test_models.py 31.2 KB
Newer Older
1
import contextlib
2
3
4
import functools
import operator
import os
5
6
import pkgutil
import sys
7
import warnings
8
from collections import OrderedDict
9
from tempfile import TemporaryDirectory
10
from typing import Any
11
12

import pytest
13
import torch
14
import torch.fx
15
import torch.nn as nn
16
17
from _utils_internal import get_relative_path
from common_utils import map_nested_tensor_object, freeze_rng_state, set_rng_seed, cpu_and_gpu, needs_cuda
18
from torchvision import models
19

20
ACCEPT = os.getenv("EXPECTTEST_ACCEPT", "0") == "1"
21
22


23
def get_models_from_module(module):
24
    # TODO add a registration mechanism to torchvision.models
25
26
27
28
29
    return [
        v
        for k, v in module.__dict__.items()
        if callable(v) and k[0].lower() == k[0] and k[0] != "_" and k != "get_weight"
    ]
30
31


32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
@pytest.fixture
def disable_weight_loading(mocker):
    """When testing models, the two slowest operations are the downloading of the weights to a file and loading them
    into the model. Unless, you want to test against specific weights, these steps can be disabled without any
    drawbacks.

    Including this fixture into the signature of your test, i.e. `test_foo(disable_weight_loading)`, will recurse
    through all models in `torchvision.models` and will patch all occurrences of the function
    `download_state_dict_from_url` as well as the method `load_state_dict` on all subclasses of `nn.Module` to be
    no-ops.

    .. warning:

        Loaded models are still executable as normal, but will always have random weights. Make sure to not use this
        fixture if you want to compare the model output against reference values.

    """
    starting_point = models
    function_name = "load_state_dict_from_url"
    method_name = "load_state_dict"

    module_names = {info.name for info in pkgutil.walk_packages(starting_point.__path__, f"{starting_point.__name__}.")}
    targets = {f"torchvision._internally_replaced_utils.{function_name}", f"torch.nn.Module.{method_name}"}
    for name in module_names:
        module = sys.modules.get(name)
        if not module:
            continue

        if function_name in module.__dict__:
            targets.add(f"{module.__name__}.{function_name}")

        targets.update(
            {
                f"{module.__name__}.{obj.__name__}.{method_name}"
                for obj in module.__dict__.values()
                if isinstance(obj, type) and issubclass(obj, nn.Module) and method_name in obj.__dict__
            }
        )

    for target in targets:
        # See https://github.com/pytorch/vision/pull/4867#discussion_r743677802 for details
        with contextlib.suppress(AttributeError):
            mocker.patch(target)


77
78
79
80
81
82
def _get_expected_file(name=None):
    # Determine expected file based on environment
    expected_file_base = get_relative_path(os.path.realpath(__file__), "expect")

    # Note: for legacy reasons, the reference file names all had "ModelTest.test_" in their names
    # We hardcode it here to avoid having to re-generate the reference files
83
    expected_file = os.path.join(expected_file_base, "ModelTester.test_" + name)
84
85
86
87
88
89
90
91
92
93
94
95
    expected_file += "_expect.pkl"

    if not ACCEPT and not os.path.exists(expected_file):
        raise RuntimeError(
            f"No expect file exists for {os.path.basename(expected_file)} in {expected_file}; "
            "to accept the current output, re-run the failing test after setting the EXPECTTEST_ACCEPT "
            "env variable. For example: EXPECTTEST_ACCEPT=1 pytest test/test_models.py -k alexnet"
        )

    return expected_file


96
def _assert_expected(output, name, prec=None, atol=None, rtol=None):
97
98
99
100
101
102
103
104
105
106
107
    """Test that a python value matches the recorded contents of a file
    based on a "check" name. The value must be
    pickable with `torch.save`. This file
    is placed in the 'expect' directory in the same directory
    as the test script. You can automatically update the recorded test
    output using an EXPECTTEST_ACCEPT=1 env variable.
    """
    expected_file = _get_expected_file(name)

