test_models.py 34.2 KB
Newer Older
1
import contextlib
2
3
4
import functools
import operator
import os
5
import pkgutil
6
import platform
7
import sys
8
import warnings
9
from collections import OrderedDict
10
from tempfile import TemporaryDirectory
11
from typing import Any
12
13

import pytest
14
import torch
15
import torch.fx
16
import torch.nn as nn
17
from _utils_internal import get_relative_path
18
from common_utils import cpu_and_gpu, freeze_rng_state, map_nested_tensor_object, needs_cuda, set_rng_seed
19
from torchvision import models
20
from torchvision.models import get_model_builder, list_models
21

22

23
ACCEPT = os.getenv("EXPECTTEST_ACCEPT", "0") == "1"
24
SKIP_BIG_MODEL = os.getenv("SKIP_BIG_MODEL", "1") == "1"
25
26


27
def list_model_fns(module):
28
    return [get_model_builder(name) for name in list_models(module)]
29
30


31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
@pytest.fixture
def disable_weight_loading(mocker):
    """When testing models, the two slowest operations are the downloading of the weights to a file and loading them
    into the model. Unless, you want to test against specific weights, these steps can be disabled without any
    drawbacks.

    Including this fixture into the signature of your test, i.e. `test_foo(disable_weight_loading)`, will recurse
    through all models in `torchvision.models` and will patch all occurrences of the function
    `download_state_dict_from_url` as well as the method `load_state_dict` on all subclasses of `nn.Module` to be
    no-ops.

    .. warning:

        Loaded models are still executable as normal, but will always have random weights. Make sure to not use this
        fixture if you want to compare the model output against reference values.

    """
    starting_point = models
    function_name = "load_state_dict_from_url"
    method_name = "load_state_dict"

    module_names = {info.name for info in pkgutil.walk_packages(starting_point.__path__, f"{starting_point.__name__}.")}
    targets = {f"torchvision._internally_replaced_utils.{function_name}", f"torch.nn.Module.{method_name}"}
    for name in module_names:
        module = sys.modules.get(name)
        if not module:
            continue

        if function_name in module.__dict__:
            targets.add(f"{module.__name__}.{function_name}")

        targets.update(
            {
                f"{module.__name__}.{obj.__name__}.{method_name}"
                for obj in module.__dict__.values()
                if isinstance(obj, type) and issubclass(obj, nn.Module) and method_name in obj.__dict__
            }
        )

    for target in targets:
        # See https://github.com/pytorch/vision/pull/4867#discussion_r743677802 for details
        with contextlib.suppress(AttributeError):
            mocker.patch(target)


76
77
78
79
80
81
def _get_expected_file(name=None):
    # Determine expected file based on environment
    expected_file_base = get_relative_path(os.path.realpath(__file__), "expect")

    # Note: for legacy reasons, the reference file names all had "ModelTest.test_" in their names
    # We hardcode it here to avoid having to re-generate the reference files
82
    expected_file = os.path.join(expected_file_base, "ModelTester.test_" + name)
83
84
85
86
87
88
89
90
91
92
93
94
    expected_file += "_expect.pkl"

    if not ACCEPT and not os.path.exists(expected_file):
        raise RuntimeError(
            f"No expect file exists for {os.path.basename(expected_file)} in {expected_file}; "
            "to accept the current output, re-run the failing test after setting the EXPECTTEST_ACCEPT "
            "env variable. For example: EXPECTTEST_ACCEPT=1 pytest test/test_models.py -k alexnet"
        )

    return expected_file


95
def _assert_expected(output, name, prec=None, atol=None, rtol=None):
96
97
98
99
100
101
102
103
104
105
106
    """Test that a python value matches the recorded contents of a file
    based on a "check" name. The value must be
    pickable with `torch.save`. This file
    is placed in the 'expect' directory in the same directory
    as the test script. You can automatically update the recorded test
    output using an EXPECTTEST_ACCEPT=1 env variable.
    """
    expected_file = _get_expected_file(name)

    if ACCEPT:
        filename = {os.path.basename(expected_file)}
107
        print(f"Accepting updated output for {filename}:\n\n{output}")
108
109
110
111
        torch.save(output, expected_file)
        MAX_PICKLE_SIZE = 50 * 1000  # 50 KB
        binary_size = os.path.getsize(expected_file)
        if binary_size > MAX_PICKLE_SIZE:
112
            raise RuntimeError(f"The output for {filename}, is larger than 50kb - got {binary_size}kb")
113
114
    else:
        expected = torch.load(expected_file)
115
116
        rtol = rtol or prec  # keeping prec param for legacy reason, but could be removed ideally
        atol = atol or prec
117
        torch.testing.assert_close(output, expected, rtol=rtol, atol=atol, check_dtype=False, check_device=False)
118
119


