training.py 40 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()
24
25
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
26
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
27

Neel Kant's avatar
Neel Kant committed
28
from megatron import get_args
29
from megatron import get_signal_handler
Mohammad's avatar
Mohammad committed
30
31
from megatron import get_timers
from megatron import get_tensorboard_writer
32
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
33
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
34
from megatron import is_last_rank
mohammad's avatar
mohammad committed
35
from megatron import update_num_microbatches
36
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
37
from megatron import print_rank_0
38
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
39
40
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
41
from megatron.model import Float16Module
42
from megatron.model import ModelType
mohammad's avatar
mohammad committed
43
from megatron.optimizer import get_megatron_optimizer
Mohammad's avatar
Mohammad committed
44
from megatron.initialize import initialize_megatron
45
from megatron.initialize import write_args_to_tensorboard
46
from megatron.initialize import set_jit_fusion_options
47
from megatron.optimizer_param_scheduler import OptimizerParamScheduler
48
49
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
50
from megatron.utils import unwrap_model
Vijay Korthikanti's avatar
Vijay Korthikanti committed
51
from megatron.data.data_samplers import build_pretraining_data_loader
mohammad's avatar
mohammad committed
52
from megatron.utils import calc_params_l2_norm
53
from megatron.schedules import get_forward_backward_func
54
from megatron.utils import report_memory
55
from megatron.model.vision.knn_monitor import compute_feature_bank
56

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
57

58
59
60
61
62
63
64
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


65
def pretrain(train_valid_test_dataset_provider,
66
             model_provider,
67
             model_type,
68
             forward_step_func,
69
             process_non_loss_data_func=None,
70
             extra_args_provider=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
71
             args_defaults={}):
72
73
74
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
75
76
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
77
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
78
        4) train the modle using the forward_step_func.
79
80

    Arguments:
81
82
83
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
84
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
85
        model_type: an enum that specifies the type of model being trained.
Mohammad's avatar
Mohammad committed
86
87
88
89
90
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
91
92
93
94
        process_non_loss_data_func: a function to post process outputs of the
            network. It can be used for dumping output tensors (e.g images) to
            tensorboard. It takes `collected data`(list of tensors),
            `current iteration index` and `tensorboard writer` as arguments.
Mohammad's avatar
Mohammad committed
95
96
97
98
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
99
100
    """

101
    # Initalize and get arguments, timers, and Tensorboard writer.
102
103
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
104
105
    # Set pytorch JIT layer fusion options and warmup JIT functions.
    set_jit_fusion_options()
106

107
108
109
110
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
111
    start_time_tensor = torch.cuda.DoubleTensor([_TRAIN_START_TIME])
112
113
114
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
115
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
116
117
118
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

119
    args = get_args()
Mohammad's avatar
Mohammad committed
120
    timers = get_timers()
121
122

    # Model, optimizer, and learning rate.
123
    timers('model-and-optimizer-setup').start()
124
    model, optimizer, opt_param_scheduler = setup_model_and_optimizer(model_provider,
125
                                                               model_type)
126
    timers('model-and-optimizer-setup').stop()
127
128
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
129
130

    # Data stuff.
131
132
    timers('train/valid/test-data-iterators-setup').start()
    if args.virtual_pipeline_model_parallel_size is not None:
133
        all_data_iterators = [
134
135
136
            build_train_valid_test_data_iterators(train_valid_test_dataset_provider)
            for _ in range(len(model))
        ]
137
138
139
        train_data_iterator = [data_iterators[0] for data_iterators in all_data_iterators]
        valid_data_iterator = [data_iterators[1] for data_iterators in all_data_iterators]
        test_data_iterator = [data_iterators[2] for data_iterators in all_data_iterators]
140
141
142
143
144
    else:
        train_data_iterator, valid_data_iterator, test_data_iterator \
            = build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
    timers('train/valid/test-data-iterators-setup').stop()
mshoeybi's avatar
mshoeybi committed
145
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
146
147

    # Print setup timing.
148
149
    print_rank_0('done with setup ...')
    timers.log(['model-and-optimizer-setup', 'train/valid/test-data-iterators-setup'])
Mohammad's avatar
Mohammad committed
150
    print_rank_0('training ...')
151
152

    iteration = 0
153
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
154
        iteration = train(forward_step_func,
155
                          model, optimizer, opt_param_scheduler,
156
157
                          train_data_iterator, valid_data_iterator,
                          process_non_loss_data_func)
158
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
159