    if ACCEPT:
        filename = {os.path.basename(expected_file)}
108
        print(f"Accepting updated output for {filename}:\n\n{output}")
109
110
111
112
        torch.save(output, expected_file)
        MAX_PICKLE_SIZE = 50 * 1000  # 50 KB
        binary_size = os.path.getsize(expected_file)
        if binary_size > MAX_PICKLE_SIZE:
113
            raise RuntimeError(f"The output for {filename}, is larger than 50kb - got {binary_size}kb")
114
115
    else:
        expected = torch.load(expected_file)
116
117
        rtol = rtol or prec  # keeping prec param for legacy reason, but could be removed ideally
        atol = atol or prec
118
119
120
        torch.testing.assert_close(output, expected, rtol=rtol, atol=atol, check_dtype=False)


121
def _check_jit_scriptable(nn_module, args, unwrapper=None, eager_out=None):
122
123
    """Check that a nn.Module's results in TorchScript match eager and that it can be exported"""

124
125
126
127
128
129
130
    def get_export_import_copy(m):
        """Save and load a TorchScript model"""
        with TemporaryDirectory() as dir:
            path = os.path.join(dir, "script.pt")
            m.save(path)
            imported = torch.jit.load(path)
        return imported
131
132
133

    sm = torch.jit.script(nn_module)

134
135
    if eager_out is None:
        with torch.no_grad(), freeze_rng_state():
136
            eager_out = nn_module(*args)
137

138
    with torch.no_grad(), freeze_rng_state():
139
140
141
142
143
        script_out = sm(*args)
        if unwrapper:
            script_out = unwrapper(script_out)

    torch.testing.assert_close(eager_out, script_out, atol=1e-4, rtol=1e-4)
144
145
146
147
148
149
150
151

    m_import = get_export_import_copy(sm)
    with torch.no_grad(), freeze_rng_state():
        imported_script_out = m_import(*args)
        if unwrapper:
            imported_script_out = unwrapper(imported_script_out)

    torch.testing.assert_close(script_out, imported_script_out, atol=3e-4, rtol=3e-4)
152
153


154
def _check_fx_compatible(model, inputs, eager_out=None):
155
    model_fx = torch.fx.symbolic_trace(model)
156
157
158
159
    if eager_out is None:
        eager_out = model(inputs)
    fx_out = model_fx(inputs)
    torch.testing.assert_close(eager_out, fx_out)
160
161


162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
def _check_input_backprop(model, inputs):
    if isinstance(inputs, list):
        requires_grad = list()
        for inp in inputs:
            requires_grad.append(inp.requires_grad)
            inp.requires_grad_(True)
    else:
        requires_grad = inputs.requires_grad
        inputs.requires_grad_(True)

    out = model(inputs)

    if isinstance(out, dict):
        out["out"].sum().backward()
    else:
        if isinstance(out[0], dict):
            out[0]["scores"].sum().backward()
        else:
            out[0].sum().backward()

    if isinstance(inputs, list):
        for i, inp in enumerate(inputs):
            assert inputs[i].grad is not None
            inp.requires_grad_(requires_grad[i])
    else:
        assert inputs.grad is not None
        inputs.requires_grad_(requires_grad)


191
192
193
# If 'unwrapper' is provided it will be called with the script model outputs
# before they are compared to the eager model outputs. This is useful if the
# model outputs are different between TorchScript / Eager mode
194
script_model_unwrapper = {
195
196
    "googlenet": lambda x: x.logits,
    "inception_v3": lambda x: x.logits,
197
    "fasterrcnn_resnet50_fpn": lambda x: x[1],
198
    "fasterrcnn_mobilenet_v3_large_fpn": lambda x: x[1],
199
    "fasterrcnn_mobilenet_v3_large_320_fpn": lambda x: x[1],
200
201
202
    "maskrcnn_resnet50_fpn": lambda x: x[1],
    "keypointrcnn_resnet50_fpn": lambda x: x[1],
    "retinanet_resnet50_fpn": lambda x: x[1],
203
    "ssd300_vgg16": lambda x: x[1],
204
    "ssdlite320_mobilenet_v3_large": lambda x: x[1],
Hu Ye's avatar
Hu Ye committed
205
    "fcos_resnet50_fpn": lambda x: x[1],
206
}
207
208


