transforms.py 63.9 KB
Newer Older
1
import math
vfdev's avatar
vfdev committed
2
import numbers
3
import random
vfdev's avatar
vfdev committed
4
import warnings
vfdev's avatar
vfdev committed
5
from collections.abc import Sequence
6
from typing import Tuple, List, Optional
vfdev's avatar
vfdev committed
7
8

import torch
9
from PIL import Image
vfdev's avatar
vfdev committed
10
11
from torch import Tensor

12
13
14
15
16
17
18
try:
    import accimage
except ImportError:
    accimage = None

from . import functional as F

19
20
21
22
__all__ = ["Compose", "ToTensor", "PILToTensor", "ConvertImageDtype", "ToPILImage", "Normalize", "Resize", "Scale",
           "CenterCrop", "Pad", "Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop",
           "RandomHorizontalFlip", "RandomVerticalFlip", "RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop",
           "LinearTransformation", "ColorJitter", "RandomRotation", "RandomAffine", "Grayscale", "RandomGrayscale",
23
           "RandomPerspective", "RandomErasing", "GaussianBlur"]
24

25
26
27
28
29
_pil_interpolation_to_str = {
    Image.NEAREST: 'PIL.Image.NEAREST',
    Image.BILINEAR: 'PIL.Image.BILINEAR',
    Image.BICUBIC: 'PIL.Image.BICUBIC',
    Image.LANCZOS: 'PIL.Image.LANCZOS',
surgan12's avatar
surgan12 committed
30
31
    Image.HAMMING: 'PIL.Image.HAMMING',
    Image.BOX: 'PIL.Image.BOX',
32
33
}

34

35
class Compose:
36
37
    """Composes several transforms together. This transform does not support torchscript.
    Please, see the note below.
38
39
40
41
42
43
44
45
46

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
47
48
49
50
51
52
53
54
55
56
57
58
59

    .. note::
        In order to script the transformations, please use ``torch.nn.Sequential`` as below.

        >>> transforms = torch.nn.Sequential(
        >>>     transforms.CenterCrop(10),
        >>>     transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>> )
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.

60
61
62
63
64
65
66
67
68
69
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

70
71
72
73
74
75
76
77
    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string

78

79
class ToTensor:
80
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor. This transform does not support torchscript.
81
82

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
surgan12's avatar
surgan12 committed
83
84
85
86
87
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.
88
89
90
91
92
93

    .. note::
        Because the input image is scaled to [0.0, 1.0], this transformation should not be used when
        transforming target image masks. See the `references`_ for implementing the transforms for image masks.

    .. _references: https://github.com/pytorch/vision/tree/master/references/segmentation
94
95
96
97
98
99
100
101
102
103
104
105
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(pic)

106
107
108
    def __repr__(self):
        return self.__class__.__name__ + '()'

109

110
class PILToTensor:
111
    """Convert a ``PIL Image`` to a tensor of the same type. This transform does not support torchscript.
112

vfdev's avatar
vfdev committed
113
    Converts a PIL Image (H x W x C) to a Tensor of shape (C x H x W).
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.pil_to_tensor(pic)

    def __repr__(self):
        return self.__class__.__name__ + '()'


130
class ConvertImageDtype(torch.nn.Module):
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly

    Args:
        dtype (torch.dtype): Desired data type of the output

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """

    def __init__(self, dtype: torch.dtype) -> None:
149
        super().__init__()
150
151
        self.dtype = dtype

vfdev's avatar
vfdev committed
152
    def forward(self, image):
153
154
155
        return F.convert_image_dtype(image, self.dtype)


156
class ToPILImage:
157
    """Convert a tensor or an ndarray to PIL Image. This transform does not support torchscript.
158
159
160
161
162
163
164

    Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
    H x W x C to a PIL Image while preserving the value range.

    Args:
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
            If ``mode`` is ``None`` (default) there are some assumptions made about the input data:
vfdev's avatar
vfdev committed
165
166
167
168
169
            - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``.
            - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``.
            - If the input has 2 channels, the ``mode`` is assumed to be ``LA``.
            - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``,
            ``short``).
170

csukuangfj's avatar
csukuangfj committed
171
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
    """
    def __init__(self, mode=None):
        self.mode = mode

    def __call__(self, pic):
        """
        Args:
            pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.

        Returns:
            PIL Image: Image converted to PIL Image.

        """
        return F.to_pil_image(pic, self.mode)

187
    def __repr__(self):
188
189
190
191
192
        format_string = self.__class__.__name__ + '('
        if self.mode is not None:
            format_string += 'mode={0}'.format(self.mode)
        format_string += ')'
        return format_string
193

194

195
class Normalize(torch.nn.Module):
Fang Gao's avatar
Fang Gao committed
196
    """Normalize a tensor image with mean and standard deviation.
197
198
199
    Given mean: ``(mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])`` for ``n``
    channels, this transform will normalize each channel of the input
    ``torch.*Tensor`` i.e.,
abdjava's avatar
abdjava committed
200
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``
201

202
    .. note::
203
        This transform acts out of place, i.e., it does not mutate the input tensor.
204

205
206
207
    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
208
209
        inplace(bool,optional): Bool to make this operation in-place.

210
211
    """

surgan12's avatar
surgan12 committed
212
    def __init__(self, mean, std, inplace=False):
213
        super().__init__()
214
215
        self.mean = mean
        self.std = std
surgan12's avatar
surgan12 committed
216
        self.inplace = inplace
217

218
    def forward(self, tensor: Tensor) -> Tensor:
219
220
        """
        Args:
vfdev's avatar
vfdev committed
221
            tensor (Tensor): Tensor image to be normalized.
222
223
224
225

        Returns:
            Tensor: Normalized Tensor image.
        """
surgan12's avatar
surgan12 committed
226
        return F.normalize(tensor, self.mean, self.std, self.inplace)
227

228
229
230
    def __repr__(self):
        return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)

231

vfdev's avatar
vfdev committed
232
233
234
235
class Resize(torch.nn.Module):
    """Resize the input image to the given size.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
236
237
238
239
240
241

    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
242
243
244
            (size * height / width, size).
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[size, ]``.
vfdev's avatar
vfdev committed
245
246
247
        interpolation (int, optional): Desired interpolation enum defined by `filters`_.
            Default is ``PIL.Image.BILINEAR``. If input is Tensor, only ``PIL.Image.NEAREST``, ``PIL.Image.BILINEAR``
            and ``PIL.Image.BICUBIC`` are supported.
248
249
250
    """

    def __init__(self, size, interpolation=Image.BILINEAR):
vfdev's avatar
vfdev committed
251
        super().__init__()
252
253
254
255
256
        if not isinstance(size, (int, Sequence)):
            raise TypeError("Size should be int or sequence. Got {}".format(type(size)))
        if isinstance(size, Sequence) and len(size) not in (1, 2):
            raise ValueError("If size is a sequence, it should have 1 or 2 values")
        self.size = size
257
258
        self.interpolation = interpolation

vfdev's avatar
vfdev committed
259
    def forward(self, img):
260
261
        """
        Args:
vfdev's avatar
vfdev committed
262
            img (PIL Image or Tensor): Image to be scaled.
263
264