120
def _check_jit_scriptable(nn_module, args, unwrapper=None, eager_out=None):
121
122
    """Check that a nn.Module's results in TorchScript match eager and that it can be exported"""

123
124
125
126
127
128
129
    def get_export_import_copy(m):
        """Save and load a TorchScript model"""
        with TemporaryDirectory() as dir:
            path = os.path.join(dir, "script.pt")
            m.save(path)
            imported = torch.jit.load(path)
        return imported
130
131
132

    sm = torch.jit.script(nn_module)

133
134
    if eager_out is None:
        with torch.no_grad(), freeze_rng_state():
135
            eager_out = nn_module(*args)
136

137
    with torch.no_grad(), freeze_rng_state():
138
139
140
141
142
        script_out = sm(*args)
        if unwrapper:
            script_out = unwrapper(script_out)

    torch.testing.assert_close(eager_out, script_out, atol=1e-4, rtol=1e-4)
143
144
145
146
147
148
149
150

    m_import = get_export_import_copy(sm)
    with torch.no_grad(), freeze_rng_state():
        imported_script_out = m_import(*args)
        if unwrapper:
            imported_script_out = unwrapper(imported_script_out)

    torch.testing.assert_close(script_out, imported_script_out, atol=3e-4, rtol=3e-4)
151
152


153
def _check_fx_compatible(model, inputs, eager_out=None):
154
    model_fx = torch.fx.symbolic_trace(model)
155
156
157
158
    if eager_out is None:
        eager_out = model(inputs)
    fx_out = model_fx(inputs)
    torch.testing.assert_close(eager_out, fx_out)
159
160


161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
def _check_input_backprop(model, inputs):
    if isinstance(inputs, list):
        requires_grad = list()
        for inp in inputs:
            requires_grad.append(inp.requires_grad)
            inp.requires_grad_(True)
    else:
        requires_grad = inputs.requires_grad
        inputs.requires_grad_(True)

    out = model(inputs)

    if isinstance(out, dict):
        out["out"].sum().backward()
    else:
        if isinstance(out[0], dict):
            out[0]["scores"].sum().backward()
        else:
            out[0].sum().backward()

    if isinstance(inputs, list):
        for i, inp in enumerate(inputs):
            assert inputs[i].grad is not None
            inp.requires_grad_(requires_grad[i])
    else:
        assert inputs.grad is not None
        inputs.requires_grad_(requires_grad)


190
191
192
# If 'unwrapper' is provided it will be called with the script model outputs
# before they are compared to the eager model outputs. This is useful if the
# model outputs are different between TorchScript / Eager mode
193
script_model_unwrapper = {
194
195
    "googlenet": lambda x: x.logits,
    "inception_v3": lambda x: x.logits,
196
    "fasterrcnn_resnet50_fpn": lambda x: x[1],
197
    "fasterrcnn_resnet50_fpn_v2": lambda x: x[1],
198
    "fasterrcnn_mobilenet_v3_large_fpn": lambda x: x[1],
199
    "fasterrcnn_mobilenet_v3_large_320_fpn": lambda x: x[1],
200
    "maskrcnn_resnet50_fpn": lambda x: x[1],
201
    "maskrcnn_resnet50_fpn_v2": lambda x: x[1],
202
203
    "keypointrcnn_resnet50_fpn": lambda x: x[1],
    "retinanet_resnet50_fpn": lambda x: x[1],
204
    "retinanet_resnet50_fpn_v2": lambda x: x[1],
205
    "ssd300_vgg16": lambda x: x[1],
206
    "ssdlite320_mobilenet_v3_large": lambda x: x[1],
Hu Ye's avatar
Hu Ye committed
207
    "fcos_resnet50_fpn": lambda x: x[1],
208
}
209
210


211
212
213
214
215
216
217
218
219
220
221
222
223
224
# The following models exhibit flaky numerics under autocast in _test_*_model harnesses.
# This may be caused by the harness environment (e.g. num classes, input initialization
# via torch.rand), and does not prove autocast is unsuitable when training with real data
# (autocast has been used successfully with real data for some of these models).
# TODO:  investigate why autocast numerics are flaky in the harnesses.
#
# For the following models, _test_*_model harnesses skip numerical checks on outputs when
# trying autocast. However, they still try an autocasted forward pass, so they still ensure
# autocast coverage suffices to prevent dtype errors in each model.
autocast_flaky_numerics = (
    "inception_v3",
    "resnet101",
    "resnet152",
    "wide_resnet101_2",
225
226
    "deeplabv3_resnet50",
    "deeplabv3_resnet101",
227
    "deeplabv3_mobilenet_v3_large",
228
229
    "fcn_resnet50",
    "fcn_resnet101",
230
    "lraspp_mobilenet_v3_large",
231
    "maskrcnn_resnet50_fpn",
232
    "maskrcnn_resnet50_fpn_v2",
233
    "keypointrcnn_resnet50_fpn",
234
235
)