209
210
211
212
213
214
215
216
217
218
219
220
221
222
# The following models exhibit flaky numerics under autocast in _test_*_model harnesses.
# This may be caused by the harness environment (e.g. num classes, input initialization
# via torch.rand), and does not prove autocast is unsuitable when training with real data
# (autocast has been used successfully with real data for some of these models).
# TODO:  investigate why autocast numerics are flaky in the harnesses.
#
# For the following models, _test_*_model harnesses skip numerical checks on outputs when
# trying autocast. However, they still try an autocasted forward pass, so they still ensure
# autocast coverage suffices to prevent dtype errors in each model.
autocast_flaky_numerics = (
    "inception_v3",
    "resnet101",
    "resnet152",
    "wide_resnet101_2",
223
224
    "deeplabv3_resnet50",
    "deeplabv3_resnet101",
225
    "deeplabv3_mobilenet_v3_large",
226
227
    "fcn_resnet50",
    "fcn_resnet101",
228
    "lraspp_mobilenet_v3_large",
229
    "maskrcnn_resnet50_fpn",
230
231
)

232
233
234
# The tests for the following quantized models are flaky possibly due to inconsistent
# rounding errors in different platforms. For this reason the input/output consistency
# tests under test_quantized_classification_model will be skipped for the following models.
235
quantized_flaky_models = ("inception_v3", "resnet50")
236

237

238
239
240
# The following contains configuration parameters for all models which are used by
# the _test_*_model methods.
_model_params = {
241
242
243
244
245
246
247
    "inception_v3": {"input_shape": (1, 3, 299, 299)},
    "retinanet_resnet50_fpn": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
248
    },
249
250
251
252
253
254
    "keypointrcnn_resnet50_fpn": {
        "num_classes": 2,
        "min_size": 224,
        "max_size": 224,
        "box_score_thresh": 0.15,
        "input_shape": (3, 224, 224),
255
    },
256
257
258
259
260
    "fasterrcnn_resnet50_fpn": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
261
    },
Hu Ye's avatar
Hu Ye committed
262
263
264
265
266
267
268
    "fcos_resnet50_fpn": {
        "num_classes": 2,
        "score_thresh": 0.05,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
269
270
271
272
273
    "maskrcnn_resnet50_fpn": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
274
    },
275
276
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "box_score_thresh": 0.02076,
277
    },
278
279
280
281
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "box_score_thresh": 0.02076,
        "rpn_pre_nms_top_n_test": 1000,
        "rpn_post_nms_top_n_test": 1000,
282
283
    },
}
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# speeding up slow models:
slow_models = [
    "convnext_base",
    "convnext_large",
    "resnext101_32x8d",
    "wide_resnet101_2",
    "efficientnet_b6",
    "efficientnet_b7",
    "efficientnet_v2_m",
    "efficientnet_v2_l",
    "regnet_y_16gf",
    "regnet_y_32gf",
    "regnet_y_128gf",
    "regnet_x_16gf",
    "regnet_x_32gf",
]
for m in slow_models:
    _model_params[m] = {"input_shape": (1, 3, 64, 64)}
302
303


