 16, 224, 224),
    },
312
313
314
    "mvit_v2_s": {
        "input_shape": (1, 3, 16, 224, 224),
    },
315
}
316
317
318
319
320
# speeding up slow models:
slow_models = [
    "convnext_base",
    "convnext_large",
    "resnext101_32x8d",
321
    "resnext101_64x4d",
322
323
324
325
326
327
328
329
330
331
    "wide_resnet101_2",
    "efficientnet_b6",
    "efficientnet_b7",
    "efficientnet_v2_m",
    "efficientnet_v2_l",
    "regnet_y_16gf",
    "regnet_y_32gf",
    "regnet_y_128gf",
    "regnet_x_16gf",
    "regnet_x_32gf",
Joao Gomes's avatar
Joao Gomes committed
332
    "swin_t",
333
334
    "swin_s",
    "swin_b",
Local State's avatar
Local State committed
335
336
337
    "swin_v2_t",
    "swin_v2_s",
    "swin_v2_b",
338
339
340
]
for m in slow_models:
    _model_params[m] = {"input_shape": (1, 3, 64, 64)}
341
342


343
344
345
346
347
348
# skip big models to reduce memory usage on CI test
skipped_big_models = {
    "vit_h_14",
    "regnet_y_128gf",
}

349
350
351
352
353
354
# The following contains configuration and expected values to be used tests that are model specific
_model_tests_values = {
    "retinanet_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [36, 46, 65, 78, 88, 89],
    },
355
356
357
358
    "retinanet_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [44, 74, 131, 170, 200, 203],
    },
359
360
361
362
363
364
365
366
    "keypointrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [48, 58, 77, 90, 100, 101],
    },
    "fasterrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [30, 40, 59, 72, 82, 83],
    },
367
368
369
370
    "fasterrcnn_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [50, 80, 137, 176, 206, 209],
    },
371
372
373
374
    "maskrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [42, 52, 71, 84, 94, 95],
    },
375
376
377
378
    "maskrcnn_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [66, 96, 153, 192, 222, 225],
    },
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "ssd300_vgg16": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [45, 51, 57, 63, 67, 71],
    },
    "ssdlite320_mobilenet_v3_large": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [96, 99, 138, 200, 239, 257, 266],
    },
Hu Ye's avatar
Hu Ye committed
395
396
397
398
    "fcos_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [54, 64, 83, 96, 106, 107],
    },
399
400
401
}


Anirudh's avatar
Anirudh committed
402
403
404
405
406
407
408
409
410
411
def _make_sliced_model(model, stop_layer):
    layers = OrderedDict()
    for name, layer in model.named_children():
        layers[name] = layer
        if name == stop_layer:
            break
    new_model = torch.nn.Sequential(layers)
    return new_model


412
413
@pytest.mark.parametrize("model_fn", [models.densenet121, models.densenet169, models.densenet201, models.densenet161])
def test_memory_efficient_densenet(model_fn):
Anirudh's avatar
Anirudh committed
414
415
416
    input_shape = (1, 3, 300, 300)
    x = torch.rand(input_shape)

417
    model1 = model_fn(num_classes=50, memory_efficient=True)
Anirudh's avatar
Anirudh committed
418
    params = model1.state_dict()
419
    num_params = sum(x.numel() for x in model1.parameters())
Anirudh's avatar
Anirudh committed
420
421
422
    model1.eval()
    out1 = model1(x)
    out1.sum().backward()
423
    num_grad = sum(x.grad.numel() for x in model1.parameters() if x.grad is not None)
Anirudh's avatar
Anirudh committed
424

425
    model2 = model_fn(num_classes=50, memory_efficient=False)
Anirudh's avatar
Anirudh committed
426
427
428
429
430
431
432
    model2.load_state_dict(params)
    model2.eval()
    out2 = model2(x)

    assert num_params == num_grad
    torch.testing.assert_close(out1, out2, rtol=0.0, atol=1e-5)

433
434
435
    _check_input_backprop(model1, x)
    _check_input_backprop(model2, x)

