test_models.py 32.7 KB
Newer Older
1
import contextlib
2
3
4
import functools
import operator
import os
5
6
import pkgutil
import sys
7
import warnings
8
from collections import OrderedDict
9
from tempfile import TemporaryDirectory
10
from typing import Any
11
12

import pytest
13
import torch
14
import torch.fx
15
import torch.nn as nn
16
17
from _utils_internal import get_relative_path
from common_utils import map_nested_tensor_object, freeze_rng_state, set_rng_seed, cpu_and_gpu, needs_cuda
18
from torchvision import models
19

20
ACCEPT = os.getenv("EXPECTTEST_ACCEPT", "0") == "1"
21
SKIP_BIG_MODEL = os.getenv("SKIP_BIG_MODEL", "1") == "1"
22
23


24
def get_models_from_module(module):
25
    # TODO add a registration mechanism to torchvision.models
26
27
28
29
30
    return [
        v
        for k, v in module.__dict__.items()
        if callable(v) and k[0].lower() == k[0] and k[0] != "_" and k != "get_weight"
    ]
31
32


33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
@pytest.fixture
def disable_weight_loading(mocker):
    """When testing models, the two slowest operations are the downloading of the weights to a file and loading them
    into the model. Unless, you want to test against specific weights, these steps can be disabled without any
    drawbacks.

    Including this fixture into the signature of your test, i.e. `test_foo(disable_weight_loading)`, will recurse
    through all models in `torchvision.models` and will patch all occurrences of the function
    `download_state_dict_from_url` as well as the method `load_state_dict` on all subclasses of `nn.Module` to be
    no-ops.

    .. warning:

        Loaded models are still executable as normal, but will always have random weights. Make sure to not use this
        fixture if you want to compare the model output against reference values.

    """
    starting_point = models
    function_name = "load_state_dict_from_url"
    method_name = "load_state_dict"

    module_names = {info.name for info in pkgutil.walk_packages(starting_point.__path__, f"{starting_point.__name__}.")}
    targets = {f"torchvision._internally_replaced_utils.{function_name}", f"torch.nn.Module.{method_name}"}
    for name in module_names:
        module = sys.modules.get(name)
        if not module:
            continue

        if function_name in module.__dict__:
            targets.add(f"{module.__name__}.{function_name}")

        targets.update(
            {
                f"{module.__name__}.{obj.__name__}.{method_name}"
                for obj in module.__dict__.values()
                if isinstance(obj, type) and issubclass(obj, nn.Module) and method_name in obj.__dict__
            }
        )

    for target in targets:
        # See https://github.com/pytorch/vision/pull/4867#discussion_r743677802 for details
        with contextlib.suppress(AttributeError):
            mocker.patch(target)


78
79
80
81
82
83
def _get_expected_file(name=None):
    # Determine expected file based on environment
    expected_file_base = get_relative_path(os.path.realpath(__file__), "expect")

    # Note: for legacy reasons, the reference file names all had "ModelTest.test_" in their names
    # We hardcode it here to avoid having to re-generate the reference files
84
    expected_file = os.path.join(expected_file_base, "ModelTester.test_" + name)
85
86
87
88
89
90
91
92
93
94
95
96
    expected_file += "_expect.pkl"

    if not ACCEPT and not os.path.exists(expected_file):
        raise RuntimeError(
            f"No expect file exists for {os.path.basename(expected_file)} in {expected_file}; "
            "to accept the current output, re-run the failing test after setting the EXPECTTEST_ACCEPT "
            "env variable. For example: EXPECTTEST_ACCEPT=1 pytest test/test_models.py -k alexnet"
        )

    return expected_file


97
def _assert_expected(output, name, prec=None, atol=None, rtol=None):
98
99
100
101
102
103
104
105
106
107
108
    """Test that a python value matches the recorded contents of a file
    based on a "check" name. The value must be
    pickable with `torch.save`. This file
    is placed in the 'expect' directory in the same directory
    as the test script. You can automatically update the recorded test
    output using an EXPECTTEST_ACCEPT=1 env variable.
    """
    expected_file = _get_expected_file(name)