236
237
autocast_custom_prec = {"fasterrcnn_resnet50_fpn": 0.012} if platform.system() == "Windows" else {}

238
239
240
# The tests for the following quantized models are flaky possibly due to inconsistent
# rounding errors in different platforms. For this reason the input/output consistency
# tests under test_quantized_classification_model will be skipped for the following models.
241
quantized_flaky_models = ("inception_v3", "resnet50")
242

243

244
245
246
# The following contains configuration parameters for all models which are used by
# the _test_*_model methods.
_model_params = {
247
    "inception_v3": {"input_shape": (1, 3, 299, 299), "init_weights": True},
248
249
250
251
252
253
    "retinanet_resnet50_fpn": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
254
    },
255
256
257
258
259
260
261
    "retinanet_resnet50_fpn_v2": {
        "num_classes": 20,
        "score_thresh": 0.01,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
262
263
264
265
    "keypointrcnn_resnet50_fpn": {
        "num_classes": 2,
        "min_size": 224,
        "max_size": 224,
266
        "box_score_thresh": 0.17,
267
        "input_shape": (3, 224, 224),
268
    },
269
270
271
272
273
    "fasterrcnn_resnet50_fpn": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
274
    },
275
276
277
278
279
280
    "fasterrcnn_resnet50_fpn_v2": {
        "num_classes": 20,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
Hu Ye's avatar
Hu Ye committed
281
282
283
284
285
286
287
    "fcos_resnet50_fpn": {
        "num_classes": 2,
        "score_thresh": 0.05,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
288
289
290
291
292
    "maskrcnn_resnet50_fpn": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
293
    },
294
295
296
297
298
299
    "maskrcnn_resnet50_fpn_v2": {
        "num_classes": 10,
        "min_size": 224,
        "max_size": 224,
        "input_shape": (3, 224, 224),
    },
300
301
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "box_score_thresh": 0.02076,
302
    },
303
304
305
306
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "box_score_thresh": 0.02076,
        "rpn_pre_nms_top_n_test": 1000,
        "rpn_post_nms_top_n_test": 1000,
307
    },
308
309
310
311
    "vit_h_14": {
        "image_size": 56,
        "input_shape": (1, 3, 56, 56),
    },
312
313
314
    "mvit_v1_b": {
        "input_shape": (1, 3, 16, 224, 224),
    },
315
316
317
    "mvit_v2_s": {
        "input_shape": (1, 3, 16, 224, 224),
    },
318
319
320
    "s3d": {
        "input_shape": (1, 3, 16, 224, 224),
    },
321
    "googlenet": {"init_weights": True},
322
}
323
324
325
326
327
# speeding up slow models:
slow_models = [
    "convnext_base",
    "convnext_large",
    "resnext101_32x8d",
328
    "resnext101_64x4d",
329
330
331
332
333
334
335
336
337
338
    "wide_resnet101_2",
    "efficientnet_b6",
    "efficientnet_b7",
    "efficientnet_v2_m",
    "efficientnet_v2_l",
    "regnet_y_16gf",
    "regnet_y_32gf",
    "regnet_y_128gf",
    "regnet_x_16gf",
    "regnet_x_32gf",
Joao Gomes's avatar
Joao Gomes committed
339
    "swin_t",
340
341
    "swin_s",
    "swin_b",
Local State's avatar
Local State committed
342
343
344
    "swin_v2_t",
    "swin_v2_s",
    "swin_v2_b",
345
346
347
]
for m in slow_models:
    _model_params[m] = {"input_shape": (1, 3, 64, 64)}
348
349


350
# skip big models to reduce memory usage on CI test. We can exclude combinations of (platform-system, device).
351
skipped_big_models = {
352
353
    "vit_h_14": {("Windows", "cpu"), ("Windows", "cuda")},
    "regnet_y_128gf": {("Windows", "cpu"), ("Windows", "cuda")},
354
355
    "mvit_v1_b": {("Windows", "cuda"), ("Linux", "cuda")},
    "mvit_v2_s": {("Windows", "cuda"), ("Linux", "cuda")},
356
357
}

358
359
360
361
362
363
364
365
366
367
368

def is_skippable(model_name, device):
    if model_name not in skipped_big_models:
        return False

    platform_system = platform.system()
    device_name = str(device).split(":")[0]

    return (platform_system, device_name) in skipped_big_models[model_name]