304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
# The following contains configuration and expected values to be used tests that are model specific
_model_tests_values = {
    "retinanet_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [36, 46, 65, 78, 88, 89],
    },
    "keypointrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [48, 58, 77, 90, 100, 101],
    },
    "fasterrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [30, 40, 59, 72, 82, 83],
    },
    "maskrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [42, 52, 71, 84, 94, 95],
    },
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "ssd300_vgg16": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [45, 51, 57, 63, 67, 71],
    },
    "ssdlite320_mobilenet_v3_large": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [96, 99, 138, 200, 239, 257, 266],
    },
Hu Ye's avatar
Hu Ye committed
338
339
340
341
    "fcos_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [54, 64, 83, 96, 106, 107],
    },
342
343
344
}


Anirudh's avatar
Anirudh committed
345
346
347
348
349
350
351
352
353
354
def _make_sliced_model(model, stop_layer):
    layers = OrderedDict()
    for name, layer in model.named_children():
        layers[name] = layer
        if name == stop_layer:
            break
    new_model = torch.nn.Sequential(layers)
    return new_model


355
356
@pytest.mark.parametrize("model_fn", [models.densenet121, models.densenet169, models.densenet201, models.densenet161])
def test_memory_efficient_densenet(model_fn):
Anirudh's avatar
Anirudh committed
357
358
359
    input_shape = (1, 3, 300, 300)
    x = torch.rand(input_shape)

360
    model1 = model_fn(num_classes=50, memory_efficient=True)
Anirudh's avatar
Anirudh committed
361
    params = model1.state_dict()
362
    num_params = sum(x.numel() for x in model1.parameters())
Anirudh's avatar
Anirudh committed
363
364
365
    model1.eval()
    out1 = model1(x)
    out1.sum().backward()
366
    num_grad = sum(x.grad.numel() for x in model1.parameters() if x.grad is not None)
Anirudh's avatar
Anirudh committed
367

368
    model2 = model_fn(num_classes=50, memory_efficient=False)
Anirudh's avatar
Anirudh committed
369
370
371
372
373
374
375
    model2.load_state_dict(params)
    model2.eval()
    out2 = model2(x)

    assert num_params == num_grad
    torch.testing.assert_close(out1, out2, rtol=0.0, atol=1e-5)

376
377
378
    _check_input_backprop(model1, x)
    _check_input_backprop(model2, x)

Anirudh's avatar
Anirudh committed
379

380
381
382
@pytest.mark.parametrize("dilate_layer_2", (True, False))
@pytest.mark.parametrize("dilate_layer_3", (True, False))
@pytest.mark.parametrize("dilate_layer_4", (True, False))
Anirudh's avatar
Anirudh committed
383
384
def test_resnet_dilation(dilate_layer_2, dilate_layer_3, dilate_layer_4):
    # TODO improve tests to also check that each layer has the right dimensionality
385
    model = models.resnet50(replace_stride_with_dilation=(dilate_layer_2, dilate_layer_3, dilate_layer_4))
Anirudh's avatar
Anirudh committed
386
387
388
389
390
391
392
393
394
    model = _make_sliced_model(model, stop_layer="layer4")
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    f = 2 ** sum((dilate_layer_2, dilate_layer_3, dilate_layer_4))
    assert out.shape == (1, 2048, 7 * f, 7 * f)


def test_mobilenet_v2_residual_setting():
395
    model = models.mobilenet_v2(inverted_residual_setting=[[1, 16, 1, 1], [6, 24, 2, 2]])
Anirudh's avatar
Anirudh committed
396
397
398
399
400
401
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    assert out.shape[-1] == 1000


402
403
404
@pytest.mark.parametrize("model_fn", [models.mobilenet_v2, models.mobilenet_v3_large, models.mobilenet_v3_small])
def test_mobilenet_norm_layer(model_fn):
    model = model_fn()
Anirudh's avatar
Anirudh committed
405
406
407
    assert any(isinstance(x, nn.BatchNorm2d) for x in model.modules())

    def get_gn(num_channels):
408
        return nn.GroupNorm(1, num_channels)
Anirudh's avatar
Anirudh committed
409

