test_models.py 32.3 KB
Newer Older
1
import contextlib
2
3
4
import functools
import operator
import os
5
6
import pkgutil
import sys
7
import warnings
8
from collections import OrderedDict
9
from tempfile import TemporaryDirectory
10
from typing import Any
11
12

import pytest
13
import torch
14
import torch.fx
15
import torch.nn as nn
16
17
from _utils_internal import get_relative_path
from common_utils import map_nested_tensor_object, freeze_rng_state, set_rng_seed, cpu_and_gpu, needs_cuda
18
from torchvision import models
19

20
ACCEPT = os.getenv("EXPECTTEST_ACCEPT", "0") == "1"
21
22


23
def get_models_from_module(module):
24
    # TODO add a registration mechanism to torchvision.models
25
26
27
28
29
    return [
        v
        for k, v in module.__dict__.items()
        if callable(v) and k[0].lower() == k[0] and k[0] != "_" and k != "get_weight"
    ]
30
31


32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
@pytest.fixture
def disable_weight_loading(mocker):
    """When testing models, the two slowest operations are the downloading of the weights to a file and loading them
    into the model. Unless, you want to test against specific weights, these steps can be disabled without any
    drawbacks.

    Including this fixture into the signature of your test, i.e. `test_foo(disable_weight_loading)`, will recurse
    through all models in `torchvision.models` and will patch all occurrences of the function
    `download_state_dict_from_url` as well as the method `load_state_dict` on all subclasses of `nn.Module` to be
    no-ops.

    .. warning:

        Loaded models are still executable as normal, but will always have random weights. Make sure to not use this
        fixture if you want to compare the model output against reference values.

    """
    starting_point = models
    function_name = "load_state_dict_from_url"
    method_name = "load_state_dict"

    module_names = {info.name for info in pkgutil.walk_packages(starting_point.__path__, f"{starting_point.__name__}.")}
    targets = {f"torchvision._internally_replaced_utils.{function_name}", f"torch.nn.Module.{method_name}"}
    for name in module_names:
        module = sys.modules.get(name)
        if not module:
            continue

        if function_name in module.__dict__:
            targets.add(f"{module.__name__}.{function_name}")

        targets.update(
            {
                f"{module.__name__}.{obj.__name__}.{method_name}"
                for obj in module.__dict__.values()
                if isinstance(obj, type) and issubclass(obj, nn.Module) and method_name in obj.__dict__
            }
        )

    for target in targets:
        # See https://github.com/pytorch/vision/pull/4867#discussion_r743677802 for details
        with contextlib.suppress(AttributeError):
            mocker.patch(target)


77
78
79
80
81
82
def _get_expected_file(name=None):
    # Determine expected file based on environment
    expected_file_base = get_relative_path(os.path.realpath(__file__), "expect")

    # Note: for legacy reasons, the reference file names all had "ModelTest.test_" in their names
    # We hardcode it here to avoid having to re-generate the reference files
83
    expected_file = os.path.join(expected_file_base, "ModelTester.test_" + name)
84
85
86
87
88
89
90
91
92
93
94
95
    expected_file += "_expect.pkl"

    if not ACCEPT and not os.path.exists(expected_file):
        raise RuntimeError(
            f"No expect file exists for {os.path.basename(expected_file)} in {expected_file}; "
            "to accept the current output, re-run the failing test after setting the EXPECTTEST_ACCEPT "
            "env variable. For example: EXPECTTEST_ACCEPT=1 pytest test/test_models.py -k alexnet"
        )

    return expected_file


96
def _assert_expected(output, name, prec=None, atol=None, rtol=None):
97
98
99
100
101
102
103
104
105
106
107
    """Test that a python value matches the recorded contents of a file
    based on a "check" name. The value must be
    pickable with `torch.save`. This file
    is placed in the 'expect' directory in the same directory
    as the test script. You can automatically update the recorded test
    output using an EXPECTTEST_ACCEPT=1 env variable.
    """
    expected_file = _get_expected_file(name)