Anirudh's avatar
Anirudh committed
436

437
438
439
@pytest.mark.parametrize("dilate_layer_2", (True, False))
@pytest.mark.parametrize("dilate_layer_3", (True, False))
@pytest.mark.parametrize("dilate_layer_4", (True, False))
Anirudh's avatar
Anirudh committed
440
441
def test_resnet_dilation(dilate_layer_2, dilate_layer_3, dilate_layer_4):
    # TODO improve tests to also check that each layer has the right dimensionality
442
    model = models.resnet50(replace_stride_with_dilation=(dilate_layer_2, dilate_layer_3, dilate_layer_4))
Anirudh's avatar
Anirudh committed
443
444
445
446
447
448
449
450
451
    model = _make_sliced_model(model, stop_layer="layer4")
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    f = 2 ** sum((dilate_layer_2, dilate_layer_3, dilate_layer_4))
    assert out.shape == (1, 2048, 7 * f, 7 * f)


def test_mobilenet_v2_residual_setting():
452
    model = models.mobilenet_v2(inverted_residual_setting=[[1, 16, 1, 1], [6, 24, 2, 2]])
Anirudh's avatar
Anirudh committed
453
454
455
456
457
458
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    assert out.shape[-1] == 1000


459
460
461
@pytest.mark.parametrize("model_fn", [models.mobilenet_v2, models.mobilenet_v3_large, models.mobilenet_v3_small])
def test_mobilenet_norm_layer(model_fn):
    model = model_fn()
Anirudh's avatar
Anirudh committed
462
463
464
    assert any(isinstance(x, nn.BatchNorm2d) for x in model.modules())

    def get_gn(num_channels):
465
        return nn.GroupNorm(1, num_channels)
Anirudh's avatar
Anirudh committed
466

467
    model = model_fn(norm_layer=get_gn)
468
    assert not (any(isinstance(x, nn.BatchNorm2d) for x in model.modules()))
Anirudh's avatar
Anirudh committed
469
470
471
472
473
    assert any(isinstance(x, nn.GroupNorm) for x in model.modules())


def test_inception_v3_eval():
    kwargs = {}
474
475
476
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
477
478
479
480
481
482
483
    name = "inception_v3"
    model = models.Inception3(**kwargs)
    model.aux_logits = False
    model.AuxLogits = None
    model = model.eval()
    x = torch.rand(1, 3, 299, 299)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
484
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
485
486
487


def test_fasterrcnn_double():
488
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
489
490
491
492
493
494
495
496
497
498
499
    model.double()
    model.eval()
    input_shape = (3, 300, 300)
    x = torch.rand(input_shape, dtype=torch.float64)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x
    assert len(out) == 1
    assert "boxes" in out[0]
    assert "scores" in out[0]
    assert "labels" in out[0]
500
    _check_input_backprop(model, model_input)
Anirudh's avatar
Anirudh committed
501
502
503
504


def test_googlenet_eval():
    kwargs = {}
505
506
507
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
508
509
510
511
512
513
514
515
    name = "googlenet"
    model = models.GoogLeNet(**kwargs)
    model.aux_logits = False
    model.aux1 = None
    model.aux2 = None
    model = model.eval()
    x = torch.rand(1, 3, 224, 224)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
516
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
517
518
519
520
521
522
523
524
525
526


@needs_cuda
def test_fasterrcnn_switch_devices():
    def checkOut(out):
        assert len(out) == 1
        assert "boxes" in out[0]
        assert "scores" in out[0]
        assert "labels" in out[0]

527
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
528
529
530
    model.cuda()
    model.eval()
    input_shape = (3, 300, 300)
531
    x = torch.rand(input_shape, device="cuda")
Anirudh's avatar
Anirudh committed
532
533
534
535
536
537
538
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    checkOut(out)

    with torch.cuda.amp.autocast():
539
        out = model(model_input)
540

Anirudh's avatar
Anirudh committed
541
    checkOut(out)
542

543
544
    _check_input_backprop(model, model_input)

Anirudh's avatar
Anirudh committed
545
546
547
548
    # now switch to cpu and make sure it works
    model.cpu()
    x = x.cpu()
    out_cpu = model([x])
549

Anirudh's avatar
Anirudh committed
550
    checkOut(out_cpu)
551

552
553
    _check_input_backprop(model, [x])

554

Anirudh's avatar
Anirudh committed
555
def test_generalizedrcnn_transform_repr():
556

Anirudh's avatar
Anirudh committed
557
558
559
    min_size, max_size = 224, 299
    image_mean = [0.485, 0.456, 0.406]
    image_std = [0.229, 0.224, 0.225]
560

561
562
563
    t = models.detection.transform.GeneralizedRCNNTransform(
        min_size=min_size, max_size=max_size, image_mean=image_mean, image_std=image_std
    )
564