410
    model = model_fn(norm_layer=get_gn)
411
    assert not (any(isinstance(x, nn.BatchNorm2d) for x in model.modules()))
Anirudh's avatar
Anirudh committed
412
413
414
415
416
    assert any(isinstance(x, nn.GroupNorm) for x in model.modules())


def test_inception_v3_eval():
    kwargs = {}
417
418
419
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
420
421
422
423
424
425
426
    name = "inception_v3"
    model = models.Inception3(**kwargs)
    model.aux_logits = False
    model.AuxLogits = None
    model = model.eval()
    x = torch.rand(1, 3, 299, 299)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
427
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
428
429
430


def test_fasterrcnn_double():
431
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
432
433
434
435
436
437
438
439
440
441
442
    model.double()
    model.eval()
    input_shape = (3, 300, 300)
    x = torch.rand(input_shape, dtype=torch.float64)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x
    assert len(out) == 1
    assert "boxes" in out[0]
    assert "scores" in out[0]
    assert "labels" in out[0]
443
    _check_input_backprop(model, model_input)
Anirudh's avatar
Anirudh committed
444
445
446
447


def test_googlenet_eval():
    kwargs = {}
448
449
450
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
451
452
453
454
455
456
457
458
    name = "googlenet"
    model = models.GoogLeNet(**kwargs)
    model.aux_logits = False
    model.aux1 = None
    model.aux2 = None
    model = model.eval()
    x = torch.rand(1, 3, 224, 224)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
459
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
460
461
462
463
464
465
466
467
468
469


@needs_cuda
def test_fasterrcnn_switch_devices():
    def checkOut(out):
        assert len(out) == 1
        assert "boxes" in out[0]
        assert "scores" in out[0]
        assert "labels" in out[0]

470
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
471
472
473
    model.cuda()
    model.eval()
    input_shape = (3, 300, 300)
474
    x = torch.rand(input_shape, device="cuda")
Anirudh's avatar
Anirudh committed
475
476
477
478
479
480
481
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    checkOut(out)

    with torch.cuda.amp.autocast():
482
        out = model(model_input)
483

Anirudh's avatar
Anirudh committed
484
    checkOut(out)
485

486
487
    _check_input_backprop(model, model_input)

Anirudh's avatar
Anirudh committed
488
489
490
491
    # now switch to cpu and make sure it works
    model.cpu()
    x = x.cpu()
    out_cpu = model([x])
492

Anirudh's avatar
Anirudh committed
493
    checkOut(out_cpu)
494

495
496
    _check_input_backprop(model, [x])

497

Anirudh's avatar
Anirudh committed
498
def test_generalizedrcnn_transform_repr():
499

Anirudh's avatar
Anirudh committed
500
501
502
    min_size, max_size = 224, 299
    image_mean = [0.485, 0.456, 0.406]
    image_std = [0.229, 0.224, 0.225]
503

504
505
506
    t = models.detection.transform.GeneralizedRCNNTransform(
        min_size=min_size, max_size=max_size, image_mean=image_mean, image_std=image_std
    )
507

Anirudh's avatar
Anirudh committed
508
    # Check integrity of object __repr__ attribute
509
510
    expected_string = "GeneralizedRCNNTransform("
    _indent = "\n    "
511
512
    expected_string += f"{_indent}Normalize(mean={image_mean}, std={image_std})"
    expected_string += f"{_indent}Resize(min_size=({min_size},), max_size={max_size}, "
Anirudh's avatar
Anirudh committed
513
514
    expected_string += "mode='bilinear')\n)"
    assert t.__repr__() == expected_string
515
516


517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
test_vit_conv_stem_configs = [
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=64),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=512),
]


def vitc_b_16(**kwargs: Any):
    return models.VisionTransformer(
        image_size=224,
        patch_size=16,
        num_layers=12,
        num_heads=12,
        hidden_dim=768,
        mlp_dim=3072,
        conv_stem_configs=test_vit_conv_stem_configs,
        **kwargs,
    )