369
370
371
372
373
374
# The following contains configuration and expected values to be used tests that are model specific
_model_tests_values = {
    "retinanet_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [36, 46, 65, 78, 88, 89],
    },
375
376
377
378
    "retinanet_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [44, 74, 131, 170, 200, 203],
    },
379
380
381
382
383
384
385
386
    "keypointrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [48, 58, 77, 90, 100, 101],
    },
    "fasterrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [30, 40, 59, 72, 82, 83],
    },
387
388
389
390
    "fasterrcnn_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [50, 80, 137, 176, 206, 209],
    },
391
392
393
394
    "maskrcnn_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [42, 52, 71, 84, 94, 95],
    },
395
396
397
398
    "maskrcnn_resnet50_fpn_v2": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [66, 96, 153, 192, 222, 225],
    },
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
    "fasterrcnn_mobilenet_v3_large_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "fasterrcnn_mobilenet_v3_large_320_fpn": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [22, 23, 44, 70, 91, 97, 100],
    },
    "ssd300_vgg16": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [45, 51, 57, 63, 67, 71],
    },
    "ssdlite320_mobilenet_v3_large": {
        "max_trainable": 6,
        "n_trn_params_per_layer": [96, 99, 138, 200, 239, 257, 266],
    },
Hu Ye's avatar
Hu Ye committed
415
416
417
418
    "fcos_resnet50_fpn": {
        "max_trainable": 5,
        "n_trn_params_per_layer": [54, 64, 83, 96, 106, 107],
    },
419
420
421
}


Anirudh's avatar
Anirudh committed
422
423
424
425
426
427
428
429
430
431
def _make_sliced_model(model, stop_layer):
    layers = OrderedDict()
    for name, layer in model.named_children():
        layers[name] = layer
        if name == stop_layer:
            break
    new_model = torch.nn.Sequential(layers)
    return new_model


432
433
@pytest.mark.parametrize("model_fn", [models.densenet121, models.densenet169, models.densenet201, models.densenet161])
def test_memory_efficient_densenet(model_fn):
Anirudh's avatar
Anirudh committed
434
435
436
    input_shape = (1, 3, 300, 300)
    x = torch.rand(input_shape)

437
    model1 = model_fn(num_classes=50, memory_efficient=True)
Anirudh's avatar
Anirudh committed
438
    params = model1.state_dict()
439
    num_params = sum(x.numel() for x in model1.parameters())
Anirudh's avatar
Anirudh committed
440
441
442
    model1.eval()
    out1 = model1(x)
    out1.sum().backward()
443
    num_grad = sum(x.grad.numel() for x in model1.parameters() if x.grad is not None)
Anirudh's avatar
Anirudh committed
444

445
    model2 = model_fn(num_classes=50, memory_efficient=False)
Anirudh's avatar
Anirudh committed
446
447
448
449
450
451
452
    model2.load_state_dict(params)
    model2.eval()
    out2 = model2(x)

    assert num_params == num_grad
    torch.testing.assert_close(out1, out2, rtol=0.0, atol=1e-5)

453
454
455
    _check_input_backprop(model1, x)
    _check_input_backprop(model2, x)

Anirudh's avatar
Anirudh committed
456

457
458
459
@pytest.mark.parametrize("dilate_layer_2", (True, False))
@pytest.mark.parametrize("dilate_layer_3", (True, False))
@pytest.mark.parametrize("dilate_layer_4", (True, False))
Anirudh's avatar
Anirudh committed
460
461
def test_resnet_dilation(dilate_layer_2, dilate_layer_3, dilate_layer_4):
    # TODO improve tests to also check that each layer has the right dimensionality
462
    model = models.resnet50(replace_stride_with_dilation=(dilate_layer_2, dilate_layer_3, dilate_layer_4))
Anirudh's avatar
Anirudh committed
463
464
465
466
467
468
469
470
471
    model = _make_sliced_model(model, stop_layer="layer4")
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    f = 2 ** sum((dilate_layer_2, dilate_layer_3, dilate_layer_4))
    assert out.shape == (1, 2048, 7 * f, 7 * f)


def test_mobilenet_v2_residual_setting():
472
    model = models.mobilenet_v2(inverted_residual_setting=[[1, 16, 1, 1], [6, 24, 2, 2]])
Anirudh's avatar
Anirudh committed
473
474
475
476
477
478
    model.eval()
    x = torch.rand(1, 3, 224, 224)
    out = model(x)
    assert out.shape[-1] == 1000


479
480
481
@pytest.mark.parametrize("model_fn", [models.mobilenet_v2, models.mobilenet_v3_large, models.mobilenet_v3_small])
def test_mobilenet_norm_layer(model_fn):
    model = model_fn()
Anirudh's avatar
Anirudh committed
482
483
484
    assert any(isinstance(x, nn.BatchNorm2d) for x in model.modules())

    def get_gn(num_channels):
485
        return nn.GroupNorm(1, num_channels)
Anirudh's avatar
Anirudh committed
486