        Returns:
vfdev's avatar
vfdev committed
265
            PIL Image or Tensor: Rescaled image.
266
267
268
        """
        return F.resize(img, self.size, self.interpolation)

269
    def __repr__(self):
270
271
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        return self.__class__.__name__ + '(size={0}, interpolation={1})'.format(self.size, interpolate_str)
272

273
274
275
276
277
278
279
280
281
282
283

class Scale(Resize):
    """
    Note: This transform is deprecated in favor of Resize.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                      "please use transforms.Resize instead.")
        super(Scale, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
284
285
286
287
class CenterCrop(torch.nn.Module):
    """Crops the given image at the center.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
288
289
290
291

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
vfdev's avatar
vfdev committed
292
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
293
294
295
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
296
        super().__init__()
297
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
298

vfdev's avatar
vfdev committed
299
    def forward(self, img):
300
301
        """
        Args:
vfdev's avatar
vfdev committed
302
            img (PIL Image or Tensor): Image to be cropped.
303
304

        Returns:
vfdev's avatar
vfdev committed
305
            PIL Image or Tensor: Cropped image.
306
307
308
        """
        return F.center_crop(img, self.size)

309
310
311
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

312

313
314
315
316
class Pad(torch.nn.Module):
    """Pad the given image on all sides with the given "pad" value.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
317
318

    Args:
319
        padding (int or tuple or list): Padding on each border. If a single int is provided this
320
321
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
322
323
324
            this is the padding for the left, top, right and bottom borders respectively.
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[padding, ]``.
325
        fill (int or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
326
            length 3, it is used to fill R, G, B channels respectively.
327
            This value is only used when the padding_mode is constant
328
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
vfdev's avatar
vfdev committed
329
            Default is constant. Mode symmetric is not yet supported for Tensor inputs.
330
331
332
333
334
335
336
337

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value at the edge of the image

            - reflect: pads with reflection of image without repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
338
                will result in [3, 2, 1, 2, 3, 4, 3, 2]
339
340
341
342

            - symmetric: pads with reflection of image repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
343
                will result in [2, 1, 1, 2, 3, 4, 4, 3]
344
345
    """

346
347
348
349
350
351
352
353
354
355
356
357
358
    def __init__(self, padding, fill=0, padding_mode="constant"):
        super().__init__()
        if not isinstance(padding, (numbers.Number, tuple, list)):
            raise TypeError("Got inappropriate padding arg")

        if not isinstance(fill, (numbers.Number, str, tuple)):
            raise TypeError("Got inappropriate fill arg")

        if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
            raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")

        if isinstance(padding, Sequence) and len(padding) not in [1, 2, 4]:
            raise ValueError("Padding must be an int or a 1, 2, or 4 element tuple, not a " +
359
360
361
362
                             "{} element tuple".format(len(padding)))

        self.padding = padding
        self.fill = fill
363
        self.padding_mode = padding_mode
364

365
    def forward(self, img):
366
367
        """
        Args:
368
            img (PIL Image or Tensor): Image to be padded.
369
370

        Returns:
371
            PIL Image or Tensor: Padded image.
372
        """
373
        return F.pad(img, self.padding, self.fill, self.padding_mode)
374

375
    def __repr__(self):
376
377
        return self.__class__.__name__ + '(padding={0}, fill={1}, padding_mode={2})'.\
            format(self.padding, self.fill, self.padding_mode)
378

379

380
class Lambda:
381
    """Apply a user-defined lambda as a transform. This transform does not support torchscript.
382
383
384
385
386
387

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
388
389
        if not callable(lambd):
            raise TypeError("Argument lambd should be callable, got {}".format(repr(type(lambd).__name__)))
390
391
392
393
394
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

395
396
397
    def __repr__(self):
        return self.__class__.__name__ + '()'

398

399
class RandomTransforms:
400
401
402
403
404
405
406
    """Base class for a list of transformations with randomness

    Args:
        transforms (list or tuple): list of transformations
    """

    def __init__(self, transforms):
407
408
        if not isinstance(transforms, Sequence):
            raise TypeError("Argument transforms should be a sequence")
409
410
411
412
413
414
415
416
417
418
419
420
421
422
        self.transforms = transforms

    def __call__(self, *args, **kwargs):
        raise NotImplementedError()

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


423
class RandomApply(torch.nn.Module):
424
    """Apply randomly a list of transformations with a given probability.
425
426
427
428
429
430
431
432
433
434
435
436

    .. note::
        In order to script the transformation, please use ``torch.nn.ModuleList`` as input instead of list/tuple of
        transforms as shown below:

        >>> transforms = transforms.RandomApply(torch.nn.ModuleList([
        >>>     transforms.ColorJitter(),
        >>> ]), p=0.3)
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.
437
438

    Args:
439
        transforms (list or tuple or torch.nn.Module): list of transformations
440
441
442
443
        p (float): probability
    """

    def __init__(self, transforms, p=0.5):
444
445
        super().__init__()
        self.transforms = transforms
446
447
        self.p = p

448
449
    def forward(self, img):
        if self.p < torch.rand(1):
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
            return img
        for t in self.transforms:
            img = t(img)
        return img

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        format_string += '\n    p={}'.format(self.p)
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomOrder(RandomTransforms):
466
    """Apply a list of transformations in a random order. This transform does not support torchscript.
467
468
469
470
471
472
473
474
475
476
    """
    def __call__(self, img):
        order = list(range(len(self.transforms)))
        random.shuffle(order)
        for i in order:
            img = self.transforms[i](img)
        return img


class RandomChoice(RandomTransforms):
477
    """Apply single transformation randomly picked from a list. This transform does not support torchscript.
478
479
480
481
482
483
    """
    def __call__(self, img):
        t = random.choice(self.transforms)
        return t(img)


vfdev's avatar
vfdev committed
484
485
486
487
488
class RandomCrop(torch.nn.Module):
    """Crop the given image at a random location.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
489
490
491
492

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
vfdev's avatar
vfdev committed
493
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
494
        padding (int or sequence, optional): Optional padding on each border
vfdev's avatar
vfdev committed
495
496
497
498
499
500
            of the image. Default is None. If a single int is provided this
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
            this is the padding for the left, top, right and bottom borders respectively.
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[padding, ]``.
501
        pad_if_needed (boolean): It will pad the image if smaller than the
ekka's avatar
ekka committed
502
            desired size to avoid raising an exception. Since cropping is done
503
            after padding, the padding seems to be done at a random offset.
vfdev's avatar
vfdev committed
504
        fill (int or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
505
506
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant
vfdev's avatar
vfdev committed
507
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
vfdev's avatar
vfdev committed
508
            Mode symmetric is not yet supported for Tensor inputs.
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523

             - constant: pads with a constant value, this value is specified with fill

             - edge: pads with the last value on the edge of the image

             - reflect: pads with reflection of image (without repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                will result in [3, 2, 1, 2, 3, 4, 3, 2]

             - symmetric: pads with reflection of image (repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                will result in [2, 1, 1, 2, 3, 4, 4, 3]

524
525
526
    """

    @staticmethod
vfdev's avatar
vfdev committed
527
    def get_params(img: Tensor, output_size: Tuple[int, int]) -> Tuple[int, int, int, int]:
528
529
530
        """Get parameters for ``crop`` for a random crop.

