test_models.py 30.5 KB
Newer Older
1
import contextlib
2
3
4
import functools
import operator
import os
5
6
import pkgutil
import sys
7
8
import traceback
import warnings
9
from collections import OrderedDict
10
from tempfile import TemporaryDirectory
11
12

import pytest
13
import torch
14
import torch.fx
15
import torch.nn as nn
16
17
from _utils_internal import get_relative_path
from common_utils import map_nested_tensor_object, freeze_rng_state, set_rng_seed, cpu_and_gpu, needs_cuda
18
from torchvision import models
19

20
ACCEPT = os.getenv("EXPECTTEST_ACCEPT", "0") == "1"
21
22


23
def get_models_from_module(module):
24
    # TODO add a registration mechanism to torchvision.models
25
26
27
28
29
    return [
        v
        for k, v in module.__dict__.items()
        if callable(v) and k[0].lower() == k[0] and k[0] != "_" and k != "get_weight"
    ]
30
31


32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
@pytest.fixture
def disable_weight_loading(mocker):
    """When testing models, the two slowest operations are the downloading of the weights to a file and loading them
    into the model. Unless, you want to test against specific weights, these steps can be disabled without any
    drawbacks.

    Including this fixture into the signature of your test, i.e. `test_foo(disable_weight_loading)`, will recurse
    through all models in `torchvision.models` and will patch all occurrences of the function
    `download_state_dict_from_url` as well as the method `load_state_dict` on all subclasses of `nn.Module` to be
    no-ops.

    .. warning:

        Loaded models are still executable as normal, but will always have random weights. Make sure to not use this
        fixture if you want to compare the model output against reference values.

    """
    starting_point = models
    function_name = "load_state_dict_from_url"
    method_name = "load_state_dict"

    module_names = {info.name for info in pkgutil.walk_packages(starting_point.__path__, f"{starting_point.__name__}.")}
    targets = {f"torchvision._internally_replaced_utils.{function_name}", f"torch.nn.Module.{method_name}"}
    for name in module_names:
        module = sys.modules.get(name)
        if not module:
            continue

        if function_name in module.__dict__:
            targets.add(f"{module.__name__}.{function_name}")

        targets.update(
            {
                f"{module.__name__}.{obj.__name__}.{method_name}"
                for obj in module.__dict__.values()
                if isinstance(obj, type) and issubclass(obj, nn.Module) and method_name in obj.__dict__
            }
        )

    for target in targets:
        # See https://github.com/pytorch/vision/pull/4867#discussion_r743677802 for details
        with contextlib.suppress(AttributeError):
            mocker.patch(target)


77
78
79
80
81
82
def _get_expected_file(name=None):
    # Determine expected file based on environment
    expected_file_base = get_relative_path(os.path.realpath(__file__), "expect")

    # Note: for legacy reasons, the reference file names all had "ModelTest.test_" in their names
    # We hardcode it here to avoid having to re-generate the reference files
83
    expected_file = expected_file = os.path.join(expected_file_base, "ModelTester.test_" + name)
84
85
86
87
88
89
90
91
92
93
94
95
    expected_file += "_expect.pkl"

    if not ACCEPT and not os.path.exists(expected_file):
        raise RuntimeError(
            f"No expect file exists for {os.path.basename(expected_file)} in {expected_file}; "
            "to accept the current output, re-run the failing test after setting the EXPECTTEST_ACCEPT "
            "env variable. For example: EXPECTTEST_ACCEPT=1 pytest test/test_models.py -k alexnet"
        )

    return expected_file


96
def _assert_expected(output, name, prec=None, atol=None, rtol=None):
97
98
99
100
101
102
103
104
105
106
107
    """Test that a python value matches the recorded contents of a file
    based on a "check" name. The value must be
    pickable with `torch.save`. This file
    is placed in the 'expect' directory in the same directory
    as the test script. You can automatically update the recorded test
    output using an EXPECTTEST_ACCEPT=1 env variable.
    """
    expected_file = _get_expected_file(name)

    if ACCEPT:
        filename = {os.path.basename(expected_file)}
108
        print(f"Accepting updated output for {filename}:\n\n{output}")
109
110
111
112
        torch.save(output, expected_file)
        MAX_PICKLE_SIZE = 50 * 1000  # 50 KB
        binary_size = os.path.getsize(expected_file)
        if binary_size > MAX_PICKLE_SIZE:
113
            raise RuntimeError(f"The output for {filename}, is larger than 50kb - got {binary_size}kb")
114
115
    else:
        expected = torch.load(expected_file)
116
117
        rtol = rtol or prec  # keeping prec param for legacy reason, but could be removed ideally
        atol = atol or prec
118
119
120
121
122
123
124
125
        torch.testing.assert_close(output, expected, rtol=rtol, atol=atol, check_dtype=False)