487
    model = model_fn(norm_layer=get_gn)
488
    assert not (any(isinstance(x, nn.BatchNorm2d) for x in model.modules()))
Anirudh's avatar
Anirudh committed
489
490
491
492
493
    assert any(isinstance(x, nn.GroupNorm) for x in model.modules())


def test_inception_v3_eval():
    kwargs = {}
494
495
496
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
497
498
499
500
501
502
503
    name = "inception_v3"
    model = models.Inception3(**kwargs)
    model.aux_logits = False
    model.AuxLogits = None
    model = model.eval()
    x = torch.rand(1, 3, 299, 299)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
504
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
505
506
507


def test_fasterrcnn_double():
508
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
509
510
511
512
513
514
515
516
517
518
519
    model.double()
    model.eval()
    input_shape = (3, 300, 300)
    x = torch.rand(input_shape, dtype=torch.float64)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x
    assert len(out) == 1
    assert "boxes" in out[0]
    assert "scores" in out[0]
    assert "labels" in out[0]
520
    _check_input_backprop(model, model_input)
Anirudh's avatar
Anirudh committed
521
522
523
524


def test_googlenet_eval():
    kwargs = {}
525
526
527
    kwargs["transform_input"] = True
    kwargs["aux_logits"] = True
    kwargs["init_weights"] = False
Anirudh's avatar
Anirudh committed
528
529
530
531
532
533
534
535
    name = "googlenet"
    model = models.GoogLeNet(**kwargs)
    model.aux_logits = False
    model.aux1 = None
    model.aux2 = None
    model = model.eval()
    x = torch.rand(1, 3, 224, 224)
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None))
536
    _check_input_backprop(model, x)
Anirudh's avatar
Anirudh committed
537
538
539
540
541
542
543
544
545
546


@needs_cuda
def test_fasterrcnn_switch_devices():
    def checkOut(out):
        assert len(out) == 1
        assert "boxes" in out[0]
        assert "scores" in out[0]
        assert "labels" in out[0]

547
    model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
548
549
550
    model.cuda()
    model.eval()
    input_shape = (3, 300, 300)
551
    x = torch.rand(input_shape, device="cuda")
Anirudh's avatar
Anirudh committed
552
553
554
555
556
557
558
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

    checkOut(out)

    with torch.cuda.amp.autocast():
559
        out = model(model_input)
560

Anirudh's avatar
Anirudh committed
561
    checkOut(out)
562

563
564
    _check_input_backprop(model, model_input)

Anirudh's avatar
Anirudh committed
565
566
567
568
    # now switch to cpu and make sure it works
    model.cpu()
    x = x.cpu()
    out_cpu = model([x])
569

Anirudh's avatar
Anirudh committed
570
    checkOut(out_cpu)
571

572
573
    _check_input_backprop(model, [x])

574

Anirudh's avatar
Anirudh committed
575
def test_generalizedrcnn_transform_repr():
576

Anirudh's avatar
Anirudh committed
577
578
579
    min_size, max_size = 224, 299
    image_mean = [0.485, 0.456, 0.406]
    image_std = [0.229, 0.224, 0.225]
580

581
582
583
    t = models.detection.transform.GeneralizedRCNNTransform(
        min_size=min_size, max_size=max_size, image_mean=image_mean, image_std=image_std
    )
584

Anirudh's avatar
Anirudh committed
585
    # Check integrity of object __repr__ attribute
586
587
    expected_string = "GeneralizedRCNNTransform("
    _indent = "\n    "
588
589
    expected_string += f"{_indent}Normalize(mean={image_mean}, std={image_std})"
    expected_string += f"{_indent}Resize(min_size=({min_size},), max_size={max_size}, "
Anirudh's avatar
Anirudh committed
590
591
    expected_string += "mode='bilinear')\n)"
    assert t.__repr__() == expected_string
592
593


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
test_vit_conv_stem_configs = [
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=64),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=128),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=1, out_channels=256),
    models.vision_transformer.ConvStemConfig(kernel_size=3, stride=2, out_channels=512),
]


def vitc_b_16(**kwargs: Any):
    return models.VisionTransformer(
        image_size=224,
        patch_size=16,
        num_layers=12,
        num_heads=12,
        hidden_dim=768,
        mlp_dim=3072,
        conv_stem_configs=test_vit_conv_stem_configs,
        **kwargs,
    )


@pytest.mark.parametrize("model_fn", [vitc_b_16])
@pytest.mark.parametrize("dev", cpu_and_gpu())
def test_vitc_models(model_fn, dev):
    test_classification_model(model_fn, dev)