        Args:
vfdev's avatar
vfdev committed
531
            img (PIL Image or Tensor): Image to be cropped.
532
533
534
535
536
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
vfdev's avatar
vfdev committed
537
        w, h = F._get_image_size(img)
538
        th, tw = output_size
vfdev's avatar
vfdev committed
539
540
541
542
543
544

        if h + 1 < th or w + 1 < tw:
            raise ValueError(
                "Required crop size {} is larger then input image size {}".format((th, tw), (h, w))
            )

545
546
547
        if w == tw and h == th:
            return 0, 0, h, w

548
549
        i = torch.randint(0, h - th + 1, size=(1, )).item()
        j = torch.randint(0, w - tw + 1, size=(1, )).item()
550
551
        return i, j, th, tw

vfdev's avatar
vfdev committed
552
553
554
    def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode="constant"):
        super().__init__()

555
556
557
558
        self.size = tuple(_setup_size(
            size, error_msg="Please provide only two dimensions (h, w) for size."
        ))

vfdev's avatar
vfdev committed
559
560
561
562
563
564
        self.padding = padding
        self.pad_if_needed = pad_if_needed
        self.fill = fill
        self.padding_mode = padding_mode

    def forward(self, img):
565
566
        """
        Args:
vfdev's avatar
vfdev committed
567
            img (PIL Image or Tensor): Image to be cropped.
568
569

        Returns:
vfdev's avatar
vfdev committed
570
            PIL Image or Tensor: Cropped image.
571
        """
572
573
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)
574

vfdev's avatar
vfdev committed
575
        width, height = F._get_image_size(img)
576
        # pad the width if needed
vfdev's avatar
vfdev committed
577
578
579
        if self.pad_if_needed and width < self.size[1]:
            padding = [self.size[1] - width, 0]
            img = F.pad(img, padding, self.fill, self.padding_mode)
580
        # pad the height if needed
vfdev's avatar
vfdev committed
581
582
583
        if self.pad_if_needed and height < self.size[0]:
            padding = [0, self.size[0] - height]
            img = F.pad(img, padding, self.fill, self.padding_mode)
584

585
586
587
588
        i, j, h, w = self.get_params(img, self.size)

        return F.crop(img, i, j, h, w)

589
    def __repr__(self):
vfdev's avatar
vfdev committed
590
        return self.__class__.__name__ + "(size={0}, padding={1})".format(self.size, self.padding)
591

592

593
594
595
596
597
class RandomHorizontalFlip(torch.nn.Module):
    """Horizontally flip the given image randomly with a given probability.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
598
599
600
601
602
603

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
604
        super().__init__()
605
        self.p = p
606

607
    def forward(self, img):
608
609
        """
        Args:
610
            img (PIL Image or Tensor): Image to be flipped.
611
612

        Returns:
613
            PIL Image or Tensor: Randomly flipped image.
614
        """
615
        if torch.rand(1) < self.p:
616
617
618
            return F.hflip(img)
        return img

619
    def __repr__(self):
620
        return self.__class__.__name__ + '(p={})'.format(self.p)
621

622

623
class RandomVerticalFlip(torch.nn.Module):
vfdev's avatar
vfdev committed
624
    """Vertically flip the given image randomly with a given probability.
625
626
627
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
628
629
630
631
632
633

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
634
        super().__init__()
635
        self.p = p
636

637
    def forward(self, img):
638
639
        """
        Args:
640
            img (PIL Image or Tensor): Image to be flipped.
641
642

        Returns:
643
            PIL Image or Tensor: Randomly flipped image.
644
        """
645
        if torch.rand(1) < self.p:
646
647
648
            return F.vflip(img)
        return img

649
    def __repr__(self):
650
        return self.__class__.__name__ + '(p={})'.format(self.p)
651

652

653
654
655
656
class RandomPerspective(torch.nn.Module):
    """Performs a random perspective transformation of the given image with a given probability.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
657
658

    Args:
659
660
661
662
663
664
665
666
667
        distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
            Default is 0.5.
        p (float): probability of the image being transformed. Default is 0.5.
        interpolation (int): Interpolation type. If input is Tensor, only ``PIL.Image.NEAREST`` and
            ``PIL.Image.BILINEAR`` are supported. Default, ``PIL.Image.BILINEAR`` for PIL images and Tensors.
        fill (n-tuple or int or float): Pixel fill value for area outside the rotated
            image. If int or float, the value is used for all bands respectively. Default is 0.
            This option is only available for ``pillow>=5.0.0``. This option is not supported for Tensor
            input. Fill value for the area outside the transform in the output image is always 0.
668
669
670

    """

671
672
    def __init__(self, distortion_scale=0.5, p=0.5, interpolation=Image.BILINEAR, fill=0):
        super().__init__()
673
674
675
        self.p = p
        self.interpolation = interpolation
        self.distortion_scale = distortion_scale
676
        self.fill = fill
677

678
    def forward(self, img):
679
680
        """
        Args:
681
            img (PIL Image or Tensor): Image to be Perspectively transformed.
682
683

        Returns:
684
            PIL Image or Tensor: Randomly transformed image.
685
        """
686
687
        if torch.rand(1) < self.p:
            width, height = F._get_image_size(img)
688
            startpoints, endpoints = self.get_params(width, height, self.distortion_scale)
689
            return F.perspective(img, startpoints, endpoints, self.interpolation, self.fill)
690
691
692
        return img

    @staticmethod
693
    def get_params(width: int, height: int, distortion_scale: float) -> Tuple[List[List[int]], List[List[int]]]:
694
695
696
        """Get parameters for ``perspective`` for a random perspective transform.