def _check_jit_scriptable(nn_module, args, unwrapper=None, skip=False):
    """Check that a nn.Module's results in TorchScript match eager and that it can be exported"""

    def assert_export_import_module(m, args):
        """Check that the results of a model are the same after saving and loading"""
126

127
128
        def get_export_import_copy(m):
            """Save and load a TorchScript model"""
129
130
131
132
            with TemporaryDirectory() as dir:
                path = os.path.join(dir, "script.pt")
                m.save(path)
                imported = torch.jit.load(path)
133
134
135
            return imported

        m_import = get_export_import_copy(m)
136
        with torch.no_grad(), freeze_rng_state():
137
            results = m(*args)
138
        with torch.no_grad(), freeze_rng_state():
139
140
            results_from_imported = m_import(*args)
        tol = 3e-4
141
        torch.testing.assert_close(results, results_from_imported, atol=tol, rtol=tol)
142

143
    TEST_WITH_SLOW = os.getenv("PYTORCH_TEST_WITH_SLOW", "0") == "1"
144
145
    if not TEST_WITH_SLOW or skip:
        # TorchScript is not enabled, skip these tests
146
        msg = (
147
            f"The check_jit_scriptable test for {nn_module.__class__.__name__} was skipped. "
148
149
150
151
            "This test checks if the module's results in TorchScript "
            "match eager and that it can be exported. To run these "
            "tests make sure you set the environment variable "
            "PYTORCH_TEST_WITH_SLOW=1 and that the test is not "
152
            "manually skipped."
153
        )
154
155
156
157
158
        warnings.warn(msg, RuntimeWarning)
        return None

    sm = torch.jit.script(nn_module)

159
    with torch.no_grad(), freeze_rng_state():
160
161
        eager_out = nn_module(*args)

162
    with torch.no_grad(), freeze_rng_state():
163
164
165
166
167
168
169
170
        script_out = sm(*args)
        if unwrapper:
            script_out = unwrapper(script_out)

    torch.testing.assert_close(eager_out, script_out, atol=1e-4, rtol=1e-4)
    assert_export_import_module(sm, args)


171
172
173
174
175
176
177
def _check_fx_compatible(model, inputs):
    model_fx = torch.fx.symbolic_trace(model)
    out = model(inputs)
    out_fx = model_fx(inputs)
    torch.testing.assert_close(out, out_fx)


178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
def _check_input_backprop(model, inputs):
    if isinstance(inputs, list):
        requires_grad = list()
        for inp in inputs:
            requires_grad.append(inp.requires_grad)
            inp.requires_grad_(True)
    else:
        requires_grad = inputs.requires_grad
        inputs.requires_grad_(True)

    out = model(inputs)

    if isinstance(out, dict):
        out["out"].sum().backward()
    else:
        if isinstance(out[0], dict):
            out[0]["scores"].sum().backward()
        else:
            out[0].sum().backward()

    if isinstance(inputs, list):
        for i, inp in enumerate(inputs):
            assert inputs[i].grad is not None
            inp.requires_grad_(requires_grad[i])
    else:
        assert inputs.grad is not None
        inputs.requires_grad_(requires_grad)


207
208
209
# If 'unwrapper' is provided it will be called with the script model outputs
# before they are compared to the eager model outputs. This is useful if the
# model outputs are different between TorchScript / Eager mode
210
script_model_unwrapper = {
211
212
    "googlenet": lambda x: x.logits,
    "inception_v3": lambda x: x.logits,
213
    "fasterrcnn_resnet50_fpn": lambda x: x[1],
214
    "fasterrcnn_mobilenet_v3_large_fpn": lambda x: x[1],
215
    "fasterrcnn_mobilenet_v3_large_320_fpn": lambda x: x[1],
216
217
218
    "maskrcnn_resnet50_fpn": lambda x: x[1],
    "keypointrcnn_resnet50_fpn": lambda x: x[1],
    "retinanet_resnet50_fpn": lambda x: x[1],
219
    "ssd300_vgg16": lambda x: x[1],
220
    "ssdlite320_mobilenet_v3_large": lambda x: x[1],
Hu Ye's avatar
Hu Ye committed
221
    "fcos_resnet50_fpn": lambda x: x[1],
222
}
223
224


