transforms.py 57.5 KB
Newer Older
1
import math
vfdev's avatar
vfdev committed
2
import numbers
3
import random
vfdev's avatar
vfdev committed
4
import warnings
vfdev's avatar
vfdev committed
5
from collections.abc import Sequence
6
from typing import Tuple, List, Optional
vfdev's avatar
vfdev committed
7
8
9

import numpy as np
import torch
10
from PIL import Image
vfdev's avatar
vfdev committed
11
12
from torch import Tensor

13
14
15
16
17
18
19
try:
    import accimage
except ImportError:
    accimage = None

from . import functional as F

Tongzhou Wang's avatar
Tongzhou Wang committed
20

21
22
23
24
__all__ = ["Compose", "ToTensor", "PILToTensor", "ConvertImageDtype", "ToPILImage", "Normalize", "Resize", "Scale",
           "CenterCrop", "Pad", "Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop",
           "RandomHorizontalFlip", "RandomVerticalFlip", "RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop",
           "LinearTransformation", "ColorJitter", "RandomRotation", "RandomAffine", "Grayscale", "RandomGrayscale",
25
           "RandomPerspective", "RandomErasing"]
26

27
28
29
30
31
_pil_interpolation_to_str = {
    Image.NEAREST: 'PIL.Image.NEAREST',
    Image.BILINEAR: 'PIL.Image.BILINEAR',
    Image.BICUBIC: 'PIL.Image.BICUBIC',
    Image.LANCZOS: 'PIL.Image.LANCZOS',
surgan12's avatar
surgan12 committed
32
33
    Image.HAMMING: 'PIL.Image.HAMMING',
    Image.BOX: 'PIL.Image.BOX',
34
35
}

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

class Compose(object):
    """Composes several transforms together.

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

58
59
60
61
62
63
64
65
    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string

66
67
68
69
70

class ToTensor(object):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
surgan12's avatar
surgan12 committed
71
72
73
74
75
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.
76
77
78
79
80
81
82
83
84
85
86
87
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(pic)

88
89
90
    def __repr__(self):
        return self.__class__.__name__ + '()'

91

92
93
94
class PILToTensor(object):
    """Convert a ``PIL Image`` to a tensor of the same type.

vfdev's avatar
vfdev committed
95
    Converts a PIL Image (H x W x C) to a Tensor of shape (C x H x W).
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.pil_to_tensor(pic)

    def __repr__(self):
        return self.__class__.__name__ + '()'


112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
class ConvertImageDtype(object):
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly

    Args:
        dtype (torch.dtype): Desired data type of the output

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """

    def __init__(self, dtype: torch.dtype) -> None:
        self.dtype = dtype

    def __call__(self, image: torch.Tensor) -> torch.Tensor:
        return F.convert_image_dtype(image, self.dtype)


137
138
139
140
141
142
143
144
145
class ToPILImage(object):
    """Convert a tensor or an ndarray to PIL Image.

    Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
    H x W x C to a PIL Image while preserving the value range.

    Args:
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
            If ``mode`` is ``None`` (default) there are some assumptions made about the input data:
surgan12's avatar
surgan12 committed
146
147
148
149
             - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``.
             - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``.
             - If the input has 2 channels, the ``mode`` is assumed to be ``LA``.
             - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``,
150
               ``short``).
151

csukuangfj's avatar
csukuangfj committed
152
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
    """
    def __init__(self, mode=None):
        self.mode = mode

    def __call__(self, pic):
        """
        Args:
            pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.

        Returns:
            PIL Image: Image converted to PIL Image.

        """
        return F.to_pil_image(pic, self.mode)

168
    def __repr__(self):
169
170
171
172
173
        format_string = self.__class__.__name__ + '('
        if self.mode is not None:
            format_string += 'mode={0}'.format(self.mode)
        format_string += ')'
        return format_string
174

175
176

class Normalize(object):
Fang Gao's avatar
Fang Gao committed
177
    """Normalize a tensor image with mean and standard deviation.
178
179
180
    Given mean: ``(mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])`` for ``n``
    channels, this transform will normalize each channel of the input
    ``torch.*Tensor`` i.e.,
abdjava's avatar
abdjava committed
181
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``
182

183
    .. note::
184
        This transform acts out of place, i.e., it does not mutate the input tensor.
185

186
187
188
    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
189
190
        inplace(bool,optional): Bool to make this operation in-place.

191
192
    """

surgan12's avatar
surgan12 committed
193
    def __init__(self, mean, std, inplace=False):
194
195
        self.mean = mean
        self.std = std
surgan12's avatar
surgan12 committed
196
        self.inplace = inplace
197
198
199
200
201
202
203
204
205

    def __call__(self, tensor):
        """
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be normalized.

        Returns:
            Tensor: Normalized Tensor image.
        """
surgan12's avatar
surgan12 committed
206
        return F.normalize(tensor, self.mean, self.std, self.inplace)
207

208
209
210
    def __repr__(self):
        return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)

211

vfdev's avatar
vfdev committed
212
213
214
215
class Resize(torch.nn.Module):
    """Resize the input image to the given size.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
216
217
218
219
220
221

    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
222
223
224
225
            (size * height / width, size).
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[size, ]``.
        interpolation (int, optional): Desired interpolation. Default is ``PIL.Image.BILINEAR``
226
227
228
    """

    def __init__(self, size, interpolation=Image.BILINEAR):
vfdev's avatar
vfdev committed
229
230
231
232
233
        super().__init__()
        if not isinstance(size, (int, Sequence)):
            raise TypeError("Size should be int or sequence. Got {}".format(type(size)))
        if isinstance(size, Sequence) and len(size) not in (1, 2):
            raise ValueError("If size is a sequence, it should have 1 or 2 values")
234
235
236
        self.size = size
        self.interpolation = interpolation

vfdev's avatar
vfdev committed
237
    def forward(self, img):
238
239
        """
        Args:
vfdev's avatar
vfdev committed
240
            img (PIL Image or Tensor): Image to be scaled.
241
242