623
@pytest.mark.parametrize("model_fn", list_model_fns(models))
624
@pytest.mark.parametrize("dev", cpu_and_gpu())
625
def test_classification_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
626
627
    set_rng_seed(0)
    defaults = {
628
629
        "num_classes": 50,
        "input_shape": (1, 3, 224, 224),
Anirudh's avatar
Anirudh committed
630
    }
631
    model_name = model_fn.__name__
632
    if SKIP_BIG_MODEL and is_skippable(model_name, dev):
633
        pytest.skip("Skipped to reduce memory usage. Set env var SKIP_BIG_MODEL=0 to enable test for this model")
Anirudh's avatar
Anirudh committed
634
    kwargs = {**defaults, **_model_params.get(model_name, {})}
635
    num_classes = kwargs.get("num_classes")
636
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
637

638
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
639
640
641
642
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
643
    _assert_expected(out.cpu(), model_name, prec=1e-3)
644
    assert out.shape[-1] == num_classes
645
646
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
647

648
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
649
650
651
652
653
654
        with torch.cuda.amp.autocast():
            out = model(x)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == 50
655

656
657
    _check_input_backprop(model, x)

658

659
@pytest.mark.parametrize("model_fn", list_model_fns(models.segmentation))
660
@pytest.mark.parametrize("dev", cpu_and_gpu())
661
def test_segmentation_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
662
663
    set_rng_seed(0)
    defaults = {
664
        "num_classes": 10,
665
        "weights_backbone": None,
666
        "input_shape": (1, 3, 32, 32),
Anirudh's avatar
Anirudh committed
667
    }
668
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
669
    kwargs = {**defaults, **_model_params.get(model_name, {})}
670
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
671

672
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
673
674
675
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
676
    out = model(x)
Anirudh's avatar
Anirudh committed
677
678
679
680
681
682
683
684
685
686
687
688
689
690

    def check_out(out):
        prec = 0.01
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(out.cpu(), model_name, prec=prec)
        except AssertionError:
            # Unfortunately some segmentation models are flaky with autocast
            # so instead of validating the probability scores, check that the class
            # predictions match.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
691
692
693
            torch.testing.assert_close(
                out.argmax(dim=1), expected.argmax(dim=1), rtol=prec, atol=prec, check_device=False
            )
Anirudh's avatar
Anirudh committed
694
695
696
697
            return False  # Partial validation performed

        return True  # Full validation performed

698
    full_validation = check_out(out["out"])
Anirudh's avatar
Anirudh committed
699

700
701
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
Anirudh's avatar
Anirudh committed
702

703
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
704
        with torch.cuda.amp.autocast():
705
            out = model(x)
Anirudh's avatar
Anirudh committed
706
707
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
708
                full_validation &= check_out(out["out"])
Anirudh's avatar
Anirudh committed
709
710

    if not full_validation:
711
        msg = (
712
            f"The output of {test_segmentation_model.__name__} could only be partially validated. "
713
714
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
715
            "significant changes to the codebase."
716
        )
Anirudh's avatar
Anirudh committed
717
718
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
719

720
721
    _check_input_backprop(model, x)

722

723
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
724
@pytest.mark.parametrize("dev", cpu_and_gpu())
725
def test_detection_model(model_fn, dev):
Anirudh's avatar
Anirudh committed
726
727
    set_rng_seed(0)
    defaults = {
728
        "num_classes": 50,
729
        "weights_backbone": None,
730
        "input_shape": (3, 300, 300),
Anirudh's avatar
Anirudh committed
731
    }
732
    model_name = model_fn.__name__
Anirudh's avatar
Anirudh committed
733
    kwargs = {**defaults, **_model_params.get(model_name, {})}
734
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
735

736
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
737
738
739
740
741
742
743
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    model_input = [x]
    out = model(model_input)
    assert model_input[0] is x

744
    def check_out(out, prec=0.01):
Anirudh's avatar
Anirudh committed
745
746
747
        assert len(out) == 1

        def compact(tensor):
748
            tensor = tensor.cpu()
Anirudh's avatar
Anirudh committed
749
750
751
752
753
754
755
756
757
758
759
760
761
762
            size = tensor.size()
            elements_per_sample = functools.reduce(operator.mul, size[1:], 1)
            if elements_per_sample > 30:
                return compute_mean_std(tensor)
            else:
                return subsample_tensor(tensor)

        def subsample_tensor(tensor):
            num_elems = tensor.size(0)
            num_samples = 20
            if num_elems <= num_samples:
                return tensor

            ith_index = num_elems // num_samples
763
            return tensor[ith_index - 1 :: ith_index]
Anirudh's avatar
Anirudh committed
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