Anirudh's avatar
Anirudh committed
565
    # Check integrity of object __repr__ attribute
566
567
    expected_string = "GeneralizedRCNNTransform("
    _indent = "\n    "
568
569
    expected_string += f"{_indent}Normalize(mean={image_mean}, std={image_std})"
    expected_string += f"{_indent}Resize(min_size=({min_size},), max_size={max_size}, "
Anirudh's avatar
Anirudh committed
570
571
    expected_string += "mode='bilinear')\n)"
    assert t.__repr__() == expected_string
572
573


574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
test_vit_conv_stem_configs = [
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=64),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=512),
]


def vitc_b_16(**kwargs: Any):
    return models.VisionTransformer(
        image_size=224,
        patch_size=16,
        num_layers=12,
        num_heads=12,
        hidden_dim=768,
        mlp_dim=3072,
        conv_stem_configs=test_vit_conv_stem_configs,
        **kwargs,
    )


@pytest.mark.parametrize("model_fn", [vitc_b_16])
@pytest.mark.parametrize("dev", cpu_and_gpu())
def test_vitc_models(model_fn, dev):
    test_classification_model(model_fn, dev)


603
@pytest.mark.parametrize("model_fn", list_model_fns(models))
604
@pytest.mark.parametrize("dev", cpu_and_gpu())
605
def test_classification_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
606
607
    set_rng_seed(0)
    defaults = {
608
609
        "num_classes": 50,
        "input_shape": (1, 3, 224, 224),
Anirudh's avatar
Anirudh committed
610
    }
611
    model_name = model_fn.__name__
612
    if SKIP_BIG_MODEL and model_name in skipped_big_models:
613
        pytest.skip("Skipped to reduce memory usage. Set env var SKIP_BIG_MODEL=0 to enable test for this model")
Anirudh's avatar
Anirudh committed
614
    kwargs = {**defaults, **_model_params.get(model_name, {})}
615
    num_classes = kwargs.get("num_classes")
616
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
617

618
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
619
620
621
622
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
623
    _assert_expected(out.cpu(), model_name, prec=1e-3)
624
    assert out.shape[-1] == num_classes
625
626
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
627

628
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
629
630
631
632
633
634
        with torch.cuda.amp.autocast():
            out = model(x)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == 50
635

636
637
    _check_input_backprop(model, x)

638

639
@pytest.mark.parametrize("model_fn", list_model_fns(models.segmentation))
640
@pytest.mark.parametrize("dev", cpu_and_gpu())
641
def test_segmentation_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
642
643
    set_rng_seed(0)
    defaults = {
644
        "num_classes": 10,
645
        "weights_backbone": None,
646
        "input_shape": (1, 3, 32, 32),
Anirudh's avatar
Anirudh committed
647
    }
648
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
649
    kwargs = {**defaults, **_model_params.get(model_name, {})}
650
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
651

652
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
653
654
655
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
656
    out = model(x)
Anirudh's avatar
Anirudh committed
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675

    def check_out(out):
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(out.cpu(), model_name, prec=prec)
        except AssertionError:
            # Unfortunately some segmentation models are flaky with autocast
            # so instead of validating the probability scores, check that the class
            # predictions match.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
            torch.testing.assert_close(out.argmax(dim=1), expected.argmax(dim=1), rtol=prec, atol=prec)
            return False  # Partial validation performed

        return True  # Full validation performed

676
    full_validation = check_out(out["out"])
Anirudh's avatar
Anirudh committed
677

678
679
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
680

681
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
682
        with torch.cuda.amp.autocast():
683
            out = model(x)
Anirudh's avatar
Anirudh committed
684
685
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
686
                full_validation &= check_out(out["out"])
Anirudh's avatar
Anirudh committed
687
688

    if not full_validation:
689
        msg = (
690
            f"The output of {test_segmentation_model.__name__} could only be partially validated. "
691
692
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
693
            "significant changes to the codebase."
694
        )
Anirudh's avatar
Anirudh committed
695
696
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
697

698
699
    _check_input_backprop(model, x)

700

701
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
702
@pytest.mark.parametrize("dev", cpu_and_gpu())
703
def test_detection_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
704
705
    set_rng_seed(0)
    defaults = {
706
        "num_classes": 50,
707
        "weights_backbone": None,
708
        "input_shape": (3, 300, 300),
Anirudh's avatar
Anirudh committed
709
    }
710
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
711
    kwargs = {**defaults, **_model_params.get(model_name, {})}
712
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
713