        Returns:
vfdev's avatar
vfdev committed
243
            PIL Image or Tensor: Rescaled image.
244
245
246
        """
        return F.resize(img, self.size, self.interpolation)

247
    def __repr__(self):
248
249
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        return self.__class__.__name__ + '(size={0}, interpolation={1})'.format(self.size, interpolate_str)
250

251
252
253
254
255
256
257
258
259
260
261

class Scale(Resize):
    """
    Note: This transform is deprecated in favor of Resize.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                      "please use transforms.Resize instead.")
        super(Scale, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
262
263
264
265
class CenterCrop(torch.nn.Module):
    """Crops the given image at the center.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
266
267
268
269

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
vfdev's avatar
vfdev committed
270
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
271
272
273
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
274
        super().__init__()
275
276
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
vfdev's avatar
vfdev committed
277
278
        elif isinstance(size, Sequence) and len(size) == 1:
            self.size = (size[0], size[0])
279
        else:
vfdev's avatar
vfdev committed
280
281
282
            if len(size) != 2:
                raise ValueError("Please provide only two dimensions (h, w) for size.")

283
284
            self.size = size

vfdev's avatar
vfdev committed
285
    def forward(self, img):
286
287
        """
        Args:
vfdev's avatar
vfdev committed
288
            img (PIL Image or Tensor): Image to be cropped.
289
290

        Returns:
vfdev's avatar
vfdev committed
291
            PIL Image or Tensor: Cropped image.
292
293
294
        """
        return F.center_crop(img, self.size)

295
296
297
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

298

299
300
301
302
class Pad(torch.nn.Module):
    """Pad the given image on all sides with the given "pad" value.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
303
304

    Args:
305
        padding (int or tuple or list): Padding on each border. If a single int is provided this
306
307
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
308
309
310
            this is the padding for the left, top, right and bottom borders respectively.
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[padding, ]``.
311
        fill (int or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
312
            length 3, it is used to fill R, G, B channels respectively.
313
            This value is only used when the padding_mode is constant
314
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
vfdev's avatar
vfdev committed
315
            Default is constant. Mode symmetric is not yet supported for Tensor inputs.
316
317
318
319
320
321
322
323

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value at the edge of the image

            - reflect: pads with reflection of image without repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
324
                will result in [3, 2, 1, 2, 3, 4, 3, 2]
325
326
327
328

            - symmetric: pads with reflection of image repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
329
                will result in [2, 1, 1, 2, 3, 4, 4, 3]
330
331
    """

332
333
334
335
336
337
338
339
340
341
342
343
344
    def __init__(self, padding, fill=0, padding_mode="constant"):
        super().__init__()
        if not isinstance(padding, (numbers.Number, tuple, list)):
            raise TypeError("Got inappropriate padding arg")

        if not isinstance(fill, (numbers.Number, str, tuple)):
            raise TypeError("Got inappropriate fill arg")

        if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
            raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")

        if isinstance(padding, Sequence) and len(padding) not in [1, 2, 4]:
            raise ValueError("Padding must be an int or a 1, 2, or 4 element tuple, not a " +
345
346
347
348
                             "{} element tuple".format(len(padding)))

        self.padding = padding
        self.fill = fill
349
        self.padding_mode = padding_mode
350

351
    def forward(self, img):
352
353
        """
        Args:
354
            img (PIL Image or Tensor): Image to be padded.
355
356

        Returns:
357
            PIL Image or Tensor: Padded image.
358
        """
359
        return F.pad(img, self.padding, self.fill, self.padding_mode)
360

361
    def __repr__(self):
362
363
        return self.__class__.__name__ + '(padding={0}, fill={1}, padding_mode={2})'.\
            format(self.padding, self.fill, self.padding_mode)
364

365
366
367
368
369
370
371
372
373

class Lambda(object):
    """Apply a user-defined lambda as a transform.

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
374
        assert callable(lambd), repr(type(lambd).__name__) + " object is not callable"
375
376
377
378
379
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

380
381
382
    def __repr__(self):
        return self.__class__.__name__ + '()'

383

384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
class RandomTransforms(object):
    """Base class for a list of transformations with randomness

    Args:
        transforms (list or tuple): list of transformations
    """

    def __init__(self, transforms):
        assert isinstance(transforms, (list, tuple))
        self.transforms = transforms

    def __call__(self, *args, **kwargs):
        raise NotImplementedError()

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomApply(RandomTransforms):
    """Apply randomly a list of transformations with a given probability

    Args:
        transforms (list or tuple): list of transformations
        p (float): probability
    """

    def __init__(self, transforms, p=0.5):
        super(RandomApply, self).__init__(transforms)
        self.p = p

    def __call__(self, img):
        if self.p < random.random():
            return img
        for t in self.transforms:
            img = t(img)
        return img

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        format_string += '\n    p={}'.format(self.p)
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomOrder(RandomTransforms):
    """Apply a list of transformations in a random order
    """
    def __call__(self, img):
        order = list(range(len(self.transforms)))
        random.shuffle(order)
        for i in order:
            img = self.transforms[i](img)
        return img


class RandomChoice(RandomTransforms):
    """Apply single transformation randomly picked from a list
    """
    def __call__(self, img):
        t = random.choice(self.transforms)
        return t(img)


vfdev's avatar
vfdev committed
455
456
457
458
459
class RandomCrop(torch.nn.Module):
    """Crop the given image at a random location.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
460
461
462
463