    if ACCEPT:
        filename = {os.path.basename(expected_file)}
108
        print(f"Accepting updated output for {filename}:\n\n{output}")
109
110
111
112
        torch.save(output, expected_file)
        MAX_PICKLE_SIZE = 50 * 1000  # 50 KB
        binary_size = os.path.getsize(expected_file)
        if binary_size > MAX_PICKLE_SIZE:
113
            raise RuntimeError(f"The output for {filename}, is larger than 50kb - got {binary_size}kb")
114
115
    else:
        expected = torch.load(expected_file)
116
117
        rtol = rtol or prec  # keeping prec param for legacy reason, but could be removed ideally
        atol = atol or prec
118
119
120
        torch.testing.assert_close(output, expected, rtol=rtol, atol=atol, check_dtype=False)


121
def _check_jit_scriptable(nn_module, args, unwrapper=None, eager_out=None):
122
123
    """Check that a nn.Module's results in TorchScript match eager and that it can be exported"""

124
125
126
127
128
129
130
    def get_export_import_copy(m):
        """Save and load a TorchScript model"""
        with TemporaryDirectory() as dir:
            path = os.path.join(dir, "script.pt")
            m.save(path)
            imported = torch.jit.load(path)
        return imported
131
132
133

    sm = torch.jit.script(nn_module)

134
135
    if eager_out is None:
        with torch.no_grad(), freeze_rng_state():
136
            eager_out = nn_module(*args)
137

138
    with torch.no_grad(), freeze_rng_state():
139
140
141
142
143
        script_out = sm(*args)
        if unwrapper:
            script_out = unwrapper(script_out)

    torch.testing.assert_close(eager_out, script_out, atol=1e-4, rtol=1e-4)
144
145
146
147
148
149
150
151

    m_import = get_export_import_copy(sm)
    with torch.no_grad(), freeze_rng_state():
        imported_script_out = m_import(*args)
        if unwrapper:
            imported_script_out = unwrapper(imported_script_out)

    torch.testing.assert_close(script_out, imported_script_out, atol=3e-4, rtol=3e-4)
152
153


154
def _check_fx_compatible(model, inputs, eager_out=None):
155
    model_fx = torch.fx.symbolic_trace(model)
156
157
158
159
    if eager_out is None:
        eager_out = model(inputs)
    fx_out = model_fx(inputs)
    torch.testing.assert_close(eager_out, fx_out)
160
161


162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
def _check_input_backprop(model, inputs):
    if isinstance(inputs, list):
        requires_grad = list()
        for inp in inputs:
            requires_grad.append(inp.requires_grad)
            inp.requires_grad_(True)
    else:
        requires_grad = inputs.requires_grad
        inputs.requires_grad_(True)

    out = model(inputs)

    if isinstance(out, dict):
        out["out"].sum().backward()
    else:
        if isinstance(out[0], dict):
            out[0]["scores"].sum().backward()
        else:
            out[0].sum().backward()

    if isinstance(inputs, list):
        for i, inp in enumerate(inputs):
            assert inputs[i].grad is not None
            inp.requires_grad_(requires_grad[i])
    else:
        assert inputs.grad is not None
        inputs.requires_grad_(requires_grad)


191
192
193
# If 'unwrapper' is provided it will be called with the script model outputs
# before they are compared to the eager model outputs. This is useful if the
# model outputs are different between TorchScript / Eager mode
194
script_model_unwrapper = {
195
196
    "googlenet": lambda x: x.logits,
    "inception_v3": lambda x: x.logits,
197
    "fasterrcnn_resnet50_fpn": lambda x: x[1],
198
    "fasterrcnn_resnet50_fpn_v2": lambda x: x[1],
199
    "fasterrcnn_mobilenet_v3_large_fpn": lambda x: x[1],
200
    "fasterrcnn_mobilenet_v3_large_320_fpn": lambda x: x[1],
201
    "maskrcnn_resnet50_fpn": lambda x: x[1],
202
    "maskrcnn_resnet50_fpn_v2": lambda x: x[1],
203
204
    "keypointrcnn_resnet50_fpn": lambda x: x[1],
    "retinanet_resnet50_fpn": lambda x: x[1],
205
    "retinanet_resnet50_fpn_v2": lambda x: x[1],
206
    "ssd300_vgg16": lambda x: x[1],
207
    "ssdlite320_mobilenet_v3_large": lambda x: x[1],
Hu Ye's avatar
Hu Ye committed
208
    "fcos_resnet50_fpn": lambda x: x[1],
209
}
210
211