    if ACCEPT:
        filename = {os.path.basename(expected_file)}
109
        print(f"Accepting updated output for {filename}:\n\n{output}")
110
111
112
113
        torch.save(output, expected_file)
        MAX_PICKLE_SIZE = 50 * 1000  # 50 KB
        binary_size = os.path.getsize(expected_file)
        if binary_size > MAX_PICKLE_SIZE:
114
            raise RuntimeError(f"The output for {filename}, is larger than 50kb - got {binary_size}kb")
115
116
    else:
        expected = torch.load(expected_file)
117
118
        rtol = rtol or prec  # keeping prec param for legacy reason, but could be removed ideally
        atol = atol or prec
119
120
121
        torch.testing.assert_close(output, expected, rtol=rtol, atol=atol, check_dtype=False)


122
def _check_jit_scriptable(nn_module, args, unwrapper=None, eager_out=None):
123
124
    """Check that a nn.Module's results in TorchScript match eager and that it can be exported"""

125
126
127
128
129
130
131
    def get_export_import_copy(m):
        """Save and load a TorchScript model"""
        with TemporaryDirectory() as dir:
            path = os.path.join(dir, "script.pt")
            m.save(path)
            imported = torch.jit.load(path)
        return imported
132
133
134

    sm = torch.jit.script(nn_module)

135
136
    if eager_out is None:
        with torch.no_grad(), freeze_rng_state():
137
            eager_out = nn_module(*args)
138

139
    with torch.no_grad(), freeze_rng_state():
140
141
142
143
144
        script_out = sm(*args)
        if unwrapper:
            script_out = unwrapper(script_out)

    torch.testing.assert_close(eager_out, script_out, atol=1e-4, rtol=1e-4)
145
146
147
148
149
150
151
152

    m_import = get_export_import_copy(sm)
    with torch.no_grad(), freeze_rng_state():
        imported_script_out = m_import(*args)
        if unwrapper:
            imported_script_out = unwrapper(imported_script_out)

    torch.testing.assert_close(script_out, imported_script_out, atol=3e-4, rtol=3e-4)
153
154


155
def _check_fx_compatible(model, inputs, eager_out=None):
156
    model_fx = torch.fx.symbolic_trace(model)
157
158
159
160
    if eager_out is None:
        eager_out = model(inputs)
    fx_out = model_fx(inputs)
    torch.testing.assert_close(eager_out, fx_out)
161
162


163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
def _check_input_backprop(model, inputs):
    if isinstance(inputs, list):
        requires_grad = list()
        for inp in inputs:
            requires_grad.append(inp.requires_grad)
            inp.requires_grad_(True)
    else:
        requires_grad = inputs.requires_grad
        inputs.requires_grad_(True)

    out = model(inputs)

    if isinstance(out, dict):
        out["out"].sum().backward()
    else:
        if isinstance(out[0], dict):
            out[0]["scores"].sum().backward()
        else:
            out[0].sum().backward()

    if isinstance(inputs, list):
        for i, inp in enumerate(inputs):
            assert inputs[i].grad is not None
            inp.requires_grad_(requires_grad[i])
    else:
        assert inputs.grad is not None
        inputs.requires_grad_(requires_grad)


192
193
194
# If 'unwrapper' is provided it will be called with the script model outputs
# before they are compared to the eager model outputs. This is useful if the
# model outputs are different between TorchScript / Eager mode
195
script_model_unwrapper = {
196
197
    "googlenet": lambda x: x.logits,
    "inception_v3": lambda x: x.logits,
198
    "fasterrcnn_resnet50_fpn": lambda x: x[1],
199
    "fasterrcnn_resnet50_fpn_v2": lambda x: x[1],
200
    "fasterrcnn_mobilenet_v3_large_fpn": lambda x: x[1],
201
    "fasterrcnn_mobilenet_v3_large_320_fpn": lambda x: x[1],
202
    "maskrcnn_resnet50_fpn": lambda x: x[1],
203
    "maskrcnn_resnet50_fpn_v2": lambda x: x[1],
204
205
    "keypointrcnn_resnet50_fpn": lambda x: x[1],
    "retinanet_resnet50_fpn": lambda x: x[1],
206
    "retinanet_resnet50_fpn_v2": lambda x: x[1],
207
    "ssd300_vgg16": lambda x: x[1],
208
    "ssdlite320_mobilenet_v3_large": lambda x: x[1],
Hu Ye's avatar
Hu Ye committed
209
    "fcos_resnet50_fpn": lambda x: x[1],
210
}
211
212