@pytest.mark.parametrize("model_fn", [vitc_b_16])
@pytest.mark.parametrize("dev", cpu_and_gpu())
def test_vitc_models(model_fn, dev):
    test_classification_model(model_fn, dev)


546
@pytest.mark.parametrize("model_fn", get_models_from_module(models))
547
@pytest.mark.parametrize("dev", cpu_and_gpu())
548
def test_classification_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
549
550
    set_rng_seed(0)
    defaults = {
551
552
        "num_classes": 50,
        "input_shape": (1, 3, 224, 224),
Anirudh's avatar
Anirudh committed
553
    }
554
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
555
    kwargs = {**defaults, **_model_params.get(model_name, {})}
556
    num_classes = kwargs.get("num_classes")
557
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
558

559
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
560
561
562
563
564
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
    _assert_expected(out.cpu(), model_name, prec=0.1)
565
    assert out.shape[-1] == num_classes
566
567
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
568
569
570
571
572
573
574
575

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(x)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == 50
576

577
578
    _check_input_backprop(model, x)

579

580
@pytest.mark.parametrize("model_fn", get_models_from_module(models.segmentation))
581
@pytest.mark.parametrize("dev", cpu_and_gpu())
582
def test_segmentation_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
583
584
    set_rng_seed(0)
    defaults = {
585
        "num_classes": 10,
586
        "weights_backbone": None,
587
        "input_shape": (1, 3, 32, 32),
Anirudh's avatar
Anirudh committed
588
    }
589
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
590
    kwargs = {**defaults, **_model_params.get(model_name, {})}
591
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
592

593
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
594
595
596
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
597
    out = model(x)
Anirudh's avatar
Anirudh committed
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616

    def check_out(out):
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(out.cpu(), model_name, prec=prec)
        except AssertionError:
            # Unfortunately some segmentation models are flaky with autocast
            # so instead of validating the probability scores, check that the class
            # predictions match.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
            torch.testing.assert_close(out.argmax(dim=1), expected.argmax(dim=1), rtol=prec, atol=prec)
            return False  # Partial validation performed

        return True  # Full validation performed

617
    full_validation = check_out(out["out"])
Anirudh's avatar
Anirudh committed
618

619
620
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
621
622
623

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
624
            out = model(x)
Anirudh's avatar
Anirudh committed
625
626
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
627
                full_validation &= check_out(out["out"])
Anirudh's avatar
Anirudh committed
628
629

    if not full_validation:
630
        msg = (
631
            f"The output of {test_segmentation_model.__name__} could only be partially validated. "
632
633
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
634
            "significant changes to the codebase."
635
        )
Anirudh's avatar
Anirudh committed
636
637
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
638

639
640
    _check_input_backprop(model, x)

641

642
@pytest.mark.parametrize("model_fn", get_models_from_module(models.detection))
643
@pytest.mark.parametrize("dev", cpu_and_gpu())
644
def test_detection_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
645
646
    set_rng_seed(0)
    defaults = {
647
        "num_classes": 50,
648
        "weights_backbone": None,
649
        "input_shape": (3, 300, 300),
Anirudh's avatar
Anirudh committed
650
    }
651
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
652
    kwargs = {**defaults, **_model_params.get(model_name, {})}
653
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
654