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
vfdev's avatar
vfdev committed
464
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
465
        padding (int or sequence, optional): Optional padding on each border
vfdev's avatar
vfdev committed
466
467
468
469
470
471
            of the image. Default is None. If a single int is provided this
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
            this is the padding for the left, top, right and bottom borders respectively.
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[padding, ]``.
472
        pad_if_needed (boolean): It will pad the image if smaller than the
ekka's avatar
ekka committed
473
            desired size to avoid raising an exception. Since cropping is done
474
            after padding, the padding seems to be done at a random offset.
vfdev's avatar
vfdev committed
475
        fill (int or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
476
477
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant
vfdev's avatar
vfdev committed
478
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
vfdev's avatar
vfdev committed
479
            Mode symmetric is not yet supported for Tensor inputs.
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

             - constant: pads with a constant value, this value is specified with fill

             - edge: pads with the last value on the edge of the image

             - reflect: pads with reflection of image (without repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                will result in [3, 2, 1, 2, 3, 4, 3, 2]

             - symmetric: pads with reflection of image (repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                will result in [2, 1, 1, 2, 3, 4, 4, 3]

495
496
497
    """

    @staticmethod
vfdev's avatar
vfdev committed
498
    def get_params(img: Tensor, output_size: Tuple[int, int]) -> Tuple[int, int, int, int]:
499
500
501
        """Get parameters for ``crop`` for a random crop.

        Args:
vfdev's avatar
vfdev committed
502
            img (PIL Image or Tensor): Image to be cropped.
503
504
505
506
507
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
vfdev's avatar
vfdev committed
508
        w, h = F._get_image_size(img)
509
510
511
512
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

513
514
        i = torch.randint(0, h - th + 1, size=(1, )).item()
        j = torch.randint(0, w - tw + 1, size=(1, )).item()
515
516
        return i, j, th, tw

vfdev's avatar
vfdev committed
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
    def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode="constant"):
        super().__init__()
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        elif isinstance(size, Sequence) and len(size) == 1:
            self.size = (size[0], size[0])
        else:
            if len(size) != 2:
                raise ValueError("Please provide only two dimensions (h, w) for size.")

            # cast to tuple for torchscript
            self.size = tuple(size)
        self.padding = padding
        self.pad_if_needed = pad_if_needed
        self.fill = fill
        self.padding_mode = padding_mode

    def forward(self, img):
535
536
        """
        Args:
vfdev's avatar
vfdev committed
537
            img (PIL Image or Tensor): Image to be cropped.
538
539

        Returns:
vfdev's avatar
vfdev committed
540
            PIL Image or Tensor: Cropped image.
541
        """
542
543
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)
544

vfdev's avatar
vfdev committed
545
        width, height = F._get_image_size(img)
546
        # pad the width if needed
vfdev's avatar
vfdev committed
547
548
549
        if self.pad_if_needed and width < self.size[1]:
            padding = [self.size[1] - width, 0]
            img = F.pad(img, padding, self.fill, self.padding_mode)
550
        # pad the height if needed
vfdev's avatar
vfdev committed
551
552
553
        if self.pad_if_needed and height < self.size[0]:
            padding = [0, self.size[0] - height]
            img = F.pad(img, padding, self.fill, self.padding_mode)
554

555
556
557
558
        i, j, h, w = self.get_params(img, self.size)

        return F.crop(img, i, j, h, w)

559
    def __repr__(self):
vfdev's avatar
vfdev committed
560
        return self.__class__.__name__ + "(size={0}, padding={1})".format(self.size, self.padding)
561

562

563
564
565
566
567
class RandomHorizontalFlip(torch.nn.Module):
    """Horizontally flip the given image randomly with a given probability.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
568
569
570
571
572
573

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
574
        super().__init__()
575
        self.p = p
576

577
    def forward(self, img):
578
579
        """
        Args:
580
            img (PIL Image or Tensor): Image to be flipped.
581
582

        Returns:
583
            PIL Image or Tensor: Randomly flipped image.
584
        """
585
        if torch.rand(1) < self.p:
586
587
588
            return F.hflip(img)
        return img

589
    def __repr__(self):
590
        return self.__class__.__name__ + '(p={})'.format(self.p)
591

592

593
class RandomVerticalFlip(torch.nn.Module):
vfdev's avatar
vfdev committed
594
    """Vertically flip the given image randomly with a given probability.
595
596
597
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
598
599
600
601
602
603

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
604
        super().__init__()
605
        self.p = p
606

607
    def forward(self, img):
608
609
        """
        Args:
610
            img (PIL Image or Tensor): Image to be flipped.
611
612

        Returns:
613
            PIL Image or Tensor: Randomly flipped image.
614
        """
615
        if torch.rand(1) < self.p:
616
617
618
            return F.vflip(img)
        return img

619
    def __repr__(self):
620
        return self.__class__.__name__ + '(p={})'.format(self.p)
621

622

623
624
625
626
627
628
629
630
631
632
class RandomPerspective(object):
    """Performs Perspective transformation of the given PIL Image randomly with a given probability.

    Args:
        interpolation : Default- Image.BICUBIC

        p (float): probability of the image being perspectively transformed. Default value is 0.5

        distortion_scale(float): it controls the degree of distortion and ranges from 0 to 1. Default value is 0.5.

633
634
        fill (3-tuple or int): RGB pixel fill value for area outside the rotated image.
            If int, it is used for all channels respectively. Default value is 0.
635
636
    """

637
    def __init__(self, distortion_scale=0.5, p=0.5, interpolation=Image.BICUBIC, fill=0):
638
639
640
        self.p = p
        self.interpolation = interpolation
        self.distortion_scale = distortion_scale
641
        self.fill = fill
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be Perspectively transformed.

        Returns:
            PIL Image: Random perspectivley transformed image.
        """
        if not F._is_pil_image(img):
            raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

        if random.random() < self.p:
            width, height = img.size
            startpoints, endpoints = self.get_params(width, height, self.distortion_scale)
657
            return F.perspective(img, startpoints, endpoints, self.interpolation, self.fill)
658
659
660
661
662
663
664
665
666
667
668
        return img

    @staticmethod
    def get_params(width, height, distortion_scale):
        """Get parameters for ``perspective`` for a random perspective transform.