225
226
227
228
229
230
231
232
233
234
235
236
237
238
# The following models exhibit flaky numerics under autocast in _test_*_model harnesses.
# This may be caused by the harness environment (e.g. num classes, input initialization
# via torch.rand), and does not prove autocast is unsuitable when training with real data
# (autocast has been used successfully with real data for some of these models).
# TODO:  investigate why autocast numerics are flaky in the harnesses.
#
# For the following models, _test_*_model harnesses skip numerical checks on outputs when
# trying autocast. However, they still try an autocasted forward pass, so they still ensure
# autocast coverage suffices to prevent dtype errors in each model.
autocast_flaky_numerics = (
    "inception_v3",
    "resnet101",
    "resnet152",
    "wide_resnet101_2",
239
240
    "deeplabv3_resnet50",
    "deeplabv3_resnet101",
241
    "deeplabv3_mobilenet_v3_large",
242
243
    "fcn_resnet50",
    "fcn_resnet101",
244
    "lraspp_mobilenet_v3_large",
245
    "maskrcnn_resnet50_fpn",
246
247
)

248
249
250
# The tests for the following quantized models are flaky possibly due to inconsistent
# rounding errors in different platforms. For this reason the input/output consistency
# tests under test_quantized_classification_model will be skipped for the following models.
251
quantized_flaky_models = ("inception_v3", "resnet50")
252

253

254
255
256
# The following contains configuration parameters for all models which are used by
# the _test_*_model methods.
_model_params = {
257
258
259
260
261
262
263
    "inception_v3": {"input_shape": (1, 3, 299, 299)},
    "retinanet_resnet50_fpn": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
264
    },
265
266
267
268
269
270
    "keypointrcnn_resnet50_fpn": {
        "num_classes": 2,
        "min_size": 224,
        "max_size": 224,
        "box_score_thresh": 0.15,
        "input_shape": (3, 224, 224),
271
    },
272
273
274
275
276
    "fasterrcnn_resnet50_fpn": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
277
    },
Hu Ye's avatar
Hu Ye committed
278
279
280
281
282
283
284
    "fcos_resnet50_fpn": {
        "num_classes": 2,
        "score_thresh": 0.05,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
285
286
287
288
289
    "maskrcnn_resnet50_fpn": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
290
    },
291
292
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "box_score_thresh": 0.02076,
293
    },
294
295
296
297
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "box_score_thresh": 0.02076,
        "rpn_pre_nms_top_n_test": 1000,
        "rpn_post_nms_top_n_test": 1000,
298
299
300
301
    },
}


302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
# The following contains configuration and expected values to be used tests that are model specific
_model_tests_values = {
    "retinanet_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [36, 46, 65, 78, 88, 89],
    },
    "keypointrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [48, 58, 77, 90, 100, 101],
    },
    "fasterrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [30, 40, 59, 72, 82, 83],
    },
    "maskrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [42, 52, 71, 84, 94, 95],
    },
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "ssd300_vgg16": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [45, 51, 57, 63, 67, 71],
    },
    "ssdlite320_mobilenet_v3_large": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [96, 99, 138, 200, 239, 257, 266],
    },
Hu Ye's avatar
Hu Ye committed
336
337
338
339
    "fcos_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [54, 64, 83, 96, 106, 107],
    },
340
341
342
}


Anirudh's avatar
Anirudh committed
343
344
345
346
347
348
349
350
351
352
def _make_sliced_model(model, stop_layer):
    layers = OrderedDict()
    for name, layer in model.named_children():
        layers[name] = layer
        if name == stop_layer:
            break
    new_model = torch.nn.Sequential(layers)
    return new_model


353
354
@pytest.mark.parametrize("model_fn", [models.densenet121, models.densenet169, models.densenet201, models.densenet161])
def test_memory_efficient_densenet(model_fn):
Anirudh's avatar
Anirudh committed
355
356
357
    input_shape = (1, 3, 300, 300)
    x = torch.rand(input_shape)