213
214
215
216
217
218
219
220
221
222
223
224
225
226
# The following models exhibit flaky numerics under autocast in _test_*_model harnesses.
# This may be caused by the harness environment (e.g. num classes, input initialization
# via torch.rand), and does not prove autocast is unsuitable when training with real data
# (autocast has been used successfully with real data for some of these models).
# TODO:  investigate why autocast numerics are flaky in the harnesses.
#
# For the following models, _test_*_model harnesses skip numerical checks on outputs when
# trying autocast. However, they still try an autocasted forward pass, so they still ensure
# autocast coverage suffices to prevent dtype errors in each model.
autocast_flaky_numerics = (
    "inception_v3",
    "resnet101",
    "resnet152",
    "wide_resnet101_2",
227
228
    "deeplabv3_resnet50",
    "deeplabv3_resnet101",
229
    "deeplabv3_mobilenet_v3_large",
230
231
    "fcn_resnet50",
    "fcn_resnet101",
232
    "lraspp_mobilenet_v3_large",
233
    "maskrcnn_resnet50_fpn",
234
    "maskrcnn_resnet50_fpn_v2",
235
    "keypointrcnn_resnet50_fpn",
236
237
)

238
239
240
# The tests for the following quantized models are flaky possibly due to inconsistent
# rounding errors in different platforms. For this reason the input/output consistency
# tests under test_quantized_classification_model will be skipped for the following models.
241
quantized_flaky_models = ("inception_v3", "resnet50")
242

243

244
245
246
# The following contains configuration parameters for all models which are used by
# the _test_*_model methods.
_model_params = {
247
248
249
250
251
252
253
    "inception_v3": {"input_shape": (1, 3, 299, 299)},
    "retinanet_resnet50_fpn": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
254
    },
255
256
257
258
259
260
261
    "retinanet_resnet50_fpn_v2": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
262
263
264
265
    "keypointrcnn_resnet50_fpn": {
        "num_classes": 2,
        "min_size": 224,
        "max_size": 224,
266
        "box_score_thresh": 0.17,
267
        "input_shape": (3, 224, 224),
268
    },
269
270
271
272
273
    "fasterrcnn_resnet50_fpn": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
274
    },
275
276
277
278
279
280
    "fasterrcnn_resnet50_fpn_v2": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
Hu Ye's avatar
Hu Ye committed
281
282
283
284
285
286
287
    "fcos_resnet50_fpn": {
        "num_classes": 2,
        "score_thresh": 0.05,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
288
289
290
291
292
    "maskrcnn_resnet50_fpn": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
293
    },
294
295
296
297
298
299
    "maskrcnn_resnet50_fpn_v2": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
300
301
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "box_score_thresh": 0.02076,
302
    },
303
304
305
306
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "box_score_thresh": 0.02076,
        "rpn_pre_nms_top_n_test": 1000,
        "rpn_post_nms_top_n_test": 1000,
307
    },
308
309
310
311
    "vit_h_14": {
        "image_size": 56,
        "input_shape": (1, 3, 56, 56),
    },
312
}
313
314
315
316
317
# speeding up slow models:
slow_models = [
    "convnext_base",
    "convnext_large",
    "resnext101_32x8d",
318
    "resnext101_64x4d",
319
320
321
322
323
324
325
326
327
328
    "wide_resnet101_2",
    "efficientnet_b6",
    "efficientnet_b7",
    "efficientnet_v2_m",
    "efficientnet_v2_l",
    "regnet_y_16gf",
    "regnet_y_32gf",
    "regnet_y_128gf",
    "regnet_x_16gf",
    "regnet_x_32gf",
Joao Gomes's avatar
Joao Gomes committed
329
    "swin_t",
330
331
    "swin_s",
    "swin_b",
332
333
334
]
for m in slow_models:
    _model_params[m] = {"input_shape": (1, 3, 64, 64)}
335
336