        Args:
            width : width of the image.
            height : height of the image.

        Returns:
669
            List containing [top-left, top-right, bottom-right, bottom-left] of the original image,
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
            List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image.
        """
        half_height = int(height / 2)
        half_width = int(width / 2)
        topleft = (random.randint(0, int(distortion_scale * half_width)),
                   random.randint(0, int(distortion_scale * half_height)))
        topright = (random.randint(width - int(distortion_scale * half_width) - 1, width - 1),
                    random.randint(0, int(distortion_scale * half_height)))
        botright = (random.randint(width - int(distortion_scale * half_width) - 1, width - 1),
                    random.randint(height - int(distortion_scale * half_height) - 1, height - 1))
        botleft = (random.randint(0, int(distortion_scale * half_width)),
                   random.randint(height - int(distortion_scale * half_height) - 1, height - 1))
        startpoints = [(0, 0), (width - 1, 0), (width - 1, height - 1), (0, height - 1)]
        endpoints = [topleft, topright, botright, botleft]
        return startpoints, endpoints

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


690
691
692
693
class RandomResizedCrop(torch.nn.Module):
    """Crop the given image to random size and aspect ratio.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
694

695
696
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
697
698
699
700
    is finally resized to given size.
    This is popularly used to train the Inception networks.

    Args:
701
702
703
704
705
706
        size (int or sequence): expected output size of each edge. If size is an
            int instead of sequence like (h, w), a square output size ``(size, size)`` is
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
        scale (tuple of float): range of size of the origin size cropped
        ratio (tuple of float): range of aspect ratio of the origin aspect ratio cropped.
        interpolation (int): Desired interpolation. Default: ``PIL.Image.BILINEAR``
707
708
    """

709
    def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=Image.BILINEAR):
710
711
712
713
714
        super().__init__()
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        elif isinstance(size, Sequence) and len(size) == 1:
            self.size = (size[0], size[0])
715
        else:
716
717
718
719
720
721
722
723
            if len(size) != 2:
                raise ValueError("Please provide only two dimensions (h, w) for size.")
            self.size = size

        if not isinstance(scale, (tuple, list)):
            raise TypeError("Scale should be a sequence")
        if not isinstance(ratio, (tuple, list)):
            raise TypeError("Ratio should be a sequence")
724
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
725
            warnings.warn("Scale and ratio should be of kind (min, max)")
726

727
        self.interpolation = interpolation
728
729
        self.scale = scale
        self.ratio = ratio
730
731

    @staticmethod
732
733
734
    def get_params(
            img: Tensor, scale: Tuple[float, float], ratio: Tuple[float, float]
    ) -> Tuple[int, int, int, int]:
735
736
737
        """Get parameters for ``crop`` for a random sized crop.

        Args:
738
739
            img (PIL Image or Tensor): Input image.
            scale (tuple): range of scale of the origin size cropped
740
            ratio (tuple): range of aspect ratio of the origin aspect ratio cropped
741
742
743
744
745

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
                sized crop.
        """
vfdev's avatar
vfdev committed
746
        width, height = F._get_image_size(img)
Zhicheng Yan's avatar
Zhicheng Yan committed
747
        area = height * width
748

749
        for _ in range(10):
750
751
752
753
754
            target_area = area * torch.empty(1).uniform_(*scale).item()
            log_ratio = torch.log(torch.tensor(ratio))
            aspect_ratio = torch.exp(
                torch.empty(1).uniform_(log_ratio[0], log_ratio[1])
            ).item()
755
756
757
758

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

Zhicheng Yan's avatar
Zhicheng Yan committed
759
            if 0 < w <= width and 0 < h <= height:
760
761
                i = torch.randint(0, height - h + 1, size=(1,)).item()
                j = torch.randint(0, width - w + 1, size=(1,)).item()
762
763
                return i, j, h, w

764
        # Fallback to central crop
Zhicheng Yan's avatar
Zhicheng Yan committed
765
        in_ratio = float(width) / float(height)
766
        if in_ratio < min(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
767
            w = width
768
            h = int(round(w / min(ratio)))
769
        elif in_ratio > max(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
770
            h = height
771
            w = int(round(h * max(ratio)))
772
        else:  # whole image
Zhicheng Yan's avatar
Zhicheng Yan committed
773
774
775
776
            w = width
            h = height
        i = (height - h) // 2
        j = (width - w) // 2
777
        return i, j, h, w
778

779
    def forward(self, img):
780
781
        """
        Args:
782
            img (PIL Image or Tensor): Image to be cropped and resized.
783
784

        Returns:
785
            PIL Image or Tensor: Randomly cropped and resized image.
786
        """
787
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
788
789
        return F.resized_crop(img, i, j, h, w, self.size, self.interpolation)

790
    def __repr__(self):
791
792
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
793
794
        format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
        format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))
795
796
        format_string += ', interpolation={0})'.format(interpolate_str)
        return format_string
797

798
799
800
801
802
803
804
805
806
807
808

class RandomSizedCrop(RandomResizedCrop):
    """
    Note: This transform is deprecated in favor of RandomResizedCrop.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.RandomSizedCrop transform is deprecated, " +
                      "please use transforms.RandomResizedCrop instead.")
        super(RandomSizedCrop, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
809
810
811
812
813
class FiveCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
814
815
816
817
818
819
820
821
822

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
         size (sequence or int): Desired output size of the crop. If size is an ``int``
            instead of sequence like (h, w), a square crop of size (size, size) is made.
vfdev's avatar
vfdev committed
823
            If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
824
825
826
827
828
829
830
831
832
833
834
835
836
837

    Example:
         >>> transform = Compose([
         >>>    FiveCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
838
        super().__init__()
839
840
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
vfdev's avatar
vfdev committed
841
842
        elif isinstance(size, Sequence) and len(size) == 1:
            self.size = (size[0], size[0])
843
        else:
vfdev's avatar
vfdev committed
844
845
846
            if len(size) != 2:
                raise ValueError("Please provide only two dimensions (h, w) for size.")