160
161
162
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
163
                                   valid_data_iterator, model,
164
165
                                   iteration, process_non_loss_data_func,
                                   False)
166
167

    if args.save and iteration != 0:
168
        save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
169
170
171
172
173
174

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
175
176
                                   0, process_non_loss_data_func,
                                   True)
177

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
194
195
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
196
197
            iterations += 1
        # Reset
198
        update_num_microbatches(0, consistency_check=False)
199
200
201
202
203
204
205
206
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

207

208
def get_model(model_provider_func, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=True):
209
    """Build the model."""
Mohammad's avatar
Mohammad committed
210
    args = get_args()
211
    args.model_type = model_type
212

213
    # Build model.
214
215
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
       args.virtual_pipeline_model_parallel_size is not None:
216
217
        assert model_type != ModelType.encoder_and_decoder, \
            "Interleaved schedule not supported for model with both encoder and decoder"
218
219
220
        model = []
        for i in range(args.virtual_pipeline_model_parallel_size):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
221
222
223
            # Set pre_process and post_process only after virtual rank is set.
            pre_process = mpu.is_pipeline_first_stage()
            post_process = mpu.is_pipeline_last_stage()
224
            this_model = model_provider_func(
225
226
227
                pre_process=pre_process,
                post_process=post_process
            )
228
            this_model.model_type = model_type
229
            model.append(this_model)
230
    else:
231
232
        pre_process = mpu.is_pipeline_first_stage()
        post_process = mpu.is_pipeline_last_stage()
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
        add_encoder = True
        add_decoder = True
        if model_type == ModelType.encoder_and_decoder:
            if mpu.get_pipeline_model_parallel_world_size() > 1:
                assert args.pipeline_model_parallel_split_rank is not None, \
                    "Split rank needs to be specified for model with both encoder and decoder"
                rank = mpu.get_pipeline_model_parallel_rank()
                split_rank = args.pipeline_model_parallel_split_rank
                world_size = mpu.get_pipeline_model_parallel_world_size()
                pre_process = rank == 0 or rank == split_rank
                post_process = (rank == (split_rank - 1)) or (
                        rank == (world_size - 1))
                add_encoder = mpu.is_pipeline_stage_before_split()
                add_decoder = mpu.is_pipeline_stage_after_split()
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process,
                add_encoder=add_encoder,
                add_decoder=add_decoder)
        else:
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process
            )
        model.model_type = model_type
258

259
260
    if not isinstance(model, list):
        model = [model]
261

262
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
263
264
265
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
266
267
268
    for model_module in model:
        for param in model_module.parameters():
            mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
269

270
271
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
272
        print(' > number of parameters on (tensor, pipeline) '
273
              'model parallel rank ({}, {}): {}'.format(
274
275
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
276
277
            sum([sum([p.nelement() for p in model_module.parameters()])
                 for model_module in model])), flush=True)
278
279

    # GPU allocation.
280
281
    for model_module in model:
        model_module.cuda(torch.cuda.current_device())
282
283

    # Fp16 conversion.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
284
285
    if args.fp16 or args.bf16:
        model = [Float16Module(model_module, args) for model_module in model]
286

287
288
289
290
291
292
    if wrap_with_ddp:
        if args.DDP_impl == 'torch':
            i = torch.cuda.current_device()
            model = [torchDDP(model_module, device_ids=[i], output_device=i,
                              process_group=mpu.get_data_parallel_group())
                     for model_module in model]
293

294
295
296
297
298
        elif args.DDP_impl == 'local':
            model = [LocalDDP(model_module,
                              args.accumulate_allreduce_grads_in_fp32,
                              args.use_contiguous_buffers_in_local_ddp)
                     for model_module in model]
299
300
301
302
            # broad cast params from data parallel src rank to other data parallel ranks
            if args.data_parallel_random_init:
                for model_module in model:
                    model_module.broadcast_params()
303
304
305
        else:
            raise NotImplementedError('Unknown DDP implementation specified: '
                                      '{}. Exiting.'.format(args.DDP_impl))
306

307
    return model
308
309


310
def get_optimizer_param_scheduler(optimizer):
311
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
312
    args = get_args()
313