337
338
339
340
341
342
# skip big models to reduce memory usage on CI test
skipped_big_models = {
    "vit_h_14",
    "regnet_y_128gf",
}

343
344
345
346
347
348
# The following contains configuration and expected values to be used tests that are model specific
_model_tests_values = {
    "retinanet_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [36, 46, 65, 78, 88, 89],
    },
349
350
351
352
    "retinanet_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [44, 74, 131, 170, 200, 203],
    },
353
354
355
356
357
358
359
360
    "keypointrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [48, 58, 77, 90, 100, 101],
    },
    "fasterrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [30, 40, 59, 72, 82, 83],
    },
361
362
363
364
    "fasterrcnn_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [50, 80, 137, 176, 206, 209],
    },
365
366
367
368
    "maskrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [42, 52, 71, 84, 94, 95],
    },
369
370
371
372
    "maskrcnn_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [66, 96, 153, 192, 222, 225],
    },
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "ssd300_vgg16": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [45, 51, 57, 63, 67, 71],
    },
    "ssdlite320_mobilenet_v3_large": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [96, 99, 138, 200, 239, 257, 266],
    },
Hu Ye's avatar
Hu Ye committed
389
390
391
392
    "fcos_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [54, 64, 83, 96, 106, 107],
    },
393
394
395
}


Anirudh's avatar
Anirudh committed
396
397
398
399
400
401
402
403
404
405
def _make_sliced_model(model, stop_layer):
    layers = OrderedDict()
    for name, layer in model.named_children():
        layers[name] = layer
        if name == stop_layer:
            break
    new_model = torch.nn.Sequential(layers)
    return new_model


406
407
@pytest.mark.parametrize("model_fn", [models.densenet121, models.densenet169, models.densenet201, models.densenet161])
def test_memory_efficient_densenet(model_fn):
Anirudh's avatar
Anirudh committed
408
409
410
    input_shape = (1, 3, 300, 300)
    x = torch.rand(input_shape)

411
    model1 = model_fn(num_classes=50, memory_efficient=True)
Anirudh's avatar
Anirudh committed
412
    params = model1.state_dict()
413
    num_params = sum(x.numel() for x in model1.parameters())
Anirudh's avatar
Anirudh committed
414
415
416
    model1.eval()
    out1 = model1(x)
    out1.sum().backward()
417
    num_grad = sum(x.grad.numel() for x in model1.parameters() if x.grad is not None)
Anirudh's avatar
Anirudh committed
418

419
    model2 = model_fn(num_classes=50, memory_efficient=False)
Anirudh's avatar
Anirudh committed
420
421
422
423
424
425
426
    model2.load_state_dict(params)
    model2.eval()
    out2 = model2(x)

    assert num_params == num_grad
    torch.testing.assert_close(out1, out2, rtol=0.0, atol=1e-5)

427
428
429
    _check_input_backprop(model1, x)
    _check_input_backprop(model2, x)

Anirudh's avatar
Anirudh committed
430

431
432
433
@pytest.mark.parametrize("dilate_layer_2", (True, False))
@pytest.mark.parametrize("dilate_layer_3", (True, False))
@pytest.mark.parametrize("dilate_layer_4", (True, False))
Anirudh's avatar
Anirudh committed
434
435
def test_resnet_dilation(dilate_layer_2, dilate_layer_3, dilate_layer_4):
    # TODO improve tests to also check that each layer has the right dimensionality
436
    model = models.resnet50(replace_stride_with_dilation=(dilate_layer_2, dilate_layer_3, dilate_layer_4))
Anirudh's avatar
Anirudh committed
437
438
439
440
441
442
443
444
445
    model = _make_sliced_model(model, stop_layer="layer4")
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    f = 2 ** sum((dilate_layer_2, dilate_layer_3, dilate_layer_4))
    assert out.shape == (1, 2048, 7 * f, 7 * f)


def test_mobilenet_v2_residual_setting():
446
    model = models.mobilenet_v2(inverted_residual_setting=[[1, 16, 1, 1], [6, 24, 2, 2]])
Anirudh's avatar
Anirudh committed
447
448
449
450
451
452
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    assert out.shape[-1] == 1000