847
848
            self.size = size

vfdev's avatar
vfdev committed
849
850
851
852
853
854
855
856
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 5 images. Image can be PIL Image or Tensor
        """
857
858
        return F.five_crop(img, self.size)

859
860
861
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

862

vfdev's avatar
vfdev committed
863
864
865
866
867
868
class TenCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop plus the flipped version of
    these (horizontal flipping is used by default).
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
869
870
871
872
873
874
875
876
877

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
vfdev's avatar
vfdev committed
878
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
879
        vertical_flip (bool): Use vertical flipping instead of horizontal
880
881
882
883
884
885
886
887
888
889
890
891
892
893

    Example:
         >>> transform = Compose([
         >>>    TenCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size, vertical_flip=False):
vfdev's avatar
vfdev committed
894
        super().__init__()
895
896
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
vfdev's avatar
vfdev committed
897
898
        elif isinstance(size, Sequence) and len(size) == 1:
            self.size = (size[0], size[0])
899
        else:
vfdev's avatar
vfdev committed
900
901
902
            if len(size) != 2:
                raise ValueError("Please provide only two dimensions (h, w) for size.")

903
904
905
            self.size = size
        self.vertical_flip = vertical_flip

vfdev's avatar
vfdev committed
906
907
908
909
910
911
912
913
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 10 images. Image can be PIL Image or Tensor
        """
914
915
        return F.ten_crop(img, self.size, self.vertical_flip)

916
    def __repr__(self):
917
        return self.__class__.__name__ + '(size={0}, vertical_flip={1})'.format(self.size, self.vertical_flip)
918

919

920
class LinearTransformation(object):
ekka's avatar
ekka committed
921
    """Transform a tensor image with a square transformation matrix and a mean_vector computed
922
    offline.
ekka's avatar
ekka committed
923
924
925
    Given transformation_matrix and mean_vector, will flatten the torch.*Tensor and
    subtract mean_vector from it which is then followed by computing the dot
    product with the transformation matrix and then reshaping the tensor to its
926
    original shape.
927

928
    Applications:
929
        whitening transformation: Suppose X is a column vector zero-centered data.
930
931
932
        Then compute the data covariance matrix [D x D] with torch.mm(X.t(), X),
        perform SVD on this matrix and pass it as transformation_matrix.

933
934
    Args:
        transformation_matrix (Tensor): tensor [D x D], D = C x H x W
ekka's avatar
ekka committed
935
        mean_vector (Tensor): tensor [D], D = C x H x W
936
937
    """

ekka's avatar
ekka committed
938
    def __init__(self, transformation_matrix, mean_vector):
939
940
941
        if transformation_matrix.size(0) != transformation_matrix.size(1):
            raise ValueError("transformation_matrix should be square. Got " +
                             "[{} x {}] rectangular matrix.".format(*transformation_matrix.size()))
ekka's avatar
ekka committed
942
943
944

        if mean_vector.size(0) != transformation_matrix.size(0):
            raise ValueError("mean_vector should have the same length {}".format(mean_vector.size(0)) +
Francisco Massa's avatar
Francisco Massa committed
945
946
                             " as any one of the dimensions of the transformation_matrix [{}]"
                             .format(tuple(transformation_matrix.size())))
ekka's avatar
ekka committed
947

948
        self.transformation_matrix = transformation_matrix
ekka's avatar
ekka committed
949
        self.mean_vector = mean_vector
950
951
952
953
954
955
956
957
958
959
960
961
962

    def __call__(self, tensor):
        """
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be whitened.

        Returns:
            Tensor: Transformed image.
        """
        if tensor.size(0) * tensor.size(1) * tensor.size(2) != self.transformation_matrix.size(0):
            raise ValueError("tensor and transformation matrix have incompatible shape." +
                             "[{} x {} x {}] != ".format(*tensor.size()) +
                             "{}".format(self.transformation_matrix.size(0)))
ekka's avatar
ekka committed
963
        flat_tensor = tensor.view(1, -1) - self.mean_vector
964
965
966
967
        transformed_tensor = torch.mm(flat_tensor, self.transformation_matrix)
        tensor = transformed_tensor.view(tensor.size())
        return tensor

968
    def __repr__(self):
ekka's avatar
ekka committed
969
970
971
        format_string = self.__class__.__name__ + '(transformation_matrix='
        format_string += (str(self.transformation_matrix.tolist()) + ')')
        format_string += (", (mean_vector=" + str(self.mean_vector.tolist()) + ')')
972
973
        return format_string

974

975
class ColorJitter(torch.nn.Module):
976
977
978
    """Randomly change the brightness, contrast and saturation of an image.

    Args:
yaox12's avatar
yaox12 committed
979
980
981
982
983
984
985
986
987
988
989
990
        brightness (float or tuple of float (min, max)): How much to jitter brightness.
            brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
            or the given [min, max]. Should be non negative numbers.
        contrast (float or tuple of float (min, max)): How much to jitter contrast.
            contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
            or the given [min, max]. Should be non negative numbers.
        saturation (float or tuple of float (min, max)): How much to jitter saturation.
            saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
            or the given [min, max]. Should be non negative numbers.
        hue (float or tuple of float (min, max)): How much to jitter hue.
            hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
            Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
991
    """
992

993
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
994
        super().__init__()
yaox12's avatar
yaox12 committed
995
996
997
998
999
1000
        self.brightness = self._check_input(brightness, 'brightness')
        self.contrast = self._check_input(contrast, 'contrast')
        self.saturation = self._check_input(saturation, 'saturation')
        self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5),
                                     clip_first_on_zero=False)