212
213
214
215
216
217
218
219
220
221
222
223
224
225
# The following models exhibit flaky numerics under autocast in _test_*_model harnesses.
# This may be caused by the harness environment (e.g. num classes, input initialization
# via torch.rand), and does not prove autocast is unsuitable when training with real data
# (autocast has been used successfully with real data for some of these models).
# TODO:  investigate why autocast numerics are flaky in the harnesses.
#
# For the following models, _test_*_model harnesses skip numerical checks on outputs when
# trying autocast. However, they still try an autocasted forward pass, so they still ensure
# autocast coverage suffices to prevent dtype errors in each model.
autocast_flaky_numerics = (
    "inception_v3",
    "resnet101",
    "resnet152",
    "wide_resnet101_2",
226
227
    "deeplabv3_resnet50",
    "deeplabv3_resnet101",
228
    "deeplabv3_mobilenet_v3_large",
229
230
    "fcn_resnet50",
    "fcn_resnet101",
231
    "lraspp_mobilenet_v3_large",
232
    "maskrcnn_resnet50_fpn",
233
    "maskrcnn_resnet50_fpn_v2",
234
235
)

236
237
238
# The tests for the following quantized models are flaky possibly due to inconsistent
# rounding errors in different platforms. For this reason the input/output consistency
# tests under test_quantized_classification_model will be skipped for the following models.
239
quantized_flaky_models = ("inception_v3", "resnet50")
240

241

242
243
244
# The following contains configuration parameters for all models which are used by
# the _test_*_model methods.
_model_params = {
245
246
247
248
249
250
251
    "inception_v3": {"input_shape": (1, 3, 299, 299)},
    "retinanet_resnet50_fpn": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
252
    },
253
254
255
256
257
258
259
    "retinanet_resnet50_fpn_v2": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
260
261
262
263
    "keypointrcnn_resnet50_fpn": {
        "num_classes": 2,
        "min_size": 224,
        "max_size": 224,
264
        "box_score_thresh": 0.17,
265
        "input_shape": (3, 224, 224),
266
    },
267
268
269
270
271
    "fasterrcnn_resnet50_fpn": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
272
    },
273
274
275
276
277
278
    "fasterrcnn_resnet50_fpn_v2": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
Hu Ye's avatar
Hu Ye committed
279
280
281
282
283
284
285
    "fcos_resnet50_fpn": {
        "num_classes": 2,
        "score_thresh": 0.05,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
286
287
288
289
290
    "maskrcnn_resnet50_fpn": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
291
    },
292
293
294
295
296
297
    "maskrcnn_resnet50_fpn_v2": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
298
299
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "box_score_thresh": 0.02076,
300
    },
301
302
303
304
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "box_score_thresh": 0.02076,
        "rpn_pre_nms_top_n_test": 1000,
        "rpn_post_nms_top_n_test": 1000,
305
    },
306
307
308
309
    "vit_h_14": {
        "image_size": 56,
        "input_shape": (1, 3, 56, 56),
    },
310
}
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
# speeding up slow models:
slow_models = [
    "convnext_base",
    "convnext_large",
    "resnext101_32x8d",
    "wide_resnet101_2",
    "efficientnet_b6",
    "efficientnet_b7",
    "efficientnet_v2_m",
    "efficientnet_v2_l",
    "regnet_y_16gf",
    "regnet_y_32gf",
    "regnet_y_128gf",
    "regnet_x_16gf",
    "regnet_x_32gf",
Joao Gomes's avatar
Joao Gomes committed
326
    "swin_t",
327
328
329
]
for m in slow_models:
    _model_params[m] = {"input_shape": (1, 3, 64, 64)}
330
331