358
    model1 = model_fn(num_classes=50, memory_efficient=True)
Anirudh's avatar
Anirudh committed
359
    params = model1.state_dict()
360
    num_params = sum(x.numel() for x in model1.parameters())
Anirudh's avatar
Anirudh committed
361
362
363
    model1.eval()
    out1 = model1(x)
    out1.sum().backward()
364
    num_grad = sum(x.grad.numel() for x in model1.parameters() if x.grad is not None)
Anirudh's avatar
Anirudh committed
365

366
    model2 = model_fn(num_classes=50, memory_efficient=False)
Anirudh's avatar
Anirudh committed
367
368
369
370
371
372
373
    model2.load_state_dict(params)
    model2.eval()
    out2 = model2(x)

    assert num_params == num_grad
    torch.testing.assert_close(out1, out2, rtol=0.0, atol=1e-5)

374
375
376
    _check_input_backprop(model1, x)
    _check_input_backprop(model2, x)

Anirudh's avatar
Anirudh committed
377

378
379
380
@pytest.mark.parametrize("dilate_layer_2", (True, False))
@pytest.mark.parametrize("dilate_layer_3", (True, False))
@pytest.mark.parametrize("dilate_layer_4", (True, False))
Anirudh's avatar
Anirudh committed
381
382
def test_resnet_dilation(dilate_layer_2, dilate_layer_3, dilate_layer_4):
    # TODO improve tests to also check that each layer has the right dimensionality
383
    model = models.resnet50(replace_stride_with_dilation=(dilate_layer_2, dilate_layer_3, dilate_layer_4))
Anirudh's avatar
Anirudh committed
384
385
386
387
388
389
390
391
392
    model = _make_sliced_model(model, stop_layer="layer4")
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    f = 2 ** sum((dilate_layer_2, dilate_layer_3, dilate_layer_4))
    assert out.shape == (1, 2048, 7 * f, 7 * f)


def test_mobilenet_v2_residual_setting():
393
    model = models.mobilenet_v2(inverted_residual_setting=[[1, 16, 1, 1], [6, 24, 2, 2]])
Anirudh's avatar
Anirudh committed
394
395
396
397
398
399
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    assert out.shape[-1] == 1000


400
401
402
@pytest.mark.parametrize("model_fn", [models.mobilenet_v2, models.mobilenet_v3_large, models.mobilenet_v3_small])
def test_mobilenet_norm_layer(model_fn):
    model = model_fn()
Anirudh's avatar
Anirudh committed
403
404
405
406
407
    assert any(isinstance(x, nn.BatchNorm2d) for x in model.modules())

    def get_gn(num_channels):
        return nn.GroupNorm(32, num_channels)

408
    model = model_fn(norm_layer=get_gn)
409
    assert not (any(isinstance(x, nn.BatchNorm2d) for x in model.modules()))
Anirudh's avatar
Anirudh committed
410
411
412
413
414
415
    assert any(isinstance(x, nn.GroupNorm) for x in model.modules())


def test_inception_v3_eval():
    # replacement for models.inception_v3(pretrained=True) that does not download weights
    kwargs = {}
416
417
418
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
419
420
421
422
423
424
425
    name = "inception_v3"
    model = models.Inception3(**kwargs)
    model.aux_logits = False
    model.AuxLogits = None
    model = model.eval()
    x = torch.rand(1, 3, 299, 299)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
426
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441


def test_fasterrcnn_double():
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, pretrained_backbone=False)
    model.double()
    model.eval()
    input_shape = (3, 300, 300)
    x = torch.rand(input_shape, dtype=torch.float64)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x
    assert len(out) == 1
    assert "boxes" in out[0]
    assert "scores" in out[0]
    assert "labels" in out[0]
442
    _check_input_backprop(model, model_input)
Anirudh's avatar
Anirudh committed
443
444
445
446
447


def test_googlenet_eval():
    # replacement for models.googlenet(pretrained=True) that does not download weights
    kwargs = {}
448
449
450
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
451
452
453
454
455
456
457
458
    name = "googlenet"
    model = models.GoogLeNet(**kwargs)
    model.aux_logits = False
    model.aux1 = None
    model.aux2 = None
    model = model.eval()
    x = torch.rand(1, 3, 224, 224)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
459
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
460
461
462
463
464
465
466
467
468
469
470
471
472
473


@needs_cuda
def test_fasterrcnn_switch_devices():
    def checkOut(out):
        assert len(out) == 1
        assert "boxes" in out[0]
        assert "scores" in out[0]
        assert "labels" in out[0]