        Args:
697
698
699
            width (int): width of the image.
            height (int): height of the image.
            distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
700
701

        Returns:
702
            List containing [top-left, top-right, bottom-right, bottom-left] of the original image,
703
704
            List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image.
        """
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
        half_height = height // 2
        half_width = width // 2
        topleft = [
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1, )).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1, )).item())
        ]
        topright = [
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1, )).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1, )).item())
        ]
        botright = [
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1, )).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1, )).item())
        ]
        botleft = [
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1, )).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1, )).item())
        ]
        startpoints = [[0, 0], [width - 1, 0], [width - 1, height - 1], [0, height - 1]]
724
725
726
727
728
729
730
        endpoints = [topleft, topright, botright, botleft]
        return startpoints, endpoints

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


731
732
733
734
class RandomResizedCrop(torch.nn.Module):
    """Crop the given image to random size and aspect ratio.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
735

736
737
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
738
739
740
741
    is finally resized to given size.
    This is popularly used to train the Inception networks.

    Args:
742
743
744
        size (int or sequence): expected output size of each edge. If size is an
            int instead of sequence like (h, w), a square output size ``(size, size)`` is
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
745
746
        scale (tuple of float): scale range of the cropped image before resizing, relatively to the origin image.
        ratio (tuple of float): aspect ratio range of the cropped image before resizing.
vfdev's avatar
vfdev committed
747
748
749
        interpolation (int): Desired interpolation enum defined by `filters`_.
            Default is ``PIL.Image.BILINEAR``. If input is Tensor, only ``PIL.Image.NEAREST``, ``PIL.Image.BILINEAR``
            and ``PIL.Image.BICUBIC`` are supported.
750
751
    """

752
    def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=Image.BILINEAR):
753
        super().__init__()
754
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
755

756
        if not isinstance(scale, Sequence):
757
            raise TypeError("Scale should be a sequence")
758
        if not isinstance(ratio, Sequence):
759
            raise TypeError("Ratio should be a sequence")
760
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
761
            warnings.warn("Scale and ratio should be of kind (min, max)")
762

763
        self.interpolation = interpolation
764
765
        self.scale = scale
        self.ratio = ratio
766
767

    @staticmethod
768
    def get_params(
769
            img: Tensor, scale: List[float], ratio: List[float]
770
    ) -> Tuple[int, int, int, int]:
771
772
773
        """Get parameters for ``crop`` for a random sized crop.

        Args:
774
            img (PIL Image or Tensor): Input image.
775
776
            scale (list): range of scale of the origin size cropped
            ratio (list): range of aspect ratio of the origin aspect ratio cropped
777
778
779
780
781

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
                sized crop.
        """
vfdev's avatar
vfdev committed
782
        width, height = F._get_image_size(img)
Zhicheng Yan's avatar
Zhicheng Yan committed
783
        area = height * width
784

785
        for _ in range(10):
786
            target_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
787
788
789
790
            log_ratio = torch.log(torch.tensor(ratio))
            aspect_ratio = torch.exp(
                torch.empty(1).uniform_(log_ratio[0], log_ratio[1])
            ).item()
791
792
793
794

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

Zhicheng Yan's avatar
Zhicheng Yan committed
795
            if 0 < w <= width and 0 < h <= height:
796
797
                i = torch.randint(0, height - h + 1, size=(1,)).item()
                j = torch.randint(0, width - w + 1, size=(1,)).item()
798
799
                return i, j, h, w

800
        # Fallback to central crop
Zhicheng Yan's avatar
Zhicheng Yan committed
801
        in_ratio = float(width) / float(height)
802
        if in_ratio < min(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
803
            w = width
804
            h = int(round(w / min(ratio)))
805
        elif in_ratio > max(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
806
            h = height
807
            w = int(round(h * max(ratio)))
808
        else:  # whole image
Zhicheng Yan's avatar
Zhicheng Yan committed
809
810
811
812
            w = width
            h = height
        i = (height - h) // 2
        j = (width - w) // 2
813
        return i, j, h, w
814

815
    def forward(self, img):
816
817
        """
        Args:
818
            img (PIL Image or Tensor): Image to be cropped and resized.
819
820

        Returns:
821
            PIL Image or Tensor: Randomly cropped and resized image.
822
        """
823
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
824
825
        return F.resized_crop(img, i, j, h, w, self.size, self.interpolation)

826
    def __repr__(self):
827
828
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
829
830
        format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
        format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))
831
832
        format_string += ', interpolation={0})'.format(interpolate_str)
        return format_string
833

834
835
836
837
838
839
840
841
842
843
844

class RandomSizedCrop(RandomResizedCrop):
    """
    Note: This transform is deprecated in favor of RandomResizedCrop.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.RandomSizedCrop transform is deprecated, " +
                      "please use transforms.RandomResizedCrop instead.")
        super(RandomSizedCrop, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
845
846
847
848
849
class FiveCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
850
851
852
853
854
855
856
857
858

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
         size (sequence or int): Desired output size of the crop. If size is an ``int``
            instead of sequence like (h, w), a square crop of size (size, size) is made.
vfdev's avatar
vfdev committed
859
            If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
860
861
862
863
864
865
866
867
868
869
870
871
872
873

    Example:
         >>> transform = Compose([
         >>>    FiveCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
874
        super().__init__()
875
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
876

vfdev's avatar
vfdev committed
877
878
879
880
881
882
883
884
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 5 images. Image can be PIL Image or Tensor
        """
885
886
        return F.five_crop(img, self.size)

887
888
889
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

890

vfdev's avatar
vfdev committed
891
892
893
894
895
896
class TenCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop plus the flipped version of
    these (horizontal flipping is used by default).
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
897
898
899
900
901
902
903
904
905

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
vfdev's avatar
vfdev committed
906
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
907
        vertical_flip (bool): Use vertical flipping instead of horizontal
908
909
910
911
912
913
914
915
916
917
918
919
920
921

    Example:
         >>> transform = Compose([
         >>>    TenCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size, vertical_flip=False):
vfdev's avatar
vfdev committed
922
        super().__init__()
923
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
924
925
        self.vertical_flip = vertical_flip

vfdev's avatar
vfdev committed
926
927
928
929
930
931
932
933
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 10 images. Image can be PIL Image or Tensor
        """
934
935
        return F.ten_crop(img, self.size, self.vertical_flip)

936
    def __repr__(self):
937
        return self.__class__.__name__ + '(size={0}, vertical_flip={1})'.format(self.size, self.vertical_flip)
938

939

940
class LinearTransformation(torch.nn.Module):
ekka's avatar
ekka committed
941
    """Transform a tensor image with a square transformation matrix and a mean_vector computed
942
    offline.
ekka's avatar
ekka committed
943
944
945
    Given transformation_matrix and mean_vector, will flatten the torch.*Tensor and
    subtract mean_vector from it which is then followed by computing the dot
    product with the transformation matrix and then reshaping the tensor to its
946
    original shape.
947

948
    Applications:
949
        whitening transformation: Suppose X is a column vector zero-centered data.
950
951
952
        Then compute the data covariance matrix [D x D] with torch.mm(X.t(), X),
        perform SVD on this matrix and pass it as transformation_matrix.