453
454
455
@pytest.mark.parametrize("model_fn", [models.mobilenet_v2, models.mobilenet_v3_large, models.mobilenet_v3_small])
def test_mobilenet_norm_layer(model_fn):
    model = model_fn()
Anirudh's avatar
Anirudh committed
456
457
458
    assert any(isinstance(x, nn.BatchNorm2d) for x in model.modules())

    def get_gn(num_channels):
459
        return nn.GroupNorm(1, num_channels)
Anirudh's avatar
Anirudh committed
460

461
    model = model_fn(norm_layer=get_gn)
462
    assert not (any(isinstance(x, nn.BatchNorm2d) for x in model.modules()))
Anirudh's avatar
Anirudh committed
463
464
465
466
467
    assert any(isinstance(x, nn.GroupNorm) for x in model.modules())


def test_inception_v3_eval():
    kwargs = {}
468
469
470
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
471
472
473
474
475
476
477
    name = "inception_v3"
    model = models.Inception3(**kwargs)
    model.aux_logits = False
    model.AuxLogits = None
    model = model.eval()
    x = torch.rand(1, 3, 299, 299)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
478
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
479
480
481


def test_fasterrcnn_double():
482
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
483
484
485
486
487
488
489
490
491
492
493
    model.double()
    model.eval()
    input_shape = (3, 300, 300)
    x = torch.rand(input_shape, dtype=torch.float64)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x
    assert len(out) == 1
    assert "boxes" in out[0]
    assert "scores" in out[0]
    assert "labels" in out[0]
494
    _check_input_backprop(model, model_input)
Anirudh's avatar
Anirudh committed
495
496
497
498


def test_googlenet_eval():
    kwargs = {}
499
500
501
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
502
503
504
505
506
507
508
509
    name = "googlenet"
    model = models.GoogLeNet(**kwargs)
    model.aux_logits = False
    model.aux1 = None
    model.aux2 = None
    model = model.eval()
    x = torch.rand(1, 3, 224, 224)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
510
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
511
512
513
514
515
516
517
518
519
520


@needs_cuda
def test_fasterrcnn_switch_devices():
    def checkOut(out):
        assert len(out) == 1
        assert "boxes" in out[0]
        assert "scores" in out[0]
        assert "labels" in out[0]

521
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
522
523
524
    model.cuda()
    model.eval()
    input_shape = (3, 300, 300)
525
    x = torch.rand(input_shape, device="cuda")
Anirudh's avatar
Anirudh committed
526
527
528
529
530
531
532
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    checkOut(out)

    with torch.cuda.amp.autocast():
533
        out = model(model_input)
534

Anirudh's avatar
Anirudh committed
535
    checkOut(out)
536

537
538
    _check_input_backprop(model, model_input)

Anirudh's avatar
Anirudh committed
539
540
541
542
    # now switch to cpu and make sure it works
    model.cpu()
    x = x.cpu()
    out_cpu = model([x])
543

Anirudh's avatar
Anirudh committed
544
    checkOut(out_cpu)
545

546
547
    _check_input_backprop(model, [x])

548

Anirudh's avatar
Anirudh committed
549
def test_generalizedrcnn_transform_repr():
550

Anirudh's avatar
Anirudh committed
551
552
553
    min_size, max_size = 224, 299
    image_mean = [0.485, 0.456, 0.406]
    image_std = [0.229, 0.224, 0.225]
554

555
556
557
    t = models.detection.transform.GeneralizedRCNNTransform(
        min_size=min_size, max_size=max_size, image_mean=image_mean, image_std=image_std
    )
558

Anirudh's avatar
Anirudh committed
559
    # Check integrity of object __repr__ attribute
560
561
    expected_string = "GeneralizedRCNNTransform("
    _indent = "\n    "
562
563
    expected_string += f"{_indent}Normalize(mean={image_mean}, std={image_std})"
    expected_string += f"{_indent}Resize(min_size=({min_size},), max_size={max_size}, "
Anirudh's avatar
Anirudh committed
564
565
    expected_string += "mode='bilinear')\n)"
    assert t.__repr__() == expected_string
566
567