314
315
316
317
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
Vijay Korthikanti's avatar
Vijay Korthikanti committed
318
319
        lr_decay_steps = args.lr_decay_iters * args.global_batch_size
        wd_incr_steps = args.train_iters * args.global_batch_size
320
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
321
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
322
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
323
            lr_warmup_steps = args.lr_warmup_iters * args.global_batch_size
324
325
326
327
328
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
329
        update_train_iters(args)
330
331
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
Vijay Korthikanti's avatar
Vijay Korthikanti committed
332
333
        lr_decay_steps = args.lr_decay_samples
        wd_incr_steps = args.train_samples
334
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
335
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
336
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
337
            lr_warmup_steps = args.lr_warmup_samples
338
    else:
339
340
341
        raise Exception(
            'either train-iters or train-samples should be provided.')

342
    opt_param_scheduler = OptimizerParamScheduler(
343
        optimizer,
344
        max_lr=args.lr,
345
        min_lr=args.min_lr,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
346
347
348
        lr_warmup_steps=lr_warmup_steps,
        lr_decay_steps=lr_decay_steps,
        lr_decay_style=args.lr_decay_style,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
349
350
        start_wd=args.start_weight_decay,
        end_wd=args.end_weight_decay,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
351
        wd_incr_steps=wd_incr_steps,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
352
        wd_incr_style=args.weight_decay_incr_style,
353
354
        use_checkpoint_opt_param_scheduler=args.use_checkpoint_opt_param_scheduler,
        override_opt_param_scheduler=args.override_opt_param_scheduler)
355

356
    return opt_param_scheduler
357
358


359
360
361
362
363
def setup_model_and_optimizer(model_provider_func,
                              model_type,
                              no_wd_decay_cond=None,
                              scale_lr_cond=None,
                              lr_mult=1.0):
364
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
365
    args = get_args()
366

367
    model = get_model(model_provider_func, model_type)
368
    unwrapped_model = unwrap_model(model,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
369
                                   (torchDDP, LocalDDP, Float16Module))
Lawrence McAfee's avatar
Lawrence McAfee committed
370

371
    optimizer = get_megatron_optimizer(model, no_wd_decay_cond,
372
                                       scale_lr_cond, lr_mult)
373
    opt_param_scheduler = get_optimizer_param_scheduler(optimizer)
374
375

    if args.load is not None:
376
377
378
379
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
380
        timers('load-checkpoint').start()
381
        args.iteration = load_checkpoint(model, optimizer, opt_param_scheduler)
382
        torch.distributed.barrier()
383
384
        timers('load-checkpoint').stop()
        timers.log(['load-checkpoint'])
385
386
387
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
388
    # We only support local DDP with multiple micro-batches.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
389
    if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1:
mohammad's avatar
mohammad committed
390
391
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
392
    # get model without FP16 and/or TorchDDP wrappers
Mostofa Patwary's avatar
Mostofa Patwary committed
393
394
    if args.iteration == 0 and len(unwrapped_model) == 1 \
        and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
Mostofa Patwary's avatar
Mostofa Patwary committed
395
        print_rank_0("Initializing ICT from pretrained BERT model")
Mostofa Patwary's avatar
Mostofa Patwary committed
396
        unwrapped_model[0].init_state_dict_from_bert()
Mostofa Patwary's avatar
Mostofa Patwary committed
397
398
        if args.fp16:
            optimizer.reload_model_params()
Neel Kant's avatar
Neel Kant committed
399

400
    return model, optimizer, opt_param_scheduler
401
402


403
def train_step(forward_step_func, data_iterator,
Lawrence McAfee's avatar
Lawrence McAfee committed
404
               model, optimizer, opt_param_scheduler):
405
406
407
408
409
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
410
    if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_local_ddp:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
411
412
        for partition in model:
            partition.zero_grad_buffer()
413
    optimizer.zero_grad()
414

415
    # Forward pass.
416
    forward_backward_func = get_forward_backward_func()
417
418
419
    losses_reduced = forward_backward_func(
        forward_step_func, data_iterator, model,
        optimizer, timers, forward_only=False)
420

421
    # Empty unused memory.
Lawrence McAfee's avatar
Lawrence McAfee committed
422
    if args.empty_unused_memory_level >= 1:
423
424
        torch.cuda.empty_cache()