        def compute_mean_std(tensor):
            # can't compute mean of integral tensor
            tensor = tensor.to(torch.double)
            mean = torch.mean(tensor)
            std = torch.std(tensor)
            return {"mean": mean, "std": std}

        output = map_nested_tensor_object(out, tensor_map_fn=compact)
        try:
            # We first try to assert the entire output if possible. This is not
            # only the best way to assert results but also handles the cases
            # where we need to create a new expected result.
            _assert_expected(output, model_name, prec=prec)
        except AssertionError:
            # Unfortunately detection models are flaky due to the unstable sort
            # in NMS. If matching across all outputs fails, use the same approach
            # as in NMSTester.test_nms_cuda to see if this is caused by duplicate
            # scores.
            expected_file = _get_expected_file(model_name)
            expected = torch.load(expected_file)
785
786
787
            torch.testing.assert_close(
                output[0]["scores"], expected[0]["scores"], rtol=prec, atol=prec, check_device=False, check_dtype=False
            )
Anirudh's avatar
Anirudh committed
788
789
790
791
792
793
794
795
796
797

            # Note: Fmassa proposed turning off NMS by adapting the threshold
            # and then using the Hungarian algorithm as in DETR to find the
            # best match between output and expected boxes and eliminate some
            # of the flakiness. Worth exploring.
            return False  # Partial validation performed

        return True  # Full validation performed

    full_validation = check_out(out)
798
    _check_jit_scriptable(model, ([x],), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
Anirudh's avatar
Anirudh committed
799

800
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
801
802
803
804
        with torch.cuda.amp.autocast():
            out = model(model_input)
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
805
                full_validation &= check_out(out, autocast_custom_prec.get(model_name, 0.01))
Anirudh's avatar
Anirudh committed
806
807

    if not full_validation:
808
        msg = (
809
            f"The output of {test_detection_model.__name__} could only be partially validated. "
810
811
            "This is likely due to unit-test flakiness, but you may "
            "want to do additional manual checks if you made "
812
            "significant changes to the codebase."
813
        )
Anirudh's avatar
Anirudh committed
814
815
        warnings.warn(msg, RuntimeWarning)
        pytest.skip(msg)
816

817
818
    _check_input_backprop(model, model_input)

819

820
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
821
def test_detection_model_validation(model_fn):
Anirudh's avatar
Anirudh committed
822
    set_rng_seed(0)
823
    model = model_fn(num_classes=50, weights=None, weights_backbone=None)
Anirudh's avatar
Anirudh committed
824
825
826
827
    input_shape = (3, 300, 300)
    x = [torch.rand(input_shape)]

    # validate that targets are present in training
828
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
829
830
831
        model(x)

    # validate type
832
    targets = [{"boxes": 0.0}]
833
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
834
835
836
837
        model(x, targets=targets)

    # validate boxes shape
    for boxes in (torch.rand((4,)), torch.rand((1, 5))):
838
        targets = [{"boxes": boxes}]
839
        with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
840
841
842
843
            model(x, targets=targets)

    # validate that no degenerate boxes are present
    boxes = torch.tensor([[1, 3, 1, 4], [2, 4, 3, 4]])
844
    targets = [{"boxes": boxes}]
845
    with pytest.raises(AssertionError):
Anirudh's avatar
Anirudh committed
846
        model(x, targets=targets)
847

848

849
@pytest.mark.parametrize("model_fn", list_model_fns(models.video))
850
@pytest.mark.parametrize("dev", cpu_and_gpu())
851
def test_video_model(model_fn, dev):
852
    set_rng_seed(0)
Anirudh's avatar
Anirudh committed
853
854
    # the default input shape is
    # bs * num_channels * clip_len * h *w
855
856
857
858
    defaults = {
        "input_shape": (1, 3, 4, 112, 112),
        "num_classes": 50,
    }
859
    model_name = model_fn.__name__
860
    if SKIP_BIG_MODEL and is_skippable(model_name, dev):
861
        pytest.skip("Skipped to reduce memory usage. Set env var SKIP_BIG_MODEL=0 to enable test for this model")
862
863
864
    kwargs = {**defaults, **_model_params.get(model_name, {})}
    num_classes = kwargs.get("num_classes")
    input_shape = kwargs.pop("input_shape")
Anirudh's avatar
Anirudh committed
865
    # test both basicblock and Bottleneck
866
    model = model_fn(**kwargs)
Anirudh's avatar
Anirudh committed
867
868
869
870
    model.eval().to(device=dev)
    # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests
    x = torch.rand(input_shape).to(device=dev)
    out = model(x)
871
    _assert_expected(out.cpu(), model_name, prec=1e-5)
872
    assert out.shape[-1] == num_classes
873
874
    _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
    _check_fx_compatible(model, x, eager_out=out)
875
    assert out.shape[-1] == num_classes
Anirudh's avatar
Anirudh committed
876