1001
    @torch.jit.unused
yaox12's avatar
yaox12 committed
1002
1003
1004
1005
    def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True):
        if isinstance(value, numbers.Number):
            if value < 0:
                raise ValueError("If {} is a single number, it must be non negative.".format(name))
1006
            value = [center - float(value), center + float(value)]
yaox12's avatar
yaox12 committed
1007
            if clip_first_on_zero:
1008
                value[0] = max(value[0], 0.0)
yaox12's avatar
yaox12 committed
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
        elif isinstance(value, (tuple, list)) and len(value) == 2:
            if not bound[0] <= value[0] <= value[1] <= bound[1]:
                raise ValueError("{} values should be between {}".format(name, bound))
        else:
            raise TypeError("{} should be a single number or a list/tuple with lenght 2.".format(name))

        # if value is 0 or (1., 1.) for brightness/contrast/saturation
        # or (0., 0.) for hue, do nothing
        if value[0] == value[1] == center:
            value = None
        return value
1020
1021

    @staticmethod
1022
    @torch.jit.unused
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
    def get_params(brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.

        Arguments are same as that of __init__.

        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
        transforms = []
yaox12's avatar
yaox12 committed
1033
1034
1035

        if brightness is not None:
            brightness_factor = random.uniform(brightness[0], brightness[1])
1036
1037
            transforms.append(Lambda(lambda img: F.adjust_brightness(img, brightness_factor)))

yaox12's avatar
yaox12 committed
1038
1039
        if contrast is not None:
            contrast_factor = random.uniform(contrast[0], contrast[1])
1040
1041
            transforms.append(Lambda(lambda img: F.adjust_contrast(img, contrast_factor)))

yaox12's avatar
yaox12 committed
1042
1043
        if saturation is not None:
            saturation_factor = random.uniform(saturation[0], saturation[1])
1044
1045
            transforms.append(Lambda(lambda img: F.adjust_saturation(img, saturation_factor)))

yaox12's avatar
yaox12 committed
1046
1047
        if hue is not None:
            hue_factor = random.uniform(hue[0], hue[1])
1048
1049
            transforms.append(Lambda(lambda img: F.adjust_hue(img, hue_factor)))

vfdev's avatar
vfdev committed
1050
        random.shuffle(transforms)
1051
1052
1053
1054
        transform = Compose(transforms)

        return transform

1055
    def forward(self, img):
1056
1057
        """
        Args:
1058
            img (PIL Image or Tensor): Input image.
1059
1060

        Returns:
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
            PIL Image or Tensor: Color jittered image.
        """
        fn_idx = torch.randperm(4)
        for fn_id in fn_idx:
            if fn_id == 0 and self.brightness is not None:
                brightness = self.brightness
                brightness_factor = torch.tensor(1.0).uniform_(brightness[0], brightness[1]).item()
                img = F.adjust_brightness(img, brightness_factor)

            if fn_id == 1 and self.contrast is not None:
                contrast = self.contrast
                contrast_factor = torch.tensor(1.0).uniform_(contrast[0], contrast[1]).item()
                img = F.adjust_contrast(img, contrast_factor)

            if fn_id == 2 and self.saturation is not None:
                saturation = self.saturation
                saturation_factor = torch.tensor(1.0).uniform_(saturation[0], saturation[1]).item()
                img = F.adjust_saturation(img, saturation_factor)

            if fn_id == 3 and self.hue is not None:
                hue = self.hue
                hue_factor = torch.tensor(1.0).uniform_(hue[0], hue[1]).item()
                img = F.adjust_hue(img, hue_factor)

        return img
1086

1087
    def __repr__(self):
1088
1089
1090
1091
1092
1093
        format_string = self.__class__.__name__ + '('
        format_string += 'brightness={0}'.format(self.brightness)
        format_string += ', contrast={0}'.format(self.contrast)
        format_string += ', saturation={0}'.format(self.saturation)
        format_string += ', hue={0})'.format(self.hue)
        return format_string
1094

1095
1096
1097
1098
1099
1100
1101
1102
1103

class RandomRotation(object):
    """Rotate the image by angle.

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees).
        resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional):
1104
            An optional resampling filter. See `filters`_ for more information.
1105
1106
1107
1108
1109
1110
1111
1112
            If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
        expand (bool, optional): Optional expansion flag.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple, optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
Philip Meier's avatar
Philip Meier committed
1113
1114
1115
        fill (n-tuple or int or float): Pixel fill value for area outside the rotated
            image. If int or float, the value is used for all bands respectively.
            Defaults to 0 for all bands. This option is only available for ``pillow>=5.2.0``.
1116
1117
1118

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1119
1120
    """

Philip Meier's avatar
Philip Meier committed
1121
    def __init__(self, degrees, resample=False, expand=False, center=None, fill=None):
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError("If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            if len(degrees) != 2:
                raise ValueError("If degrees is a sequence, it must be of len 2.")
            self.degrees = degrees

        self.resample = resample
        self.expand = expand
        self.center = center
1134
        self.fill = fill
1135
1136
1137
1138
1139
1140
1141
1142

    @staticmethod
    def get_params(degrees):
        """Get parameters for ``rotate`` for a random rotation.

        Returns:
            sequence: params to be passed to ``rotate`` for random rotation.
        """
vfdev's avatar
vfdev committed
1143
        angle = random.uniform(degrees[0], degrees[1])
1144
1145
1146
1147
1148

        return angle

    def __call__(self, img):
        """
1149
        Args:
1150
1151
1152
1153
1154
1155
1156
1157
            img (PIL Image): Image to be rotated.