332
333
334
335
336
337
# The following contains configuration and expected values to be used tests that are model specific
_model_tests_values = {
    "retinanet_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [36, 46, 65, 78, 88, 89],
    },
338
339
340
341
    "retinanet_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [44, 74, 131, 170, 200, 203],
    },
342
343
344
345
346
347
348
349
    "keypointrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [48, 58, 77, 90, 100, 101],
    },
    "fasterrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [30, 40, 59, 72, 82, 83],
    },
350
351
352
353
    "fasterrcnn_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [50, 80, 137, 176, 206, 209],
    },
354
355
356
357
    "maskrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [42, 52, 71, 84, 94, 95],
    },
358
359
360
361
    "maskrcnn_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [66, 96, 153, 192, 222, 225],
    },
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "ssd300_vgg16": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [45, 51, 57, 63, 67, 71],
    },
    "ssdlite320_mobilenet_v3_large": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [96, 99, 138, 200, 239, 257, 266],
    },
Hu Ye's avatar
Hu Ye committed
378
379
380
381
    "fcos_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [54, 64, 83, 96, 106, 107],
    },
382
383
384
}


Anirudh's avatar
Anirudh committed
385
386
387
388
389
390
391
392
393
394
def _make_sliced_model(model, stop_layer):
    layers = OrderedDict()
    for name, layer in model.named_children():
        layers[name] = layer
        if name == stop_layer:
            break
    new_model = torch.nn.Sequential(layers)
    return new_model


395
396
@pytest.mark.parametrize("model_fn", [models.densenet121, models.densenet169, models.densenet201, models.densenet161])
def test_memory_efficient_densenet(model_fn):
Anirudh's avatar
Anirudh committed
397
398
399
    input_shape = (1, 3, 300, 300)
    x = torch.rand(input_shape)

400
    model1 = model_fn(num_classes=50, memory_efficient=True)
Anirudh's avatar
Anirudh committed
401
    params = model1.state_dict()
402
    num_params = sum(x.numel() for x in model1.parameters())
Anirudh's avatar
Anirudh committed
403
404
405
    model1.eval()
    out1 = model1(x)
    out1.sum().backward()
406
    num_grad = sum(x.grad.numel() for x in model1.parameters() if x.grad is not None)
Anirudh's avatar
Anirudh committed
407

408
    model2 = model_fn(num_classes=50, memory_efficient=False)
Anirudh's avatar
Anirudh committed
409
410
411
412
413
414
415
    model2.load_state_dict(params)
    model2.eval()
    out2 = model2(x)

    assert num_params == num_grad
    torch.testing.assert_close(out1, out2, rtol=0.0, atol=1e-5)

416
417
418
    _check_input_backprop(model1, x)
    _check_input_backprop(model2, x)

Anirudh's avatar
Anirudh committed
419

420
421
422
@pytest.mark.parametrize("dilate_layer_2", (True, False))
@pytest.mark.parametrize("dilate_layer_3", (True, False))
@pytest.mark.parametrize("dilate_layer_4", (True, False))
Anirudh's avatar
Anirudh committed
423
424
def test_resnet_dilation(dilate_layer_2, dilate_layer_3, dilate_layer_4):
    # TODO improve tests to also check that each layer has the right dimensionality
425
    model = models.resnet50(replace_stride_with_dilation=(dilate_layer_2, dilate_layer_3, dilate_layer_4))
Anirudh's avatar
Anirudh committed
426
427
428
429
430
431
432
433
434
    model = _make_sliced_model(model, stop_layer="layer4")
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    f = 2 ** sum((dilate_layer_2, dilate_layer_3, dilate_layer_4))
    assert out.shape == (1, 2048, 7 * f, 7 * f)


def test_mobilenet_v2_residual_setting():
435
    model = models.mobilenet_v2(inverted_residual_setting=[[1, 16, 1, 1], [6, 24, 2, 2]])
Anirudh's avatar
Anirudh committed
436
437
438
439
440
441
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    assert out.shape[-1] == 1000