953
954
    Args:
        transformation_matrix (Tensor): tensor [D x D], D = C x H x W
ekka's avatar
ekka committed
955
        mean_vector (Tensor): tensor [D], D = C x H x W
956
957
    """

ekka's avatar
ekka committed
958
    def __init__(self, transformation_matrix, mean_vector):
959
        super().__init__()
960
961
962
        if transformation_matrix.size(0) != transformation_matrix.size(1):
            raise ValueError("transformation_matrix should be square. Got " +
                             "[{} x {}] rectangular matrix.".format(*transformation_matrix.size()))
ekka's avatar
ekka committed
963
964
965

        if mean_vector.size(0) != transformation_matrix.size(0):
            raise ValueError("mean_vector should have the same length {}".format(mean_vector.size(0)) +
Francisco Massa's avatar
Francisco Massa committed
966
967
                             " as any one of the dimensions of the transformation_matrix [{}]"
                             .format(tuple(transformation_matrix.size())))
ekka's avatar
ekka committed
968

969
970
971
972
        if transformation_matrix.device != mean_vector.device:
            raise ValueError("Input tensors should be on the same device. Got {} and {}"
                             .format(transformation_matrix.device, mean_vector.device))

973
        self.transformation_matrix = transformation_matrix
ekka's avatar
ekka committed
974
        self.mean_vector = mean_vector
975

976
    def forward(self, tensor: Tensor) -> Tensor:
977
978
        """
        Args:
vfdev's avatar
vfdev committed
979
            tensor (Tensor): Tensor image to be whitened.
980
981
982
983

        Returns:
            Tensor: Transformed image.
        """
984
985
986
987
988
989
990
991
992
993
994
995
        shape = tensor.shape
        n = shape[-3] * shape[-2] * shape[-1]
        if n != self.transformation_matrix.shape[0]:
            raise ValueError("Input tensor and transformation matrix have incompatible shape." +
                             "[{} x {} x {}] != ".format(shape[-3], shape[-2], shape[-1]) +
                             "{}".format(self.transformation_matrix.shape[0]))

        if tensor.device.type != self.mean_vector.device.type:
            raise ValueError("Input tensor should be on the same device as transformation matrix and mean vector. "
                             "Got {} vs {}".format(tensor.device, self.mean_vector.device))

        flat_tensor = tensor.view(-1, n) - self.mean_vector
996
        transformed_tensor = torch.mm(flat_tensor, self.transformation_matrix)
997
        tensor = transformed_tensor.view(shape)
998
999
        return tensor

1000
    def __repr__(self):
ekka's avatar
ekka committed
1001
1002
1003
        format_string = self.__class__.__name__ + '(transformation_matrix='
        format_string += (str(self.transformation_matrix.tolist()) + ')')
        format_string += (", (mean_vector=" + str(self.mean_vector.tolist()) + ')')
1004
1005
        return format_string

1006

1007
class ColorJitter(torch.nn.Module):
1008
1009
1010
    """Randomly change the brightness, contrast and saturation of an image.

    Args:
yaox12's avatar
yaox12 committed
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
        brightness (float or tuple of float (min, max)): How much to jitter brightness.
            brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
            or the given [min, max]. Should be non negative numbers.
        contrast (float or tuple of float (min, max)): How much to jitter contrast.
            contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
            or the given [min, max]. Should be non negative numbers.
        saturation (float or tuple of float (min, max)): How much to jitter saturation.
            saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
            or the given [min, max]. Should be non negative numbers.
        hue (float or tuple of float (min, max)): How much to jitter hue.
            hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
            Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
1023
    """
1024

1025
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
1026
        super().__init__()
yaox12's avatar
yaox12 committed
1027
1028
1029
1030
1031
1032
        self.brightness = self._check_input(brightness, 'brightness')
        self.contrast = self._check_input(contrast, 'contrast')
        self.saturation = self._check_input(saturation, 'saturation')
        self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5),
                                     clip_first_on_zero=False)

1033
    @torch.jit.unused
yaox12's avatar
yaox12 committed
1034
1035
1036
1037
    def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True):
        if isinstance(value, numbers.Number):
            if value < 0:
                raise ValueError("If {} is a single number, it must be non negative.".format(name))
1038
            value = [center - float(value), center + float(value)]
yaox12's avatar
yaox12 committed
1039
            if clip_first_on_zero:
1040
                value[0] = max(value[0], 0.0)
yaox12's avatar
yaox12 committed
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
        elif isinstance(value, (tuple, list)) and len(value) == 2:
            if not bound[0] <= value[0] <= value[1] <= bound[1]:
                raise ValueError("{} values should be between {}".format(name, bound))
        else:
            raise TypeError("{} should be a single number or a list/tuple with lenght 2.".format(name))

        # if value is 0 or (1., 1.) for brightness/contrast/saturation
        # or (0., 0.) for hue, do nothing
        if value[0] == value[1] == center:
            value = None
        return value
1052
1053

    @staticmethod
1054
    @torch.jit.unused
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
    def get_params(brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.

        Arguments are same as that of __init__.

        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
        transforms = []
yaox12's avatar
yaox12 committed
1065
1066
1067

        if brightness is not None:
            brightness_factor = random.uniform(brightness[0], brightness[1])
1068
1069
            transforms.append(Lambda(lambda img: F.adjust_brightness(img, brightness_factor)))

yaox12's avatar
yaox12 committed
1070
1071
        if contrast is not None:
            contrast_factor = random.uniform(contrast[0], contrast[1])
1072
1073
            transforms.append(Lambda(lambda img: F.adjust_contrast(img, contrast_factor)))

yaox12's avatar
yaox12 committed
1074
1075
        if saturation is not None:
            saturation_factor = random.uniform(saturation[0], saturation[1])
1076
1077
            transforms.append(Lambda(lambda img: F.adjust_saturation(img, saturation_factor)))

yaox12's avatar
yaox12 committed
1078
1079
        if hue is not None:
            hue_factor = random.uniform(hue[0], hue[1])
1080
1081
            transforms.append(Lambda(lambda img: F.adjust_hue(img, hue_factor)))

vfdev's avatar
vfdev committed
1082
        random.shuffle(transforms)
1083
1084
1085
1086
        transform = Compose(transforms)

        return transform

1087
    def forward(self, img):
1088
1089
        """
        Args:
1090
            img (PIL Image or Tensor): Input image.
1091
1092