        Returns:
            PIL Image: Rotated image.
        """

        angle = self.get_params(self.degrees)

1158
        return F.rotate(img, angle, self.resample, self.expand, self.center, self.fill)
1159

1160
    def __repr__(self):
1161
1162
1163
1164
1165
        format_string = self.__class__.__name__ + '(degrees={0}'.format(self.degrees)
        format_string += ', resample={0}'.format(self.resample)
        format_string += ', expand={0}'.format(self.expand)
        if self.center is not None:
            format_string += ', center={0}'.format(self.center)
1166
1167
        if self.fill is not None:
            format_string += ', fill={0}'.format(self.fill)
1168
1169
        format_string += ')'
        return format_string
1170

1171

1172
1173
1174
1175
1176
1177
class RandomAffine(object):
    """Random affine transformation of the image keeping center invariant

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
1178
            will be (-degrees, +degrees). Set to 0 to deactivate rotations.
1179
1180
1181
1182
1183
1184
1185
        translate (tuple, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
        shear (sequence or float or int, optional): Range of degrees to select from.
ptrblck's avatar
ptrblck committed
1186
1187
1188
1189
1190
            If shear is a number, a shear parallel to the x axis in the range (-shear, +shear)
            will be apllied. Else if shear is a tuple or list of 2 values a shear parallel to the x axis in the
            range (shear[0], shear[1]) will be applied. Else if shear is a tuple or list of 4 values,
            a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
            Will not apply shear by default
1191
        resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional):
1192
            An optional resampling filter. See `filters`_ for more information.
1193
            If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
Surgan Jandial's avatar
Surgan Jandial committed
1194
1195
        fillcolor (tuple or int): Optional fill color (Tuple for RGB Image And int for grayscale) for the area
            outside the transform in the output image.(Pillow>=5.0.0)
1196
1197
1198

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
    """

    def __init__(self, degrees, translate=None, scale=None, shear=None, resample=False, fillcolor=0):
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError("If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            assert isinstance(degrees, (tuple, list)) and len(degrees) == 2, \
                "degrees should be a list or tuple and it must be of length 2."
            self.degrees = degrees

        if translate is not None:
            assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
                "translate should be a list or tuple and it must be of length 2."
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
            assert isinstance(scale, (tuple, list)) and len(scale) == 2, \
                "scale should be a list or tuple and it must be of length 2."
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
            if isinstance(shear, numbers.Number):
                if shear < 0:
                    raise ValueError("If shear is a single number, it must be positive.")
                self.shear = (-shear, shear)
            else:
ptrblck's avatar
ptrblck committed
1233
1234
1235
1236
1237
1238
1239
1240
                assert isinstance(shear, (tuple, list)) and \
                    (len(shear) == 2 or len(shear) == 4), \
                    "shear should be a list or tuple and it must be of length 2 or 4."
                # X-Axis shear with [min, max]
                if len(shear) == 2:
                    self.shear = [shear[0], shear[1], 0., 0.]
                elif len(shear) == 4:
                    self.shear = [s for s in shear]
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
        else:
            self.shear = shear

        self.resample = resample
        self.fillcolor = fillcolor

    @staticmethod
    def get_params(degrees, translate, scale_ranges, shears, img_size):
        """Get parameters for affine transformation

        Returns:
            sequence: params to be passed to the affine transformation
        """
        angle = random.uniform(degrees[0], degrees[1])
        if translate is not None:
            max_dx = translate[0] * img_size[0]
            max_dy = translate[1] * img_size[1]
            translations = (np.round(random.uniform(-max_dx, max_dx)),
                            np.round(random.uniform(-max_dy, max_dy)))
        else:
            translations = (0, 0)

        if scale_ranges is not None:
            scale = random.uniform(scale_ranges[0], scale_ranges[1])
        else:
            scale = 1.0

        if shears is not None:
ptrblck's avatar
ptrblck committed
1269
1270
1271
1272
1273
            if len(shears) == 2:
                shear = [random.uniform(shears[0], shears[1]), 0.]
            elif len(shears) == 4:
                shear = [random.uniform(shears[0], shears[1]),
                         random.uniform(shears[2], shears[3])]
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
        else:
            shear = 0.0

        return angle, translations, scale, shear

    def __call__(self, img):
        """
            img (PIL Image): Image to be transformed.

        Returns:
            PIL Image: Affine transformed image.
        """
        ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img.size)
        return F.affine(img, *ret, resample=self.resample, fillcolor=self.fillcolor)

    def __repr__(self):
        s = '{name}(degrees={degrees}'
        if self.translate is not None:
            s += ', translate={translate}'
        if self.scale is not None:
            s += ', scale={scale}'
        if self.shear is not None:
            s += ', shear={shear}'
        if self.resample > 0:
            s += ', resample={resample}'
        if self.fillcolor != 0:
            s += ', fillcolor={fillcolor}'
        s += ')'
        d = dict(self.__dict__)
        d['resample'] = _pil_interpolation_to_str[d['resample']]
        return s.format(name=self.__class__.__name__, **d)


1307
1308
class Grayscale(object):
    """Convert image to grayscale.
1309

1310
1311
1312
1313
    Args:
        num_output_channels (int): (1 or 3) number of channels desired for output image

    Returns:
1314
        PIL Image: Grayscale version of the input.
1315
1316
         - If ``num_output_channels == 1`` : returned image is single channel
         - If ``num_output_channels == 3`` : returned image is 3 channel with r == g == b
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332

    """

    def __init__(self, num_output_channels=1):
        self.num_output_channels = num_output_channels

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be converted to grayscale.

        Returns:
            PIL Image: Randomly grayscaled image.
        """
        return F.to_grayscale(img, num_output_channels=self.num_output_channels)

1333
    def __repr__(self):
1334
        return self.__class__.__name__ + '(num_output_channels={0})'.format(self.num_output_channels)
1335

1336
1337
1338

class RandomGrayscale(object):
    """Randomly convert image to grayscale with a probability of p (default 0.1).
1339

1340
1341
1342
1343
    Args:
        p (float): probability that image should be converted to grayscale.