    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, pretrained_backbone=False)
    model.cuda()
    model.eval()
    input_shape = (3, 300, 300)
474
    x = torch.rand(input_shape, device="cuda")
Anirudh's avatar
Anirudh committed
475
476
477
478
479
480
481
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    checkOut(out)

    with torch.cuda.amp.autocast():
482
        out = model(model_input)
483

Anirudh's avatar
Anirudh committed
484
    checkOut(out)
485

486
487
    _check_input_backprop(model, model_input)

Anirudh's avatar
Anirudh committed
488
489
490
491
    # now switch to cpu and make sure it works
    model.cpu()
    x = x.cpu()
    out_cpu = model([x])
492

Anirudh's avatar
Anirudh committed
493
    checkOut(out_cpu)
494

495
496
    _check_input_backprop(model, [x])

497

Anirudh's avatar
Anirudh committed
498
def test_generalizedrcnn_transform_repr():
499

Anirudh's avatar
Anirudh committed
500
501
502
    min_size, max_size = 224, 299
    image_mean = [0.485, 0.456, 0.406]
    image_std = [0.229, 0.224, 0.225]
503

504
505
506
    t = models.detection.transform.GeneralizedRCNNTransform(
        min_size=min_size, max_size=max_size, image_mean=image_mean, image_std=image_std
    )
507

Anirudh's avatar
Anirudh committed
508
    # Check integrity of object __repr__ attribute
509
510
    expected_string = "GeneralizedRCNNTransform("
    _indent = "\n    "
511
512
    expected_string += f"{_indent}Normalize(mean={image_mean}, std={image_std})"
    expected_string += f"{_indent}Resize(min_size=({min_size},), max_size={max_size}, "
Anirudh's avatar
Anirudh committed
513
514
    expected_string += "mode='bilinear')\n)"
    assert t.__repr__() == expected_string
515
516


517
@pytest.mark.parametrize("model_fn", get_models_from_module(models))
518
@pytest.mark.parametrize("dev", cpu_and_gpu())
519
def test_classification_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
520
521
    set_rng_seed(0)
    defaults = {
522
523
        "num_classes": 50,
        "input_shape": (1, 3, 224, 224),
Anirudh's avatar
Anirudh committed
524
    }
525
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
526
    kwargs = {**defaults, **_model_params.get(model_name, {})}
527
    num_classes = kwargs.get("num_classes")
528
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
529

530
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
531
532
533
534
535
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
    _assert_expected(out.cpu(), model_name, prec=0.1)
536
    assert out.shape[-1] == num_classes
Anirudh's avatar
Anirudh committed
537
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None))
538
    _check_fx_compatible(model, x)
Anirudh's avatar
Anirudh committed
539
540
541
542
543
544
545
546

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(x)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == 50
547

548
549
    _check_input_backprop(model, x)

550

551
@pytest.mark.parametrize("model_fn", get_models_from_module(models.segmentation))
552
@pytest.mark.parametrize("dev", cpu_and_gpu())
553
def test_segmentation_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
554
555
    set_rng_seed(0)
    defaults = {
556
557
558
        "num_classes": 10,
        "pretrained_backbone": False,
        "input_shape": (1, 3, 32, 32),
Anirudh's avatar
Anirudh committed
559
    }
560
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
561
    kwargs = {**defaults, **_model_params.get(model_name, {})}
562
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
563

564
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)["out"]

    def check_out(out):
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(out.cpu(), model_name, prec=prec)
        except AssertionError:
            # Unfortunately some segmentation models are flaky with autocast
            # so instead of validating the probability scores, check that the class
            # predictions match.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
            torch.testing.assert_close(out.argmax(dim=1), expected.argmax(dim=1), rtol=prec, atol=prec)
            return False  # Partial validation performed

        return True  # Full validation performed

    full_validation = check_out(out)

    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None))
591
    _check_fx_compatible(model, x)
Anirudh's avatar
Anirudh committed
592
593
594
595
596
597
598
599
600

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(x)["out"]
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                full_validation &= check_out(out)

    if not full_validation:
601
        msg = (
602
            f"The output of {test_segmentation_model.__name__} could only be partially validated. "
603
604
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
605
            "significant changes to the codebase."
606
        )
Anirudh's avatar
Anirudh committed
607
608
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
609

610
611
    _check_input_backprop(model, x)