655
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
656
657
658
659
660
661
662
663
664
665
666
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    def check_out(out):
        assert len(out) == 1

        def compact(tensor):
667
            tensor = tensor.cpu()
Anirudh's avatar
Anirudh committed
668
669
670
671
672
673
674
675
676
677
678
679
680
681
            size = tensor.size()
            elements_per_sample = functools.reduce(operator.mul, size[1:], 1)
            if elements_per_sample > 30:
                return compute_mean_std(tensor)
            else:
                return subsample_tensor(tensor)

        def subsample_tensor(tensor):
            num_elems = tensor.size(0)
            num_samples = 20
            if num_elems <= num_samples:
                return tensor

            ith_index = num_elems // num_samples
682
            return tensor[ith_index - 1 :: ith_index]
Anirudh's avatar
Anirudh committed
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

        def compute_mean_std(tensor):
            # can't compute mean of integral tensor
            tensor = tensor.to(torch.double)
            mean = torch.mean(tensor)
            std = torch.std(tensor)
            return {"mean": mean, "std": std}

        output = map_nested_tensor_object(out, tensor_map_fn=compact)
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(output, model_name, prec=prec)
        except AssertionError:
            # Unfortunately detection models are flaky due to the unstable sort
            # in NMS. If matching across all outputs fails, use the same approach
            # as in NMSTester.test_nms_cuda to see if this is caused by duplicate
            # scores.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
705
706
707
            torch.testing.assert_close(
                output[0]["scores"], expected[0]["scores"], rtol=prec, atol=prec, check_device=False, check_dtype=False
            )
Anirudh's avatar
Anirudh committed
708
709
710
711
712
713
714
715
716
717

            # Note: Fmassa proposed turning off NMS by adapting the threshold
            # and then using the Hungarian algorithm as in DETR to find the
            # best match between output and expected boxes and eliminate some
            # of the flakiness. Worth exploring.
            return False  # Partial validation performed

        return True  # Full validation performed

    full_validation = check_out(out)
718
    _check_jit_scriptable(model, ([x],), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
Anirudh's avatar
Anirudh committed
719
720
721
722
723
724
725
726
727

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(model_input)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                full_validation &= check_out(out)

    if not full_validation:
728
        msg = (
729
            f"The output of {test_detection_model.__name__} could only be partially validated. "
730
731
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
732
            "significant changes to the codebase."
733
        )
Anirudh's avatar
Anirudh committed
734
735
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
736

737
738
    _check_input_backprop(model, model_input)

739

740
741
@pytest.mark.parametrize("model_fn", get_models_from_module(models.detection))
def test_detection_model_validation(model_fn):
Anirudh's avatar
Anirudh committed
742
    set_rng_seed(0)
743
    model = model_fn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
744
745
746
747
    input_shape = (3, 300, 300)
    x = [torch.rand(input_shape)]

    # validate that targets are present in training
748
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
749
750
751
        model(x)

    # validate type
752
    targets = [{"boxes": 0.0}]
753
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
754
755
756
757
        model(x, targets=targets)

    # validate boxes shape
    for boxes in (torch.rand((4,)), torch.rand((1, 5))):
758
        targets = [{"boxes": boxes}]
759
        with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
760
761
762
763
            model(x, targets=targets)

    # validate that no degenerate boxes are present
    boxes = torch.tensor([[1, 3, 1, 4], [2, 4, 3, 4]])
764
    targets = [{"boxes": boxes}]
765
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
766
        model(x, targets=targets)
767

768

769
@pytest.mark.parametrize("model_fn", get_models_from_module(models.video))
770
@pytest.mark.parametrize("dev", cpu_and_gpu())
771
def test_video_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
772
773
774
    # the default input shape is
    # bs * num_channels * clip_len * h *w
    input_shape = (1, 3, 4, 112, 112)
775
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
776
    # test both basicblock and Bottleneck
777
    model = model_fn(num_classes=50)
Anirudh's avatar
Anirudh committed
778
779
780
781
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
782
783
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
784
785
786
787
788
789
    assert out.shape[-1] == 50

    if dev == torch.device("cuda"):
        with torch.cuda.amp.autocast():
            out = model(x)
            assert out.shape[-1] == 50
790

791
792
    _check_input_backprop(model, x)