568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
test_vit_conv_stem_configs = [
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=64),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=512),
]


def vitc_b_16(**kwargs: Any):
    return models.VisionTransformer(
        image_size=224,
        patch_size=16,
        num_layers=12,
        num_heads=12,
        hidden_dim=768,
        mlp_dim=3072,
        conv_stem_configs=test_vit_conv_stem_configs,
        **kwargs,
    )


@pytest.mark.parametrize("model_fn", [vitc_b_16])
@pytest.mark.parametrize("dev", cpu_and_gpu())
def test_vitc_models(model_fn, dev):
    test_classification_model(model_fn, dev)


597
@pytest.mark.parametrize("model_fn", get_models_from_module(models))
598
@pytest.mark.parametrize("dev", cpu_and_gpu())
599
def test_classification_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
600
601
    set_rng_seed(0)
    defaults = {
602
603
        "num_classes": 50,
        "input_shape": (1, 3, 224, 224),
Anirudh's avatar
Anirudh committed
604
    }
605
    model_name = model_fn.__name__
606
607
    if dev == "cuda" and SKIP_BIG_MODEL and model_name in skipped_big_models:
        pytest.skip("Skipped to reduce memory usage. Set env var SKIP_BIG_MODEL=0 to enable test for this model")
Anirudh's avatar
Anirudh committed
608
    kwargs = {**defaults, **_model_params.get(model_name, {})}
609
    num_classes = kwargs.get("num_classes")
610
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
611

612
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
613
614
615
616
617
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
    _assert_expected(out.cpu(), model_name, prec=0.1)
618
    assert out.shape[-1] == num_classes
619
620
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
621

622
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
623
624
625
626
627
628
        with torch.cuda.amp.autocast():
            out = model(x)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == 50
629

630
631
    _check_input_backprop(model, x)

632

633
@pytest.mark.parametrize("model_fn", get_models_from_module(models.segmentation))
634
@pytest.mark.parametrize("dev", cpu_and_gpu())
635
def test_segmentation_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
636
637
    set_rng_seed(0)
    defaults = {
638
        "num_classes": 10,
639
        "weights_backbone": None,
640
        "input_shape": (1, 3, 32, 32),
Anirudh's avatar
Anirudh committed
641
    }
642
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
643
    kwargs = {**defaults, **_model_params.get(model_name, {})}
644
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
645

646
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
647
648
649
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
650
    out = model(x)
Anirudh's avatar
Anirudh committed
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669

    def check_out(out):
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(out.cpu(), model_name, prec=prec)
        except AssertionError:
            # Unfortunately some segmentation models are flaky with autocast
            # so instead of validating the probability scores, check that the class
            # predictions match.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
            torch.testing.assert_close(out.argmax(dim=1), expected.argmax(dim=1), rtol=prec, atol=prec)
            return False  # Partial validation performed

        return True  # Full validation performed

670
    full_validation = check_out(out["out"])
Anirudh's avatar
Anirudh committed
671

672
673
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
674

675
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
676
        with torch.cuda.amp.autocast():
677
            out = model(x)
Anirudh's avatar
Anirudh committed
678
679
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
680
                full_validation &= check_out(out["out"])
Anirudh's avatar
Anirudh committed
681
682

    if not full_validation:
683
        msg = (
684
            f"The output of {test_segmentation_model.__name__} could only be partially validated. "
685
686
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
687
            "significant changes to the codebase."
688
        )
Anirudh's avatar
Anirudh committed
689
690
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
691

692
693
    _check_input_backprop(model, x)

694

695
@pytest.mark.parametrize("model_fn", get_models_from_module(models.detection))
696
@pytest.mark.parametrize("dev", cpu_and_gpu())
697
def test_detection_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
698
699
    set_rng_seed(0)
    defaults = {
700
        "num_classes": 50,
701
        "weights_backbone": None,
702
        "input_shape": (3, 300, 300),
Anirudh's avatar
Anirudh committed
703
    }
704
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
705
    kwargs = {**defaults, **_model_params.get(model_name, {})}
706
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
707