612

613
@pytest.mark.parametrize("model_fn", get_models_from_module(models.detection))
614
@pytest.mark.parametrize("dev", cpu_and_gpu())
615
def test_detection_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
616
617
    set_rng_seed(0)
    defaults = {
618
619
620
        "num_classes": 50,
        "pretrained_backbone": False,
        "input_shape": (3, 300, 300),
Anirudh's avatar
Anirudh committed
621
    }
622
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
623
    kwargs = {**defaults, **_model_params.get(model_name, {})}
624
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
625

626
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    def check_out(out):
        assert len(out) == 1

        def compact(tensor):
            size = tensor.size()
            elements_per_sample = functools.reduce(operator.mul, size[1:], 1)
            if elements_per_sample > 30:
                return compute_mean_std(tensor)
            else:
                return subsample_tensor(tensor)

        def subsample_tensor(tensor):
            num_elems = tensor.size(0)
            num_samples = 20
            if num_elems <= num_samples:
                return tensor

            ith_index = num_elems // num_samples
652
            return tensor[ith_index - 1 :: ith_index]
Anirudh's avatar
Anirudh committed
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674

        def compute_mean_std(tensor):
            # can't compute mean of integral tensor
            tensor = tensor.to(torch.double)
            mean = torch.mean(tensor)
            std = torch.std(tensor)
            return {"mean": mean, "std": std}

        output = map_nested_tensor_object(out, tensor_map_fn=compact)
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(output, model_name, prec=prec)
        except AssertionError:
            # Unfortunately detection models are flaky due to the unstable sort
            # in NMS. If matching across all outputs fails, use the same approach
            # as in NMSTester.test_nms_cuda to see if this is caused by duplicate
            # scores.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
675
676
677
            torch.testing.assert_close(
                output[0]["scores"], expected[0]["scores"], rtol=prec, atol=prec, check_device=False, check_dtype=False
            )
Anirudh's avatar
Anirudh committed
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697

            # Note: Fmassa proposed turning off NMS by adapting the threshold
            # and then using the Hungarian algorithm as in DETR to find the
            # best match between output and expected boxes and eliminate some
            # of the flakiness. Worth exploring.
            return False  # Partial validation performed

        return True  # Full validation performed

    full_validation = check_out(out)
    _check_jit_scriptable(model, ([x],), unwrapper=script_model_unwrapper.get(model_name, None))

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(model_input)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                full_validation &= check_out(out)

    if not full_validation:
698
        msg = (
699
            f"The output of {test_detection_model.__name__} could only be partially validated. "
700
701
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
702
            "significant changes to the codebase."
703
        )
Anirudh's avatar
Anirudh committed
704
705
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
706

707
708
    _check_input_backprop(model, model_input)

709

710
711
@pytest.mark.parametrize("model_fn", get_models_from_module(models.detection))
def test_detection_model_validation(model_fn):
Anirudh's avatar
Anirudh committed
712
    set_rng_seed(0)
713
    model = model_fn(num_classes=50, pretrained_backbone=False)
Anirudh's avatar
Anirudh committed
714
715
716
717
718
719
720
721
    input_shape = (3, 300, 300)
    x = [torch.rand(input_shape)]

    # validate that targets are present in training
    with pytest.raises(ValueError):
        model(x)

    # validate type
722
    targets = [{"boxes": 0.0}]
Anirudh's avatar
Anirudh committed
723
724
725
726
727
    with pytest.raises(ValueError):
        model(x, targets=targets)

    # validate boxes shape
    for boxes in (torch.rand((4,)), torch.rand((1, 5))):
728
        targets = [{"boxes": boxes}]
Anirudh's avatar
Anirudh committed
729
730
731
732
733
        with pytest.raises(ValueError):
            model(x, targets=targets)

    # validate that no degenerate boxes are present
    boxes = torch.tensor([[1, 3, 1, 4], [2, 4, 3, 4]])
734
    targets = [{"boxes": boxes}]
Anirudh's avatar
Anirudh committed
735
736
    with pytest.raises(ValueError):
        model(x, targets=targets)
737

738

739
@pytest.mark.parametrize("model_fn", get_models_from_module(models.video))
740
@pytest.mark.parametrize("dev", cpu_and_gpu())
741
def test_video_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
742
743
744
    # the default input shape is
    # bs * num_channels * clip_len * h *w
    input_shape = (1, 3, 4, 112, 112)
745
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
746
    # test both basicblock and Bottleneck
747
    model = model_fn(num_classes=50)
Anirudh's avatar
Anirudh committed
748
749
750
751
752
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None))
753
    _check_fx_compatible(model, x)
Anirudh's avatar
Anirudh committed
754
755
756
757
758
759
    assert out.shape[-1] == 50