425
    # Reduce gradients.
Lawrence McAfee's avatar
Lawrence McAfee committed
426
    timers('backward-reduce-model-grads').start()
427
    optimizer.reduce_model_grads(args, timers)
Lawrence McAfee's avatar
Lawrence McAfee committed
428
    timers('backward-reduce-model-grads').stop()
429

Lawrence McAfee's avatar
Lawrence McAfee committed
430
    # Vision gradients.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
431
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
432
433
434
435
        unwrapped_model = unwrap_model(model[0],
                                       (torchDDP, LocalDDP, Float16Module))
        unwrapped_model.cancel_gradients_last_layer(args.curr_iteration)

436
437
    # Update parameters.
    timers('optimizer').start()
Lawrence McAfee's avatar
Lawrence McAfee committed
438
    update_successful, grad_norm, num_zeros_in_grad = optimizer.step(args, timers)
439
440
    timers('optimizer').stop()

441
    # Gather params.
442
    if update_successful:
Lawrence McAfee's avatar
Lawrence McAfee committed
443
        timers('backward-gather-model-params').start()
Lawrence McAfee's avatar
Lawrence McAfee committed
444
        optimizer.gather_model_params(args, timers)
Lawrence McAfee's avatar
Lawrence McAfee committed
445
        timers('backward-gather-model-params').stop()
446

Lawrence McAfee's avatar
Lawrence McAfee committed
447
    # Vision momentum.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
448
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
449
450
451
452
        unwrapped_model = unwrap_model(model[0],
                                       (torchDDP, LocalDDP, Float16Module))
        unwrapped_model.update_momentum(args.curr_iteration)

453
    # Update learning rate.
454
    if update_successful:
455
456
457
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
458
        opt_param_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
459
        skipped_iter = 0
460
461
462
    else:
        skipped_iter = 1

463
    # Empty unused memory.
Lawrence McAfee's avatar
Lawrence McAfee committed
464
    if args.empty_unused_memory_level >= 2:
465
466
        torch.cuda.empty_cache()

467
    if mpu.is_pipeline_last_stage(ignore_virtual=True):
468
469
470
471
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
472
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
473
474
        return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
    return {}, skipped_iter, grad_norm, num_zeros_in_grad
475
476


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
477
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
478
                 loss_scale, report_memory_flag, skipped_iter,
479
                 grad_norm, params_norm, num_zeros_in_grad):
Mohammad's avatar
Mohammad committed
480
481
482
483
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
484

mohammad's avatar
mohammad committed
485
486
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
487
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
488
489
490
491
492
493
494
495
496
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
497
498
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
499
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
500
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
501
    for key in loss_dict:
mohammad's avatar
mohammad committed
502
        if not skipped_iter:
503
504
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
505
506
507
508
509
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
510
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
511
512
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
513
514
515

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
516

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
517
518
519
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
520
521
522
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
523
    add_to_logging('forward-backward-send-forward-backward-recv')
524
525
526
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
527
    add_to_logging('backward-send-forward-recv')
528
    add_to_logging('backward-send-backward-recv')
529
    add_to_logging('backward-params-all-reduce')
530
    add_to_logging('backward-layernorm-all-reduce')
531
    add_to_logging('backward-embedding-all-reduce')
Lawrence McAfee's avatar
Lawrence McAfee committed
532
533
    add_to_logging('backward-reduce-model-grads')
    add_to_logging('backward-gather-model-params')
534
    add_to_logging('optimizer-copy-to-main-grad')
mohammad's avatar
mohammad committed
535
    add_to_logging('optimizer-unscale-and-check-inf')
536
    add_to_logging('optimizer-clip-main-grad')
537
538
    add_to_logging('optimizer-count-zeros')
    add_to_logging('optimizer-inner-step')
539
    add_to_logging('optimizer-copy-main-to-model-params')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
540
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
541
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
542