442
443
444
@pytest.mark.parametrize("model_fn", [models.mobilenet_v2, models.mobilenet_v3_large, models.mobilenet_v3_small])
def test_mobilenet_norm_layer(model_fn):
    model = model_fn()
Anirudh's avatar
Anirudh committed
445
446
447
    assert any(isinstance(x, nn.BatchNorm2d) for x in model.modules())

    def get_gn(num_channels):
448
        return nn.GroupNorm(1, num_channels)
Anirudh's avatar
Anirudh committed
449

450
    model = model_fn(norm_layer=get_gn)
451
    assert not (any(isinstance(x, nn.BatchNorm2d) for x in model.modules()))
Anirudh's avatar
Anirudh committed
452
453
454
455
456
    assert any(isinstance(x, nn.GroupNorm) for x in model.modules())


def test_inception_v3_eval():
    kwargs = {}
457
458
459
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
460
461
462
463
464
465
466
    name = "inception_v3"
    model = models.Inception3(**kwargs)
    model.aux_logits = False
    model.AuxLogits = None
    model = model.eval()
    x = torch.rand(1, 3, 299, 299)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
467
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
468
469
470


def test_fasterrcnn_double():
471
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
472
473
474
475
476
477
478
479
480
481
482
    model.double()
    model.eval()
    input_shape = (3, 300, 300)
    x = torch.rand(input_shape, dtype=torch.float64)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x
    assert len(out) == 1
    assert "boxes" in out[0]
    assert "scores" in out[0]
    assert "labels" in out[0]
483
    _check_input_backprop(model, model_input)
Anirudh's avatar
Anirudh committed
484
485
486
487


def test_googlenet_eval():
    kwargs = {}
488
489
490
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
491
492
493
494
495
496
497
498
    name = "googlenet"
    model = models.GoogLeNet(**kwargs)
    model.aux_logits = False
    model.aux1 = None
    model.aux2 = None
    model = model.eval()
    x = torch.rand(1, 3, 224, 224)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
499
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
500
501
502
503
504
505
506
507
508
509


@needs_cuda
def test_fasterrcnn_switch_devices():
    def checkOut(out):
        assert len(out) == 1
        assert "boxes" in out[0]
        assert "scores" in out[0]
        assert "labels" in out[0]

510
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
511
512
513
    model.cuda()
    model.eval()
    input_shape = (3, 300, 300)
514
    x = torch.rand(input_shape, device="cuda")
Anirudh's avatar
Anirudh committed
515
516
517
518
519
520
521
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    checkOut(out)

    with torch.cuda.amp.autocast():
522
        out = model(model_input)
523

Anirudh's avatar
Anirudh committed
524
    checkOut(out)
525

526
527
    _check_input_backprop(model, model_input)

Anirudh's avatar
Anirudh committed
528
529
530
531
    # now switch to cpu and make sure it works
    model.cpu()
    x = x.cpu()
    out_cpu = model([x])
532

Anirudh's avatar
Anirudh committed
533
    checkOut(out_cpu)
534

535
536
    _check_input_backprop(model, [x])

537

Anirudh's avatar
Anirudh committed
538
def test_generalizedrcnn_transform_repr():
539

Anirudh's avatar
Anirudh committed
540
541
542
    min_size, max_size = 224, 299
    image_mean = [0.485, 0.456, 0.406]
    image_std = [0.229, 0.224, 0.225]
543

544
545
546
    t = models.detection.transform.GeneralizedRCNNTransform(
        min_size=min_size, max_size=max_size, image_mean=image_mean, image_std=image_std
    )
547

Anirudh's avatar
Anirudh committed
548
    # Check integrity of object __repr__ attribute
549
550
    expected_string = "GeneralizedRCNNTransform("
    _indent = "\n    "
551
552
    expected_string += f"{_indent}Normalize(mean={image_mean}, std={image_std})"
    expected_string += f"{_indent}Resize(min_size=({min_size},), max_size={max_size}, "
Anirudh's avatar
Anirudh committed
553
554
    expected_string += "mode='bilinear')\n)"
    assert t.__repr__() == expected_string
555
556