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(x)
            assert out.shape[-1] == 50
760

761
762
    _check_input_backprop(model, x)

763

764
765
766
767
768
769
770
@pytest.mark.skipif(
    not (
        "fbgemm" in torch.backends.quantized.supported_engines
        and "qnnpack" in torch.backends.quantized.supported_engines
    ),
    reason="This Pytorch Build has not been built with fbgemm and qnnpack",
)
771
772
@pytest.mark.parametrize("model_fn", get_models_from_module(models.quantization))
def test_quantized_classification_model(model_fn):
773
    set_rng_seed(0)
774
    defaults = {
775
        "num_classes": 5,
776
777
778
        "input_shape": (1, 3, 224, 224),
        "pretrained": False,
        "quantize": True,
779
    }
780
    model_name = model_fn.__name__
781
    kwargs = {**defaults, **_model_params.get(model_name, {})}
782
    input_shape = kwargs.pop("input_shape")
783
784

    # First check if quantize=True provides models that can run with input data
785
    model = model_fn(**kwargs)
786
    model.eval()
787
    x = torch.rand(input_shape)
788
789
790
791
792
793
794
    out = model(x)

    if model_name not in quantized_flaky_models:
        _assert_expected(out, model_name + "_quantized", prec=0.1)
        assert out.shape[-1] == 5
        _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None))
        _check_fx_compatible(model, x)
795

796
    kwargs["quantize"] = False
797
    for eval_mode in [True, False]:
798
        model = model_fn(**kwargs)
799
800
        if eval_mode:
            model.eval()
801
            model.qconfig = torch.ao.quantization.default_qconfig
802
803
        else:
            model.train()
804
            model.qconfig = torch.ao.quantization.default_qat_qconfig
805
806
807

        model.fuse_model()
        if eval_mode:
808
            torch.ao.quantization.prepare(model, inplace=True)
809
        else:
810
            torch.ao.quantization.prepare_qat(model, inplace=True)
811
812
            model.eval()

813
        torch.ao.quantization.convert(model, inplace=True)
814
815
816
817
818
819
820
821

    try:
        torch.jit.script(model)
    except Exception as e:
        tb = traceback.format_exc()
        raise AssertionError(f"model cannot be scripted. Traceback = {str(tb)}") from e


822
@pytest.mark.parametrize("model_fn", get_models_from_module(models.detection))
823
def test_detection_model_trainable_backbone_layers(model_fn, disable_weight_loading):
824
    model_name = model_fn.__name__
825
826
827
    max_trainable = _model_tests_values[model_name]["max_trainable"]
    n_trainable_params = []
    for trainable_layers in range(0, max_trainable + 1):
828
        model = model_fn(pretrained=False, pretrained_backbone=True, trainable_backbone_layers=trainable_layers)
829
830
831
832
833

        n_trainable_params.append(len([p for p in model.parameters() if p.requires_grad]))
    assert n_trainable_params == _model_tests_values[model_name]["n_trn_params_per_layer"]


834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
@needs_cuda
@pytest.mark.parametrize("model_builder", (models.optical_flow.raft_large, models.optical_flow.raft_small))
@pytest.mark.parametrize("scripted", (False, True))
def test_raft(model_builder, scripted):

    torch.manual_seed(0)

    # We need very small images, otherwise the pickle size would exceed the 50KB
    # As a resut we need to override the correlation pyramid to not downsample
    # too much, otherwise we would get nan values (effective H and W would be
    # reduced to 1)
    corr_block = models.optical_flow.raft.CorrBlock(num_levels=2, radius=2)

    model = model_builder(corr_block=corr_block).eval().to("cuda")
    if scripted:
        model = torch.jit.script(model)

    bs = 1
    img1 = torch.rand(bs, 3, 80, 72).cuda()
    img2 = torch.rand(bs, 3, 80, 72).cuda()

    preds = model(img1, img2)
    flow_pred = preds[-1]
    # Tolerance is fairly high, but there are 2 * H * W outputs to check
    # The .pkl were generated on the AWS cluter, on the CI it looks like the resuts are slightly different
    _assert_expected(flow_pred, name=model_builder.__name__, atol=1e-2, rtol=1)


862
if __name__ == "__main__":
863
    pytest.main([__file__])