708
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
709
710
711
712
713
714
715
716
717
718
719
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    def check_out(out):
        assert len(out) == 1

        def compact(tensor):
720
            tensor = tensor.cpu()
Anirudh's avatar
Anirudh committed
721
722
723
724
725
726
727
728
729
730
731
732
733
734
            size = tensor.size()
            elements_per_sample = functools.reduce(operator.mul, size[1:], 1)
            if elements_per_sample > 30:
                return compute_mean_std(tensor)
            else:
                return subsample_tensor(tensor)

        def subsample_tensor(tensor):
            num_elems = tensor.size(0)
            num_samples = 20
            if num_elems <= num_samples:
                return tensor

            ith_index = num_elems // num_samples
735
            return tensor[ith_index - 1 :: ith_index]
Anirudh's avatar
Anirudh committed
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757

        def compute_mean_std(tensor):
            # can't compute mean of integral tensor
            tensor = tensor.to(torch.double)
            mean = torch.mean(tensor)
            std = torch.std(tensor)
            return {"mean": mean, "std": std}

        output = map_nested_tensor_object(out, tensor_map_fn=compact)
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(output, model_name, prec=prec)
        except AssertionError:
            # Unfortunately detection models are flaky due to the unstable sort
            # in NMS. If matching across all outputs fails, use the same approach
            # as in NMSTester.test_nms_cuda to see if this is caused by duplicate
            # scores.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
758
759
760
            torch.testing.assert_close(
                output[0]["scores"], expected[0]["scores"], rtol=prec, atol=prec, check_device=False, check_dtype=False
            )
Anirudh's avatar
Anirudh committed
761
762
763
764
765
766
767
768
769
770

            # Note: Fmassa proposed turning off NMS by adapting the threshold
            # and then using the Hungarian algorithm as in DETR to find the
            # best match between output and expected boxes and eliminate some
            # of the flakiness. Worth exploring.
            return False  # Partial validation performed

        return True  # Full validation performed

    full_validation = check_out(out)
771
    _check_jit_scriptable(model, ([x],), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
Anirudh's avatar
Anirudh committed
772

773
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
774
775
776
777
778
779
780
        with torch.cuda.amp.autocast():
            out = model(model_input)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                full_validation &= check_out(out)

    if not full_validation:
781
        msg = (
782
            f"The output of {test_detection_model.__name__} could only be partially validated. "
783
784
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
785
            "significant changes to the codebase."
786
        )
Anirudh's avatar
Anirudh committed
787
788
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
789

790
791
    _check_input_backprop(model, model_input)

792

793
794
@pytest.mark.parametrize("model_fn", get_models_from_module(models.detection))
def test_detection_model_validation(model_fn):
Anirudh's avatar
Anirudh committed
795
    set_rng_seed(0)
796
    model = model_fn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
797
798
799
800
    input_shape = (3, 300, 300)
    x = [torch.rand(input_shape)]

    # validate that targets are present in training
801
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
802
803
804
        model(x)

    # validate type
805
    targets = [{"boxes": 0.0}]
806
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
807
808
809
810
        model(x, targets=targets)

    # validate boxes shape
    for boxes in (torch.rand((4,)), torch.rand((1, 5))):
811
        targets = [{"boxes": boxes}]
812
        with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
813
814
815
816
            model(x, targets=targets)

    # validate that no degenerate boxes are present
    boxes = torch.tensor([[1, 3, 1, 4], [2, 4, 3, 4]])
817
    targets = [{"boxes": boxes}]
818
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
819
        model(x, targets=targets)
820

821

822
@pytest.mark.parametrize("model_fn", get_models_from_module(models.video))
823
@pytest.mark.parametrize("dev", cpu_and_gpu())
824
def test_video_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
825
826
827
    # the default input shape is
    # bs * num_channels * clip_len * h *w
    input_shape = (1, 3, 4, 112, 112)
828
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
829
    # test both basicblock and Bottleneck
830
    model = model_fn(num_classes=50)
Anirudh's avatar
Anirudh committed
831
832
833
834
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
835
836
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
837
838
    assert out.shape[-1] == 50

839
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
840
841
842
        with torch.cuda.amp.autocast():
            out = model(x)
            assert out.shape[-1] == 50
843