557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
test_vit_conv_stem_configs = [
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=64),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=512),
]


def vitc_b_16(**kwargs: Any):
    return models.VisionTransformer(
        image_size=224,
        patch_size=16,
        num_layers=12,
        num_heads=12,
        hidden_dim=768,
        mlp_dim=3072,
        conv_stem_configs=test_vit_conv_stem_configs,
        **kwargs,
    )


@pytest.mark.parametrize("model_fn", [vitc_b_16])
@pytest.mark.parametrize("dev", cpu_and_gpu())
def test_vitc_models(model_fn, dev):
    test_classification_model(model_fn, dev)


586
@pytest.mark.parametrize("model_fn", get_models_from_module(models))
587
@pytest.mark.parametrize("dev", cpu_and_gpu())
588
def test_classification_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
589
590
    set_rng_seed(0)
    defaults = {
591
592
        "num_classes": 50,
        "input_shape": (1, 3, 224, 224),
Anirudh's avatar
Anirudh committed
593
    }
594
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
595
    kwargs = {**defaults, **_model_params.get(model_name, {})}
596
    num_classes = kwargs.get("num_classes")
597
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
598

599
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
600
601
602
603
604
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
    _assert_expected(out.cpu(), model_name, prec=0.1)
605
    assert out.shape[-1] == num_classes
606
607
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
608
609
610
611
612
613
614
615

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(x)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == 50
616

617
618
    _check_input_backprop(model, x)

619

620
@pytest.mark.parametrize("model_fn", get_models_from_module(models.segmentation))
621
@pytest.mark.parametrize("dev", cpu_and_gpu())
622
def test_segmentation_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
623
624
    set_rng_seed(0)
    defaults = {
625
        "num_classes": 10,
626
        "weights_backbone": None,
627
        "input_shape": (1, 3, 32, 32),
Anirudh's avatar
Anirudh committed
628
    }
629
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
630
    kwargs = {**defaults, **_model_params.get(model_name, {})}
631
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
632

633
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
634
635
636
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
637
    out = model(x)
Anirudh's avatar
Anirudh committed
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656

    def check_out(out):
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(out.cpu(), model_name, prec=prec)
        except AssertionError:
            # Unfortunately some segmentation models are flaky with autocast
            # so instead of validating the probability scores, check that the class
            # predictions match.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
            torch.testing.assert_close(out.argmax(dim=1), expected.argmax(dim=1), rtol=prec, atol=prec)
            return False  # Partial validation performed

        return True  # Full validation performed

657
    full_validation = check_out(out["out"])
Anirudh's avatar
Anirudh committed
658

659
660
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
661
662
663

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
664
            out = model(x)
Anirudh's avatar
Anirudh committed
665
666
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
667
                full_validation &= check_out(out["out"])
Anirudh's avatar
Anirudh committed
668
669

    if not full_validation:
670
        msg = (
671
            f"The output of {test_segmentation_model.__name__} could only be partially validated. "
672
673
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
674
            "significant changes to the codebase."
675
        )
Anirudh's avatar
Anirudh committed
676
677
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
678

679
680
    _check_input_backprop(model, x)

681

682
@pytest.mark.parametrize("model_fn", get_models_from_module(models.detection))
683
@pytest.mark.parametrize("dev", cpu_and_gpu())
684
def test_detection_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
685
686
    set_rng_seed(0)
    defaults = {
687
        "num_classes": 50,
688
        "weights_backbone": None,
689
        "input_shape": (3, 300, 300),
Anirudh's avatar
Anirudh committed
690
    }
691
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
692
    kwargs = {**defaults, **_model_params.get(model_name, {})}
693
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
694