793

794
795
796
797
798
799
800
@pytest.mark.skipif(
    not (
        "fbgemm" in torch.backends.quantized.supported_engines
        and "qnnpack" in torch.backends.quantized.supported_engines
    ),
    reason="This Pytorch Build has not been built with fbgemm and qnnpack",
)
801
802
@pytest.mark.parametrize("model_fn", get_models_from_module(models.quantization))
def test_quantized_classification_model(model_fn):
803
    set_rng_seed(0)
804
    defaults = {
805
        "num_classes": 5,
806
807
        "input_shape": (1, 3, 224, 224),
        "quantize": True,
808
    }
809
    model_name = model_fn.__name__
810
    kwargs = {**defaults, **_model_params.get(model_name, {})}
811
    input_shape = kwargs.pop("input_shape")
812
813

    # First check if quantize=True provides models that can run with input data
814
    model = model_fn(**kwargs)
815
    model.eval()
816
    x = torch.rand(input_shape)
817
818
819
820
821
    out = model(x)

    if model_name not in quantized_flaky_models:
        _assert_expected(out, model_name + "_quantized", prec=0.1)
        assert out.shape[-1] == 5
822
823
824
825
826
827
828
        _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
        _check_fx_compatible(model, x, eager_out=out)
    else:
        try:
            torch.jit.script(model)
        except Exception as e:
            raise AssertionError("model cannot be scripted.") from e
829

830
    kwargs["quantize"] = False
831
    for eval_mode in [True, False]:
832
        model = model_fn(**kwargs)
833
834
        if eval_mode:
            model.eval()
835
            model.qconfig = torch.ao.quantization.default_qconfig
836
837
        else:
            model.train()
838
            model.qconfig = torch.ao.quantization.default_qat_qconfig
839

840
        model.fuse_model(is_qat=not eval_mode)
841
        if eval_mode:
842
            torch.ao.quantization.prepare(model, inplace=True)
843
        else:
844
            torch.ao.quantization.prepare_qat(model, inplace=True)
845
846
            model.eval()

847
        torch.ao.quantization.convert(model, inplace=True)
848
849


850
@pytest.mark.parametrize("model_fn", get_models_from_module(models.detection))
851
def test_detection_model_trainable_backbone_layers(model_fn, disable_weight_loading):
852
    model_name = model_fn.__name__
853
854
855
    max_trainable = _model_tests_values[model_name]["max_trainable"]
    n_trainable_params = []
    for trainable_layers in range(0, max_trainable + 1):
856
        model = model_fn(weights=None, weights_backbone="DEFAULT", trainable_backbone_layers=trainable_layers)
857
858
859
860
861

        n_trainable_params.append(len([p for p in model.parameters() if p.requires_grad]))
    assert n_trainable_params == _model_tests_values[model_name]["n_trn_params_per_layer"]


862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
@needs_cuda
@pytest.mark.parametrize("model_builder", (models.optical_flow.raft_large, models.optical_flow.raft_small))
@pytest.mark.parametrize("scripted", (False, True))
def test_raft(model_builder, scripted):

    torch.manual_seed(0)

    # We need very small images, otherwise the pickle size would exceed the 50KB
    # As a resut we need to override the correlation pyramid to not downsample
    # too much, otherwise we would get nan values (effective H and W would be
    # reduced to 1)
    corr_block = models.optical_flow.raft.CorrBlock(num_levels=2, radius=2)

    model = model_builder(corr_block=corr_block).eval().to("cuda")
    if scripted:
        model = torch.jit.script(model)

    bs = 1
    img1 = torch.rand(bs, 3, 80, 72).cuda()
    img2 = torch.rand(bs, 3, 80, 72).cuda()

    preds = model(img1, img2)
    flow_pred = preds[-1]
    # Tolerance is fairly high, but there are 2 * H * W outputs to check
    # The .pkl were generated on the AWS cluter, on the CI it looks like the resuts are slightly different
    _assert_expected(flow_pred, name=model_builder.__name__, atol=1e-2, rtol=1)


890
if __name__ == "__main__":
891
    pytest.main([__file__])