714
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
715
716
717
718
719
720
721
722
723
724
725
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    def check_out(out):
        assert len(out) == 1

        def compact(tensor):
726
            tensor = tensor.cpu()
Anirudh's avatar
Anirudh committed
727
728
729
730
731
732
733
734
735
736
737
738
739
740
            size = tensor.size()
            elements_per_sample = functools.reduce(operator.mul, size[1:], 1)
            if elements_per_sample > 30:
                return compute_mean_std(tensor)
            else:
                return subsample_tensor(tensor)

        def subsample_tensor(tensor):
            num_elems = tensor.size(0)
            num_samples = 20
            if num_elems <= num_samples:
                return tensor

            ith_index = num_elems // num_samples
741
            return tensor[ith_index - 1 :: ith_index]
Anirudh's avatar
Anirudh committed
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763

        def compute_mean_std(tensor):
            # can't compute mean of integral tensor
            tensor = tensor.to(torch.double)
            mean = torch.mean(tensor)
            std = torch.std(tensor)
            return {"mean": mean, "std": std}

        output = map_nested_tensor_object(out, tensor_map_fn=compact)
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(output, model_name, prec=prec)
        except AssertionError:
            # Unfortunately detection models are flaky due to the unstable sort
            # in NMS. If matching across all outputs fails, use the same approach
            # as in NMSTester.test_nms_cuda to see if this is caused by duplicate
            # scores.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
764
765
766
            torch.testing.assert_close(
                output[0]["scores"], expected[0]["scores"], rtol=prec, atol=prec, check_device=False, check_dtype=False
            )
Anirudh's avatar
Anirudh committed
767
768
769
770
771
772
773
774
775
776

            # Note: Fmassa proposed turning off NMS by adapting the threshold
            # and then using the Hungarian algorithm as in DETR to find the
            # best match between output and expected boxes and eliminate some
            # of the flakiness. Worth exploring.
            return False  # Partial validation performed

        return True  # Full validation performed

    full_validation = check_out(out)
777
    _check_jit_scriptable(model, ([x],), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
Anirudh's avatar
Anirudh committed
778

779
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
780
781
782
783
784
785
786
        with torch.cuda.amp.autocast():
            out = model(model_input)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                full_validation &= check_out(out)

    if not full_validation:
787
        msg = (
788
            f"The output of {test_detection_model.__name__} could only be partially validated. "
789
790
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
791
            "significant changes to the codebase."
792
        )
Anirudh's avatar
Anirudh committed
793
794
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
795

796
797
    _check_input_backprop(model, model_input)

798

799
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
800
def test_detection_model_validation(model_fn):
Anirudh's avatar
Anirudh committed
801
    set_rng_seed(0)
802
    model = model_fn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
803
804
805
806
    input_shape = (3, 300, 300)
    x = [torch.rand(input_shape)]

    # validate that targets are present in training
807
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
808
809
810
        model(x)

    # validate type
811
    targets = [{"boxes": 0.0}]
812
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
813
814
815
816
        model(x, targets=targets)

    # validate boxes shape
    for boxes in (torch.rand((4,)), torch.rand((1, 5))):
817
        targets = [{"boxes": boxes}]
818
        with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
819
820
821
822
            model(x, targets=targets)

    # validate that no degenerate boxes are present
    boxes = torch.tensor([[1, 3, 1, 4], [2, 4, 3, 4]])
823
    targets = [{"boxes": boxes}]
824
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
825
        model(x, targets=targets)
826

827

828
@pytest.mark.parametrize("model_fn", list_model_fns(models.video))
829
@pytest.mark.parametrize("dev", cpu_and_gpu())
830
def test_video_model(model_fn, dev):
831
    set_rng_seed(0)
Anirudh's avatar
Anirudh committed
832
833
    # the default input shape is
    # bs * num_channels * clip_len * h *w
834
835
836
837
    defaults = {
        "input_shape": (1, 3, 4, 112, 112),
        "num_classes": 50,
    }
838
    model_name = model_fn.__name__
839
840
    if SKIP_BIG_MODEL and model_name in skipped_big_models:
        pytest.skip("Skipped to reduce memory usage. Set env var SKIP_BIG_MODEL=0 to enable test for this model")
841
842
843
    kwargs = {**defaults, **_model_params.get(model_name, {})}
    num_classes = kwargs.get("num_classes")
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
844
    # test both basicblock and Bottleneck
845
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
846
847
848
849
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
850
    _assert_expected(out.cpu(), model_name, prec=1e-5)
851
    assert out.shape[-1] == num_classes
852
853
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
854
    assert out.shape[-1] == num_classes
Anirudh's avatar
Anirudh committed
855