844
845
    _check_input_backprop(model, x)

846

847
848
849
850
851
852
853
@pytest.mark.skipif(
    not (
        "fbgemm" in torch.backends.quantized.supported_engines
        and "qnnpack" in torch.backends.quantized.supported_engines
    ),
    reason="This Pytorch Build has not been built with fbgemm and qnnpack",
)
854
855
@pytest.mark.parametrize("model_fn", get_models_from_module(models.quantization))
def test_quantized_classification_model(model_fn):
856
    set_rng_seed(0)
857
    defaults = {
858
        "num_classes": 5,
859
860
        "input_shape": (1, 3, 224, 224),
        "quantize": True,
861
    }
862
    model_name = model_fn.__name__
863
    kwargs = {**defaults, **_model_params.get(model_name, {})}
864
    input_shape = kwargs.pop("input_shape")
865
866

    # First check if quantize=True provides models that can run with input data
867
    model = model_fn(**kwargs)
868
    model.eval()
869
    x = torch.rand(input_shape)
870
871
872
873
874
    out = model(x)

    if model_name not in quantized_flaky_models:
        _assert_expected(out, model_name + "_quantized", prec=0.1)
        assert out.shape[-1] == 5
875
876
877
878
879
880
881
        _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
        _check_fx_compatible(model, x, eager_out=out)
    else:
        try:
            torch.jit.script(model)
        except Exception as e:
            raise AssertionError("model cannot be scripted.") from e
882

883
    kwargs["quantize"] = False
884
    for eval_mode in [True, False]:
885
        model = model_fn(**kwargs)
886
887
        if eval_mode:
            model.eval()
888
            model.qconfig = torch.ao.quantization.default_qconfig
889
890
        else:
            model.train()
891
            model.qconfig = torch.ao.quantization.default_qat_qconfig
892

893
        model.fuse_model(is_qat=not eval_mode)
894
        if eval_mode:
895
            torch.ao.quantization.prepare(model, inplace=True)
896
        else:
897
            torch.ao.quantization.prepare_qat(model, inplace=True)
898
899
            model.eval()

900
        torch.ao.quantization.convert(model, inplace=True)
901
902


903
@pytest.mark.parametrize("model_fn", get_models_from_module(models.detection))
904
def test_detection_model_trainable_backbone_layers(model_fn, disable_weight_loading):
905
    model_name = model_fn.__name__
906
907
908
    max_trainable = _model_tests_values[model_name]["max_trainable"]
    n_trainable_params = []
    for trainable_layers in range(0, max_trainable + 1):
909
        model = model_fn(weights=None, weights_backbone="DEFAULT", trainable_backbone_layers=trainable_layers)
910
911
912
913
914

        n_trainable_params.append(len([p for p in model.parameters() if p.requires_grad]))
    assert n_trainable_params == _model_tests_values[model_name]["n_trn_params_per_layer"]


915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
@needs_cuda
@pytest.mark.parametrize("model_builder", (models.optical_flow.raft_large, models.optical_flow.raft_small))
@pytest.mark.parametrize("scripted", (False, True))
def test_raft(model_builder, scripted):

    torch.manual_seed(0)

    # We need very small images, otherwise the pickle size would exceed the 50KB
    # As a resut we need to override the correlation pyramid to not downsample
    # too much, otherwise we would get nan values (effective H and W would be
    # reduced to 1)
    corr_block = models.optical_flow.raft.CorrBlock(num_levels=2, radius=2)

    model = model_builder(corr_block=corr_block).eval().to("cuda")
    if scripted:
        model = torch.jit.script(model)

    bs = 1
    img1 = torch.rand(bs, 3, 80, 72).cuda()
    img2 = torch.rand(bs, 3, 80, 72).cuda()

    preds = model(img1, img2)
    flow_pred = preds[-1]
    # Tolerance is fairly high, but there are 2 * H * W outputs to check
    # The .pkl were generated on the AWS cluter, on the CI it looks like the resuts are slightly different
    _assert_expected(flow_pred, name=model_builder.__name__, atol=1e-2, rtol=1)


943
if __name__ == "__main__":
944
    pytest.main([__file__])