695
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
696
697
698
699
700
701
702
703
704
705
706
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    def check_out(out):
        assert len(out) == 1

        def compact(tensor):
707
            tensor = tensor.cpu()
Anirudh's avatar
Anirudh committed
708
709
710
711
712
713
714
715
716
717
718
719
720
721
            size = tensor.size()
            elements_per_sample = functools.reduce(operator.mul, size[1:], 1)
            if elements_per_sample > 30:
                return compute_mean_std(tensor)
            else:
                return subsample_tensor(tensor)

        def subsample_tensor(tensor):
            num_elems = tensor.size(0)
            num_samples = 20
            if num_elems <= num_samples:
                return tensor

            ith_index = num_elems // num_samples
722
            return tensor[ith_index - 1 :: ith_index]
Anirudh's avatar
Anirudh committed
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744

        def compute_mean_std(tensor):
            # can't compute mean of integral tensor
            tensor = tensor.to(torch.double)
            mean = torch.mean(tensor)
            std = torch.std(tensor)
            return {"mean": mean, "std": std}

        output = map_nested_tensor_object(out, tensor_map_fn=compact)
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(output, model_name, prec=prec)
        except AssertionError:
            # Unfortunately detection models are flaky due to the unstable sort
            # in NMS. If matching across all outputs fails, use the same approach
            # as in NMSTester.test_nms_cuda to see if this is caused by duplicate
            # scores.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
745
746
747
            torch.testing.assert_close(
                output[0]["scores"], expected[0]["scores"], rtol=prec, atol=prec, check_device=False, check_dtype=False
            )
Anirudh's avatar
Anirudh committed
748
749
750
751
752
753
754
755
756
757

            # Note: Fmassa proposed turning off NMS by adapting the threshold
            # and then using the Hungarian algorithm as in DETR to find the
            # best match between output and expected boxes and eliminate some
            # of the flakiness. Worth exploring.
            return False  # Partial validation performed

        return True  # Full validation performed

    full_validation = check_out(out)
758
    _check_jit_scriptable(model, ([x],), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
Anirudh's avatar
Anirudh committed
759
760
761
762
763
764
765
766
767

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(model_input)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                full_validation &= check_out(out)

    if not full_validation:
768
        msg = (
769
            f"The output of {test_detection_model.__name__} could only be partially validated. "
770
771
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
772
            "significant changes to the codebase."
773
        )
Anirudh's avatar
Anirudh committed
774
775
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
776

777
778
    _check_input_backprop(model, model_input)

779

780
781
@pytest.mark.parametrize("model_fn", get_models_from_module(models.detection))
def test_detection_model_validation(model_fn):
Anirudh's avatar
Anirudh committed
782
    set_rng_seed(0)
783
    model = model_fn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
784
785
786
787
    input_shape = (3, 300, 300)
    x = [torch.rand(input_shape)]

    # validate that targets are present in training
788
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
789
790
791
        model(x)

    # validate type
792
    targets = [{"boxes": 0.0}]
793
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
794
795
796
797
        model(x, targets=targets)

    # validate boxes shape
    for boxes in (torch.rand((4,)), torch.rand((1, 5))):
798
        targets = [{"boxes": boxes}]
799
        with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
800
801
802
803
            model(x, targets=targets)

    # validate that no degenerate boxes are present
    boxes = torch.tensor([[1, 3, 1, 4], [2, 4, 3, 4]])
804
    targets = [{"boxes": boxes}]
805
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
806
        model(x, targets=targets)
807

808

809
@pytest.mark.parametrize("model_fn", get_models_from_module(models.video))
810
@pytest.mark.parametrize("dev", cpu_and_gpu())
811
def test_video_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
812
813
814
    # the default input shape is
    # bs * num_channels * clip_len * h *w
    input_shape = (1, 3, 4, 112, 112)
815
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
816
    # test both basicblock and Bottleneck
817
    model = model_fn(num_classes=50)
Anirudh's avatar
Anirudh committed
818
819
820
821
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
822
823
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
824
825
826
827
828
829
    assert out.shape[-1] == 50

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(x)
            assert out.shape[-1] == 50
830

831
832
    _check_input_backprop(model, x)