856
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
857
858
        with torch.cuda.amp.autocast():
            out = model(x)
859
860
861
862
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == num_classes
863

864
865
    _check_input_backprop(model, x)

866

867
868
869
870
871
872
873
@pytest.mark.skipif(
    not (
        "fbgemm" in torch.backends.quantized.supported_engines
        and "qnnpack" in torch.backends.quantized.supported_engines
    ),
    reason="This Pytorch Build has not been built with fbgemm and qnnpack",
)
874
@pytest.mark.parametrize("model_fn", list_model_fns(models.quantization))
875
def test_quantized_classification_model(model_fn):
876
    set_rng_seed(0)
877
    defaults = {
878
        "num_classes": 5,
879
880
        "input_shape": (1, 3, 224, 224),
        "quantize": True,
881
    }
882
    model_name = model_fn.__name__
883
    kwargs = {**defaults, **_model_params.get(model_name, {})}
884
    input_shape = kwargs.pop("input_shape")
885
886

    # First check if quantize=True provides models that can run with input data
887
    model = model_fn(**kwargs)
888
    model.eval()
889
    x = torch.rand(input_shape)
890
891
892
    out = model(x)

    if model_name not in quantized_flaky_models:
893
        _assert_expected(out, model_name + "_quantized", prec=2e-2)
894
        assert out.shape[-1] == 5
895
896
897
898
899
900
901
        _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
        _check_fx_compatible(model, x, eager_out=out)
    else:
        try:
            torch.jit.script(model)
        except Exception as e:
            raise AssertionError("model cannot be scripted.") from e
902

903
    kwargs["quantize"] = False
904
    for eval_mode in [True, False]:
905
        model = model_fn(**kwargs)
906
907
        if eval_mode:
            model.eval()
908
            model.qconfig = torch.ao.quantization.default_qconfig
909
910
        else:
            model.train()
911
            model.qconfig = torch.ao.quantization.default_qat_qconfig
912

913
        model.fuse_model(is_qat=not eval_mode)
914
        if eval_mode:
915
            torch.ao.quantization.prepare(model, inplace=True)
916
        else:
917
            torch.ao.quantization.prepare_qat(model, inplace=True)
918
919
            model.eval()

920
        torch.ao.quantization.convert(model, inplace=True)
921
922


923
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
924
def test_detection_model_trainable_backbone_layers(model_fn, disable_weight_loading):
925
    model_name = model_fn.__name__
926
927
928
    max_trainable = _model_tests_values[model_name]["max_trainable"]
    n_trainable_params = []
    for trainable_layers in range(0, max_trainable + 1):
929
        model = model_fn(weights=None, weights_backbone="DEFAULT", trainable_backbone_layers=trainable_layers)
930
931
932
933
934

        n_trainable_params.append(len([p for p in model.parameters() if p.requires_grad]))
    assert n_trainable_params == _model_tests_values[model_name]["n_trn_params_per_layer"]


935
@needs_cuda
936
@pytest.mark.parametrize("model_fn", list_model_fns(models.optical_flow))
937
@pytest.mark.parametrize("scripted", (False, True))
938
def test_raft(model_fn, scripted):
939
940
941
942
943
944
945
946
947

    torch.manual_seed(0)

    # We need very small images, otherwise the pickle size would exceed the 50KB
    # As a resut we need to override the correlation pyramid to not downsample
    # too much, otherwise we would get nan values (effective H and W would be
    # reduced to 1)
    corr_block = models.optical_flow.raft.CorrBlock(num_levels=2, radius=2)

948
    model = model_fn(corr_block=corr_block).eval().to("cuda")
949
950
951
952
953
954
955
956
957
958
959
    if scripted:
        model = torch.jit.script(model)

    bs = 1
    img1 = torch.rand(bs, 3, 80, 72).cuda()
    img2 = torch.rand(bs, 3, 80, 72).cuda()

    preds = model(img1, img2)
    flow_pred = preds[-1]
    # Tolerance is fairly high, but there are 2 * H * W outputs to check
    # The .pkl were generated on the AWS cluter, on the CI it looks like the resuts are slightly different
960
    _assert_expected(flow_pred, name=model_fn.__name__, atol=1e-2, rtol=1)
961
962


963
if __name__ == "__main__":
964
    pytest.main([__file__])