877
    if dev == "cuda":
Anirudh's avatar
Anirudh committed
878
879
        with torch.cuda.amp.autocast():
            out = model(x)
880
881
882
883
            # See autocast_flaky_numerics comment at top of file.
            if model_name not in autocast_flaky_numerics:
                _assert_expected(out.cpu(), model_name, prec=0.1)
            assert out.shape[-1] == num_classes
884

885
886
    _check_input_backprop(model, x)

887

888
889
890
891
892
893
894
@pytest.mark.skipif(
    not (
        "fbgemm" in torch.backends.quantized.supported_engines
        and "qnnpack" in torch.backends.quantized.supported_engines
    ),
    reason="This Pytorch Build has not been built with fbgemm and qnnpack",
)
895
@pytest.mark.parametrize("model_fn", list_model_fns(models.quantization))
896
def test_quantized_classification_model(model_fn):
897
    set_rng_seed(0)
898
    defaults = {
899
        "num_classes": 5,
900
901
        "input_shape": (1, 3, 224, 224),
        "quantize": True,
902
    }
903
    model_name = model_fn.__name__
904
    kwargs = {**defaults, **_model_params.get(model_name, {})}
905
    input_shape = kwargs.pop("input_shape")
906
907

    # First check if quantize=True provides models that can run with input data
908
    model = model_fn(**kwargs)
909
    model.eval()
910
    x = torch.rand(input_shape)
911
912
913
    out = model(x)

    if model_name not in quantized_flaky_models:
914
        _assert_expected(out.cpu(), model_name + "_quantized", prec=2e-2)
915
        assert out.shape[-1] == 5
916
917
918
919
920
921
922
        _check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(model_name, None), eager_out=out)
        _check_fx_compatible(model, x, eager_out=out)
    else:
        try:
            torch.jit.script(model)
        except Exception as e:
            raise AssertionError("model cannot be scripted.") from e
923

924
    kwargs["quantize"] = False
925
    for eval_mode in [True, False]:
926
        model = model_fn(**kwargs)
927
928
        if eval_mode:
            model.eval()
929
            model.qconfig = torch.ao.quantization.default_qconfig
930
931
        else:
            model.train()
932
            model.qconfig = torch.ao.quantization.default_qat_qconfig
933

934
        model.fuse_model(is_qat=not eval_mode)
935
        if eval_mode:
936
            torch.ao.quantization.prepare(model, inplace=True)
937
        else:
938
            torch.ao.quantization.prepare_qat(model, inplace=True)
939
940
            model.eval()

941
        torch.ao.quantization.convert(model, inplace=True)
942
943


944
@pytest.mark.parametrize("model_fn", list_model_fns(models.detection))
945
def test_detection_model_trainable_backbone_layers(model_fn, disable_weight_loading):
946
    model_name = model_fn.__name__
947
948
949
    max_trainable = _model_tests_values[model_name]["max_trainable"]
    n_trainable_params = []
    for trainable_layers in range(0, max_trainable + 1):
950
        model = model_fn(weights=None, weights_backbone="DEFAULT", trainable_backbone_layers=trainable_layers)
951
952
953
954
955

        n_trainable_params.append(len([p for p in model.parameters() if p.requires_grad]))
    assert n_trainable_params == _model_tests_values[model_name]["n_trn_params_per_layer"]


956
@needs_cuda
957
@pytest.mark.parametrize("model_fn", list_model_fns(models.optical_flow))
958
@pytest.mark.parametrize("scripted", (False, True))
959
def test_raft(model_fn, scripted):
960
961
962
963
964
965
966
967
968

    torch.manual_seed(0)

    # We need very small images, otherwise the pickle size would exceed the 50KB
    # As a resut we need to override the correlation pyramid to not downsample
    # too much, otherwise we would get nan values (effective H and W would be
    # reduced to 1)
    corr_block = models.optical_flow.raft.CorrBlock(num_levels=2, radius=2)

969
    model = model_fn(corr_block=corr_block).eval().to("cuda")
970
971
972
973
974
975
976
977
978
979
980
    if scripted:
        model = torch.jit.script(model)

    bs = 1
    img1 = torch.rand(bs, 3, 80, 72).cuda()
    img2 = torch.rand(bs, 3, 80, 72).cuda()

    preds = model(img1, img2)
    flow_pred = preds[-1]
    # Tolerance is fairly high, but there are 2 * H * W outputs to check
    # The .pkl were generated on the AWS cluter, on the CI it looks like the resuts are slightly different
981
    _assert_expected(flow_pred.cpu(), name=model_fn.__name__, atol=1e-2, rtol=1)
982
983


984
if __name__ == "__main__":
985
    pytest.main([__file__])