        Returns:
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
            PIL Image or Tensor: Color jittered image.
        """
        fn_idx = torch.randperm(4)
        for fn_id in fn_idx:
            if fn_id == 0 and self.brightness is not None:
                brightness = self.brightness
                brightness_factor = torch.tensor(1.0).uniform_(brightness[0], brightness[1]).item()
                img = F.adjust_brightness(img, brightness_factor)

            if fn_id == 1 and self.contrast is not None:
                contrast = self.contrast
                contrast_factor = torch.tensor(1.0).uniform_(contrast[0], contrast[1]).item()
                img = F.adjust_contrast(img, contrast_factor)

            if fn_id == 2 and self.saturation is not None:
                saturation = self.saturation
                saturation_factor = torch.tensor(1.0).uniform_(saturation[0], saturation[1]).item()
                img = F.adjust_saturation(img, saturation_factor)

            if fn_id == 3 and self.hue is not None:
                hue = self.hue
                hue_factor = torch.tensor(1.0).uniform_(hue[0], hue[1]).item()
                img = F.adjust_hue(img, hue_factor)

        return img
1118

1119
    def __repr__(self):
1120
1121
1122
1123
1124
1125
        format_string = self.__class__.__name__ + '('
        format_string += 'brightness={0}'.format(self.brightness)
        format_string += ', contrast={0}'.format(self.contrast)
        format_string += ', saturation={0}'.format(self.saturation)
        format_string += ', hue={0})'.format(self.hue)
        return format_string
1126

1127

1128
class RandomRotation(torch.nn.Module):
1129
    """Rotate the image by angle.
1130
1131
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1132
1133
1134
1135
1136

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees).
1137
        resample (int, optional): An optional resampling filter. See `filters`_ for more information.
1138
            If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
1139
            If input is Tensor, only ``PIL.Image.NEAREST`` and ``PIL.Image.BILINEAR`` are supported.
1140
1141
1142
1143
        expand (bool, optional): Optional expansion flag.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
1144
        center (list or tuple, optional): Optional center of rotation, (x, y). Origin is the upper left corner.
1145
            Default is the center of the image.
Philip Meier's avatar
Philip Meier committed
1146
1147
        fill (n-tuple or int or float): Pixel fill value for area outside the rotated
            image. If int or float, the value is used for all bands respectively.
1148
1149
1150
            Defaults to 0 for all bands. This option is only available for Pillow>=5.2.0.
            This option is not supported for Tensor input. Fill value for the area outside the transform in the output
            image is always 0.
1151
1152
1153

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1154
1155
    """

Philip Meier's avatar
Philip Meier committed
1156
    def __init__(self, degrees, resample=False, expand=False, center=None, fill=None):
1157
        super().__init__()
1158
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))
1159
1160

        if center is not None:
1161
            _check_sequence_input(center, "center", req_sizes=(2, ))
1162
1163

        self.center = center
1164
1165
1166

        self.resample = resample
        self.expand = expand
1167
        self.fill = fill
1168
1169

    @staticmethod
1170
    def get_params(degrees: List[float]) -> float:
1171
1172
1173
        """Get parameters for ``rotate`` for a random rotation.

        Returns:
1174
            float: angle parameter to be passed to ``rotate`` for random rotation.
1175
        """
1176
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1177
1178
        return angle

1179
    def forward(self, img):
1180
        """
1181
        Args:
1182
            img (PIL Image or Tensor): Image to be rotated.
1183
1184

        Returns:
1185
            PIL Image or Tensor: Rotated image.
1186
1187
        """
        angle = self.get_params(self.degrees)
1188
        return F.rotate(img, angle, self.resample, self.expand, self.center, self.fill)
1189

1190
    def __repr__(self):
1191
1192
1193
1194
1195
        format_string = self.__class__.__name__ + '(degrees={0}'.format(self.degrees)
        format_string += ', resample={0}'.format(self.resample)
        format_string += ', expand={0}'.format(self.expand)
        if self.center is not None:
            format_string += ', center={0}'.format(self.center)
1196
1197
        if self.fill is not None:
            format_string += ', fill={0}'.format(self.fill)
1198
1199
        format_string += ')'
        return format_string
1200

1201

1202
1203
1204
1205
class RandomAffine(torch.nn.Module):
    """Random affine transformation of the image keeping center invariant.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1206
1207
1208
1209

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
1210
            will be (-degrees, +degrees). Set to 0 to deactivate rotations.
1211
1212
1213
1214
1215
1216
1217
        translate (tuple, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
        shear (sequence or float or int, optional): Range of degrees to select from.
ptrblck's avatar
ptrblck committed
1218
            If shear is a number, a shear parallel to the x axis in the range (-shear, +shear)
1219
            will be applied. Else if shear is a tuple or list of 2 values a shear parallel to the x axis in the
ptrblck's avatar
ptrblck committed
1220
1221
            range (shear[0], shear[1]) will be applied. Else if shear is a tuple or list of 4 values,
            a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
1222
1223
1224
1225
1226
1227
1228
            Will not apply shear by default.
        resample (int, optional): An optional resampling filter. See `filters`_ for more information.
            If omitted, or if the image has mode "1" or "P", it is set to ``PIL.Image.NEAREST``.
            If input is Tensor, only ``PIL.Image.NEAREST`` and ``PIL.Image.BILINEAR`` are supported.
        fillcolor (tuple or int): Optional fill color (Tuple for RGB Image and int for grayscale) for the area
            outside the transform in the output image (Pillow>=5.0.0). This option is not supported for Tensor
            input. Fill value for the area outside the transform in the output image is always 0.
1229
1230
1231

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1232
1233
    """

1234
1235
    def __init__(self, degrees, translate=None, scale=None, shear=None, resample=0, fillcolor=0):
        super().__init__()
1236
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))
1237
1238

        if translate is not None:
1239
            _check_sequence_input(translate, "translate", req_sizes=(2, ))
1240
1241
1242
1243
1244
1245
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
1246
            _check_sequence_input(scale, "scale", req_sizes=(2, ))
1247
1248
1249
1250
1251
1252
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
1253
            self.shear = _setup_angle(shear, name="shear", req_sizes=(2, 4))
1254
1255
1256
1257
1258
1259
1260
        else:
            self.shear = shear

        self.resample = resample
        self.fillcolor = fillcolor

    @staticmethod
1261
1262
1263
1264
1265
1266
1267
    def get_params(
            degrees: List[float],
            translate: Optional[List[float]],
            scale_ranges: Optional[List[float]],
            shears: Optional[List[float]],
            img_size: List[int]
    ) -> Tuple[float, Tuple[int, int], float, Tuple[float, float]]:
1268
1269
1270
        """Get parameters for affine transformation