833

834
835
836
837
838
839
840
@pytest.mark.skipif(
    not (
        "fbgemm" in torch.backends.quantized.supported_engines
        and "qnnpack" in torch.backends.quantized.supported_engines
    ),
    reason="This Pytorch Build has not been built with fbgemm and qnnpack",
)
841
842
@pytest.mark.parametrize("model_fn", get_models_from_module(models.quantization))
def test_quantized_classification_model(model_fn):
843
    set_rng_seed(0)
844
    defaults = {
845
        "num_classes": 5,
846
847
        "input_shape": (1, 3, 224, 224),
        "quantize": True,
848
    }
849
    model_name = model_fn.__name__
850
    kwargs = {**defaults, **_model_params.get(model_name, {})}
851
    input_shape = kwargs.pop("input_shape")
852
853

    # First check if quantize=True provides models that can run with input data
854
    model = model_fn(**kwargs)
855
    model.eval()
856
    x = torch.rand(input_shape)
857
858
859
860
861
    out = model(x)

    if model_name not in quantized_flaky_models:
        _assert_expected(out, model_name + "_quantized", prec=0.1)
        assert out.shape[-1] == 5
862
863
864
865
866
867
868
        _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
        _check_fx_compatible(model, x, eager_out=out)
    else:
        try:
            torch.jit.script(model)
        except Exception as e:
            raise AssertionError("model cannot be scripted.") from e
869

870
    kwargs["quantize"] = False
871
    for eval_mode in [True, False]:
872
        model = model_fn(**kwargs)
873
874
        if eval_mode:
            model.eval()
875
            model.qconfig = torch.ao.quantization.default_qconfig
876
877
        else:
            model.train()
878
            model.qconfig = torch.ao.quantization.default_qat_qconfig
879

880
        model.fuse_model(is_qat=not eval_mode)
881
        if eval_mode:
882
            torch.ao.quantization.prepare(model, inplace=True)
883
        else:
884
            torch.ao.quantization.prepare_qat(model, inplace=True)
885
886
            model.eval()

887
        torch.ao.quantization.convert(model, inplace=True)
888
889


890
@pytest.mark.parametrize("model_fn", get_models_from_module(models.detection))
891
def test_detection_model_trainable_backbone_layers(model_fn, disable_weight_loading):
892
    model_name = model_fn.__name__
893
894
895
    max_trainable = _model_tests_values[model_name]["max_trainable"]
    n_trainable_params = []
    for trainable_layers in range(0, max_trainable + 1):
896
        model = model_fn(weights=None, weights_backbone="DEFAULT", trainable_backbone_layers=trainable_layers)
897
898
899
900
901

        n_trainable_params.append(len([p for p in model.parameters() if p.requires_grad]))
    assert n_trainable_params == _model_tests_values[model_name]["n_trn_params_per_layer"]


902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
@needs_cuda
@pytest.mark.parametrize("model_builder", (models.optical_flow.raft_large, models.optical_flow.raft_small))
@pytest.mark.parametrize("scripted", (False, True))
def test_raft(model_builder, scripted):

    torch.manual_seed(0)

    # We need very small images, otherwise the pickle size would exceed the 50KB
    # As a resut we need to override the correlation pyramid to not downsample
    # too much, otherwise we would get nan values (effective H and W would be
    # reduced to 1)
    corr_block = models.optical_flow.raft.CorrBlock(num_levels=2, radius=2)

    model = model_builder(corr_block=corr_block).eval().to("cuda")
    if scripted:
        model = torch.jit.script(model)

    bs = 1
    img1 = torch.rand(bs, 3, 80, 72).cuda()
    img2 = torch.rand(bs, 3, 80, 72).cuda()

    preds = model(img1, img2)
    flow_pred = preds[-1]
    # Tolerance is fairly high, but there are 2 * H * W outputs to check
    # The .pkl were generated on the AWS cluter, on the CI it looks like the resuts are slightly different
    _assert_expected(flow_pred, name=model_builder.__name__, atol=1e-2, rtol=1)


930
if __name__ == "__main__":
931
    pytest.main([__file__])