    Returns:
1344
1345
1346
1347
        PIL Image: Grayscale version of the input image with probability p and unchanged
        with probability (1-p).
        - If input image is 1 channel: grayscale version is 1 channel
        - If input image is 3 channel: grayscale version is 3 channel with r == g == b
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365

    """

    def __init__(self, p=0.1):
        self.p = p

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be converted to grayscale.

        Returns:
            PIL Image: Randomly grayscaled image.
        """
        num_output_channels = 1 if img.mode == 'L' else 3
        if random.random() < self.p:
            return F.to_grayscale(img, num_output_channels=num_output_channels)
        return img
1366
1367

    def __repr__(self):
1368
        return self.__class__.__name__ + '(p={0})'.format(self.p)
1369
1370


1371
class RandomErasing(torch.nn.Module):
1372
    """ Randomly selects a rectangle region in an image and erases its pixels.
1373
1374
    'Random Erasing Data Augmentation' by Zhong et al. See https://arxiv.org/pdf/1708.04896.pdf

1375
1376
1377
1378
1379
1380
1381
1382
    Args:
         p: probability that the random erasing operation will be performed.
         scale: range of proportion of erased area against input image.
         ratio: range of aspect ratio of erased area.
         value: erasing value. Default is 0. If a single int, it is used to
            erase all pixels. If a tuple of length 3, it is used to erase
            R, G, B channels respectively.
            If a str of 'random', erasing each pixel with random values.
Zhun Zhong's avatar
Zhun Zhong committed
1383
         inplace: boolean to make this transform inplace. Default set to False.
1384

1385
1386
    Returns:
        Erased Image.
1387

1388
1389
    # Examples:
        >>> transform = transforms.Compose([
1390
1391
1392
1393
        >>>   transforms.RandomHorizontalFlip(),
        >>>   transforms.ToTensor(),
        >>>   transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>>   transforms.RandomErasing(),
1394
1395
1396
        >>> ])
    """

Zhun Zhong's avatar
Zhun Zhong committed
1397
    def __init__(self, p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False):
1398
1399
1400
1401
1402
1403
1404
1405
1406
        super().__init__()
        if not isinstance(value, (numbers.Number, str, tuple, list)):
            raise TypeError("Argument value should be either a number or str or a sequence")
        if isinstance(value, str) and value != "random":
            raise ValueError("If value is str, it should be 'random'")
        if not isinstance(scale, (tuple, list)):
            raise TypeError("Scale should be a sequence")
        if not isinstance(ratio, (tuple, list)):
            raise TypeError("Ratio should be a sequence")
1407
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
1408
            warnings.warn("Scale and ratio should be of kind (min, max)")
1409
        if scale[0] < 0 or scale[1] > 1:
1410
            raise ValueError("Scale should be between 0 and 1")
1411
        if p < 0 or p > 1:
1412
            raise ValueError("Random erasing probability should be between 0 and 1")
1413
1414
1415
1416
1417

        self.p = p
        self.scale = scale
        self.ratio = ratio
        self.value = value
1418
        self.inplace = inplace
1419
1420

    @staticmethod
1421
1422
1423
    def get_params(
            img: Tensor, scale: Tuple[float, float], ratio: Tuple[float, float], value: Optional[List[float]] = None
    ) -> Tuple[int, int, int, int, Tensor]:
1424
1425
1426
1427
        """Get parameters for ``erase`` for a random erasing.

        Args:
            img (Tensor): Tensor image of size (C, H, W) to be erased.
1428
1429
1430
1431
1432
            scale (tuple or list): range of proportion of erased area against input image.
            ratio (tuple or list): range of aspect ratio of erased area.
            value (list, optional): erasing value. If None, it is interpreted as "random"
                (erasing each pixel with random values). If ``len(value)`` is 1, it is interpreted as a number,
                i.e. ``value[0]``.
1433
1434
1435
1436

        Returns:
            tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erasing.
        """
Zhun Zhong's avatar
Zhun Zhong committed
1437
        img_c, img_h, img_w = img.shape
1438
        area = img_h * img_w
1439

1440
        for _ in range(10):
1441
1442
            erase_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
            aspect_ratio = torch.empty(1).uniform_(ratio[0], ratio[1]).item()
1443
1444
1445

            h = int(round(math.sqrt(erase_area * aspect_ratio)))
            w = int(round(math.sqrt(erase_area / aspect_ratio)))
1446
1447
1448
1449
1450
1451
1452
            if not (h < img_h and w < img_w):
                continue

            if value is None:
                v = torch.empty([img_c, h, w], dtype=torch.float32).normal_()
            else:
                v = torch.tensor(value)[:, None, None]
1453

1454
1455
            i = torch.randint(0, img_h - h + 1, size=(1, )).item()
            j = torch.randint(0, img_w - w + 1, size=(1, )).item()
1456
            return i, j, h, w, v
1457

Zhun Zhong's avatar
Zhun Zhong committed
1458
1459
1460
        # Return original image
        return 0, 0, img_h, img_w, img

1461
    def forward(self, img):
1462
1463
1464
1465
1466
1467
1468
        """
        Args:
            img (Tensor): Tensor image of size (C, H, W) to be erased.

        Returns:
            img (Tensor): Erased Tensor image.
        """
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
        if torch.rand(1) < self.p:

            # cast self.value to script acceptable type
            if isinstance(self.value, (int, float)):
                value = [self.value, ]
            elif isinstance(self.value, str):
                value = None
            elif isinstance(self.value, tuple):
                value = list(self.value)
            else:
                value = self.value

            if value is not None and not (len(value) in (1, img.shape[-3])):
                raise ValueError(
                    "If value is a sequence, it should have either a single value or "
                    "{} (number of input channels)".format(img.shape[-3])
                )

            x, y, h, w, v = self.get_params(img, scale=self.scale, ratio=self.ratio, value=value)
1488
            return F.erase(img, x, y, h, w, v, self.inplace)
1489
        return img