        Returns:
1271
            params to be passed to the affine transformation
1272
        """
1273
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1274
        if translate is not None:
1275
1276
1277
1278
1279
            max_dx = float(translate[0] * img_size[0])
            max_dy = float(translate[1] * img_size[1])
            tx = int(round(torch.empty(1).uniform_(-max_dx, max_dx).item()))
            ty = int(round(torch.empty(1).uniform_(-max_dy, max_dy).item()))
            translations = (tx, ty)
1280
1281
1282
1283
        else:
            translations = (0, 0)

        if scale_ranges is not None:
1284
            scale = float(torch.empty(1).uniform_(scale_ranges[0], scale_ranges[1]).item())
1285
1286
1287
        else:
            scale = 1.0

1288
        shear_x = shear_y = 0.0
1289
        if shears is not None:
1290
1291
1292
1293
1294
            shear_x = float(torch.empty(1).uniform_(shears[0], shears[1]).item())
            if len(shears) == 4:
                shear_y = float(torch.empty(1).uniform_(shears[2], shears[3]).item())

        shear = (shear_x, shear_y)
1295
1296
1297

        return angle, translations, scale, shear

1298
    def forward(self, img):
1299
        """
1300
            img (PIL Image or Tensor): Image to be transformed.
1301
1302

        Returns:
1303
            PIL Image or Tensor: Affine transformed image.
1304
        """
1305
1306
1307
1308

        img_size = F._get_image_size(img)

        ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img_size)
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
        return F.affine(img, *ret, resample=self.resample, fillcolor=self.fillcolor)

    def __repr__(self):
        s = '{name}(degrees={degrees}'
        if self.translate is not None:
            s += ', translate={translate}'
        if self.scale is not None:
            s += ', scale={scale}'
        if self.shear is not None:
            s += ', shear={shear}'
        if self.resample > 0:
            s += ', resample={resample}'
        if self.fillcolor != 0:
            s += ', fillcolor={fillcolor}'
        s += ')'
        d = dict(self.__dict__)
        d['resample'] = _pil_interpolation_to_str[d['resample']]
        return s.format(name=self.__class__.__name__, **d)


1329
class Grayscale(torch.nn.Module):
1330
    """Convert image to grayscale.
1331
1332
1333
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading
    dimensions
1334

1335
1336
1337
1338
    Args:
        num_output_channels (int): (1 or 3) number of channels desired for output image

    Returns:
1339
        PIL Image: Grayscale version of the input.
1340
1341
         - If ``num_output_channels == 1`` : returned image is single channel
         - If ``num_output_channels == 3`` : returned image is 3 channel with r == g == b
1342
1343
1344
1345

    """

    def __init__(self, num_output_channels=1):
1346
        super().__init__()
1347
1348
        self.num_output_channels = num_output_channels

vfdev's avatar
vfdev committed
1349
    def forward(self, img):
1350
1351
        """
        Args:
1352
            img (PIL Image or Tensor): Image to be converted to grayscale.
1353
1354

        Returns:
1355
            PIL Image or Tensor: Grayscaled image.
1356
        """
1357
        return F.rgb_to_grayscale(img, num_output_channels=self.num_output_channels)
1358

1359
    def __repr__(self):
1360
        return self.__class__.__name__ + '(num_output_channels={0})'.format(self.num_output_channels)
1361

1362

1363
class RandomGrayscale(torch.nn.Module):
1364
    """Randomly convert image to grayscale with a probability of p (default 0.1).
1365
1366
1367
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading
    dimensions
1368

1369
1370
1371
1372
    Args:
        p (float): probability that image should be converted to grayscale.

    Returns:
1373
        PIL Image or Tensor: Grayscale version of the input image with probability p and unchanged
1374
1375
1376
        with probability (1-p).
        - If input image is 1 channel: grayscale version is 1 channel
        - If input image is 3 channel: grayscale version is 3 channel with r == g == b
1377
1378
1379
1380

    """

    def __init__(self, p=0.1):
1381
        super().__init__()
1382
1383
        self.p = p

vfdev's avatar
vfdev committed
1384
    def forward(self, img):
1385
1386
        """
        Args:
1387
            img (PIL Image or Tensor): Image to be converted to grayscale.
1388
1389

        Returns:
1390
            PIL Image or Tensor: Randomly grayscaled image.
1391
        """
1392
1393
1394
        num_output_channels = F._get_image_num_channels(img)
        if torch.rand(1) < self.p:
            return F.rgb_to_grayscale(img, num_output_channels=num_output_channels)
1395
        return img
1396
1397

    def __repr__(self):
1398
        return self.__class__.__name__ + '(p={0})'.format(self.p)
1399
1400


1401
class RandomErasing(torch.nn.Module):
1402
    """ Randomly selects a rectangle region in an image and erases its pixels.
vfdev's avatar
vfdev committed
1403
    'Random Erasing Data Augmentation' by Zhong et al. See https://arxiv.org/abs/1708.04896
1404

1405
1406
1407
1408
1409
1410
1411
1412
    Args:
         p: probability that the random erasing operation will be performed.
         scale: range of proportion of erased area against input image.
         ratio: range of aspect ratio of erased area.
         value: erasing value. Default is 0. If a single int, it is used to
            erase all pixels. If a tuple of length 3, it is used to erase
            R, G, B channels respectively.
            If a str of 'random', erasing each pixel with random values.
Zhun Zhong's avatar
Zhun Zhong committed
1413
         inplace: boolean to make this transform inplace. Default set to False.
1414

1415
1416
    Returns:
        Erased Image.
1417

vfdev's avatar
vfdev committed
1418
    Example:
1419
        >>> transform = transforms.Compose([
1420
1421
1422
1423
        >>>   transforms.RandomHorizontalFlip(),
        >>>   transforms.ToTensor(),
        >>>   transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>>   transforms.RandomErasing(),
1424
1425
1426
        >>> ])
    """

Zhun Zhong's avatar
Zhun Zhong committed
1427
    def __init__(self, p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False):
1428
1429
1430
1431
1432
1433
1434
1435
1436
        super().__init__()
        if not isinstance(value, (numbers.Number, str, tuple, list)):
            raise TypeError("Argument value should be either a number or str or a sequence")
        if isinstance(value, str) and value != "random":
            raise ValueError("If value is str, it should be 'random'")
        if not isinstance(scale, (tuple, list)):
            raise TypeError("Scale should be a sequence")
        if not isinstance(ratio, (tuple, list)):
            raise TypeError("Ratio should be a sequence")
1437
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
1438
            warnings.warn("Scale and ratio should be of kind (min, max)")
1439
        if scale[0] < 0 or scale[1] > 1:
1440
            raise ValueError("Scale should be between 0 and 1")
1441
        if p < 0 or p > 1:
1442
            raise ValueError("Random erasing probability should be between 0 and 1")
1443
1444
1445
1446
1447

        self.p = p
        self.scale = scale
        self.ratio = ratio
        self.value = value
1448
        self.inplace = inplace
1449
1450

    @staticmethod
1451
1452
1453
    def get_params(
            img: Tensor, scale: Tuple[float, float], ratio: Tuple[float, float], value: Optional[List[float]] = None
    ) -> Tuple[int, int, int, int, Tensor]:
1454
1455
1456
        """Get parameters for ``erase`` for a random erasing.

        Args:
vfdev's avatar
vfdev committed
1457
            img (Tensor): Tensor image to be erased.
1458
1459
1460
1461
1462
            scale (tuple or list): range of proportion of erased area against input image.
            ratio (tuple or list): range of aspect ratio of erased area.
            value (list, optional): erasing value. If None, it is interpreted as "random"
                (erasing each pixel with random values). If ``len(value)`` is 1, it is interpreted as a number,
                i.e. ``value[0]``.
1463
1464
1465
1466

        Returns:
            tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erasing.
        """
vfdev's avatar
vfdev committed
1467
        img_c, img_h, img_w = img.shape[-3], img.shape[-2], img.shape[-1]
1468
        area = img_h * img_w
1469

1470
        for _ in range(10):
1471
1472
            erase_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
            aspect_ratio = torch.empty(1).uniform_(ratio[0], ratio[1]).item()
1473
1474
1475

            h = int(round(math.sqrt(erase_area * aspect_ratio)))
            w = int(round(math.sqrt(erase_area / aspect_ratio)))
1476
1477
1478
1479
1480
1481
1482
            if not (h < img_h and w < img_w):
                continue

            if value is None:
                v = torch.empty([img_c, h, w], dtype=torch.float32).normal_()
            else:
                v = torch.tensor(value)[:, None, None]
1483

1484
1485
            i = torch.randint(0, img_h - h + 1, size=(1, )).item()
            j = torch.randint(0, img_w - w + 1, size=(1, )).item()
1486
            return i, j, h, w, v
1487

Zhun Zhong's avatar
Zhun Zhong committed
1488
1489
1490
        # Return original image
        return 0, 0, img_h, img_w, img

1491
    def forward(self, img):
1492
1493
        """
        Args:
vfdev's avatar
vfdev committed
1494
            img (Tensor): Tensor image to be erased.
1495
1496
1497
1498

        Returns:
            img (Tensor): Erased Tensor image.
        """
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
        if torch.rand(1) < self.p:

            # cast self.value to script acceptable type
            if isinstance(self.value, (int, float)):
                value = [self.value, ]
            elif isinstance(self.value, str):
                value = None
            elif isinstance(self.value, tuple):
                value = list(self.value)
            else:
                value = self.value

            if value is not None and not (len(value) in (1, img.shape[-3])):
                raise ValueError(
                    "If value is a sequence, it should have either a single value or "
                    "{} (number of input channels)".format(img.shape[-3])
                )

            x, y, h, w, v = self.get_params(img, scale=self.scale, ratio=self.ratio, value=value)
1518
            return F.erase(img, x, y, h, w, v, self.inplace)
1519
        return img
1520
1521


1522
1523
1524
class GaussianBlur(torch.nn.Module):
    """Blurs image with randomly chosen Gaussian blur.
    The image can be a PIL Image or a Tensor, in which case it is expected
vfdev's avatar
vfdev committed
1525
    to have [..., C, H, W] shape, where ... means an arbitrary number of leading
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
    dimensions

    Args:
        kernel_size (int or sequence): Size of the Gaussian kernel.
        sigma (float or tuple of float (min, max)): Standard deviation to be used for
            creating kernel to perform blurring. If float, sigma is fixed. If it is tuple
            of float (min, max), sigma is chosen uniformly at random to lie in the
            given range.

    Returns:
        PIL Image or Tensor: Gaussian blurred version of the input image.

    """

    def __init__(self, kernel_size, sigma=(0.1, 2.0)):
        super().__init__()
        self.kernel_size = _setup_size(kernel_size, "Kernel size should be a tuple/list of two integers")
        for ks in self.kernel_size:
            if ks <= 0 or ks % 2 == 0:
                raise ValueError("Kernel size value should be an odd and positive number.")

        if isinstance(sigma, numbers.Number):
            if sigma <= 0:
                raise ValueError("If sigma is a single number, it must be positive.")
            sigma = (sigma, sigma)
        elif isinstance(sigma, Sequence) and len(sigma) == 2:
            if not 0. < sigma[0] <= sigma[1]:
                raise ValueError("sigma values should be positive and of the form (min, max).")
        else:
            raise ValueError("sigma should be a single number or a list/tuple with length 2.")

        self.sigma = sigma

    @staticmethod
    def get_params(sigma_min: float, sigma_max: float) -> float:
vfdev's avatar
vfdev committed
1561
        """Choose sigma for random gaussian blurring.
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574

        Args:
            sigma_min (float): Minimum standard deviation that can be chosen for blurring kernel.
            sigma_max (float): Maximum standard deviation that can be chosen for blurring kernel.

        Returns:
            float: Standard deviation to be passed to calculate kernel for gaussian blurring.
        """
        return torch.empty(1).uniform_(sigma_min, sigma_max).item()

    def forward(self, img: Tensor) -> Tensor:
        """
        Args:
vfdev's avatar
vfdev committed
1575
            img (PIL Image or Tensor): image to be blurred.
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588

        Returns:
            PIL Image or Tensor: Gaussian blurred image
        """
        sigma = self.get_params(self.sigma[0], self.sigma[1])
        return F.gaussian_blur(img, self.kernel_size, [sigma, sigma])

    def __repr__(self):
        s = '(kernel_size={}, '.format(self.kernel_size)
        s += 'sigma={})'.format(self.sigma)
        return self.__class__.__name__ + s


1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
def _setup_size(size, error_msg):
    if isinstance(size, numbers.Number):
        return int(size), int(size)

    if isinstance(size, Sequence) and len(size) == 1:
        return size[0], size[0]

    if len(size) != 2:
        raise ValueError(error_msg)

    return size


def _check_sequence_input(x, name, req_sizes):
    msg = req_sizes[0] if len(req_sizes) < 2 else " or ".join([str(s) for s in req_sizes])
    if not isinstance(x, Sequence):
        raise TypeError("{} should be a sequence of length {}.".format(name, msg))
    if len(x) not in req_sizes:
        raise ValueError("{} should be sequence of length {}.".format(name, msg))


def _setup_angle(x, name, req_sizes=(2, )):
    if isinstance(x, numbers.Number):
        if x < 0:
            raise ValueError("If {} is a single number, it must be positive.".format(name))
        x = [-x, x]
    else:
        _check_sequence_input(x, name, req_sizes)

    return [float(d) for d in x]