mohammad's avatar
mohammad committed
543
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
544
545
546
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
547
548
549
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
550
    # Tensorboard values.
551
552
553
554
555
556
557
558
559
560
    if writer and (iteration % args.tensorboard_log_interval == 0 ) and \
       is_last_rank():
        if args.log_learning_rate_to_tensorboard:
            writer.add_scalar('learning-rate', learning_rate, iteration)
            writer.add_scalar('learning-rate vs samples', learning_rate,
                              args.consumed_train_samples)
        if args.log_batch_size_to_tensorboard:
            writer.add_scalar('batch-size', batch_size, iteration)
            writer.add_scalar('batch-size vs samples', batch_size,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
561
        for key in loss_dict:
mohammad's avatar
mohammad committed
562
563
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
564
                              args.consumed_train_samples)
565
566
567
568
        if args.log_loss_scale_to_tensorboard:
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
                              args.consumed_train_samples)
569
570
571
572
        if args.log_world_size_to_tensorboard:
            writer.add_scalar('world-size', args.world_size, iteration)
            writer.add_scalar('world-size vs samples', args.world_size,
                              args.consumed_train_samples)
573
574
575
576
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
577
578
579
        if num_zeros_in_grad is not None:
            writer.add_scalar('num-zeros', num_zeros_in_grad, iteration)
            writer.add_scalar('num-zeros vs samples', num_zeros_in_grad,
Rewon Child's avatar
Rewon Child committed
580
                              args.consumed_train_samples)
mohammad's avatar
mohammad committed
581
582
583
584
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
585
586
587
        if args.log_timers_to_tensorboard:
            timers.write(timers_to_log, writer, iteration,
                         normalizer=total_iterations)
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
        if args.log_memory_to_tensorboard:
            mem_stats = torch.cuda.memory_stats()
            writer.add_scalar(
                "mem-reserved-bytes",
                mem_stats["reserved_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-bytes",
                mem_stats["allocated_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-count",
                mem_stats["allocation.all.current"],
                iteration,
            )
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
605
606

    if iteration % args.log_interval == 0:
607
        elapsed_time = timers('interval-time').elapsed()
mohammad's avatar
mohammad committed
608
        elapsed_time_per_iteration = elapsed_time / total_iterations
mshoeybi's avatar
mshoeybi committed
609
        if writer:
610
611
612
            if args.log_timers_to_tensorboard:
                writer.add_scalar('iteration-time',
                                  elapsed_time_per_iteration, iteration)
613
614
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
615
        log_string += ' consumed samples: {:12d} |'.format(
616
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
617
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
618
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
619
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
620
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
621
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
622
623
624
625
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
626
627
628
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
629
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
630
631
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
632
633
        if num_zeros_in_grad is not None:
            log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
mohammad's avatar
mohammad committed
634
635
        if params_norm is not None:
            log_string += ' params norm: {:.3f} |'.format(params_norm)
mohammad's avatar
mohammad committed
636
637
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
638
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
639
640
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
641
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
642
        total_loss_dict[nan_iters_key] = 0
643
        print_rank_last(log_string)
644
645
646
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
647
648
649
650
651
652
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


653
def save_checkpoint_and_time(iteration, model, optimizer, opt_param_scheduler):
654
655
656
657
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
658
    timers('save-checkpoint').start()
659
    save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
660
    torch.distributed.barrier()
661
662
    timers('save-checkpoint').stop()
    timers.log(['save-checkpoint'])
663
664


665
def train(forward_step_func, model, optimizer, opt_param_scheduler,
666
667
          train_data_iterator, valid_data_iterator,
          process_non_loss_data_func):
668
    """Train the model function."""
Mohammad's avatar
Mohammad committed
669
670
    args = get_args()
    timers = get_timers()
671

672
673
674
    # Write args to tensorboard
    write_args_to_tensorboard()

675
    # Turn on training mode which enables dropout.
676
677
    for model_module in model:
        model_module.train()
678
679
680
681
682
683
684

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

685
    timers('interval-time').start()
686
    print_datetime('before the start of training step')
687
688
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
689
        update_num_microbatches(args.consumed_train_samples)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
690
        args.curr_iteration = iteration
691
692
693
694
695
        loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
            train_step(forward_step_func,
                       train_data_iterator,
                       model,
                       optimizer,
Lawrence McAfee's avatar
Lawrence McAfee committed
696
                       opt_param_scheduler)
697
        iteration += 1
698
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
699
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
700
                                       get_num_microbatches()
701
702

        # Logging.
703
        loss_scale = optimizer.get_loss_scale().item()
704
705
706
        params_norm = None
        if args.log_params_norm:
            params_norm = calc_params_l2_norm(model)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
707
708
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
709
                                          iteration, loss_scale,
710
                                          report_memory_flag, skipped_iter,
711
                                          grad_norm, params_norm, num_zeros_in_grad)
712
713

        # Autoresume
714
715
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
716
            check_adlr_autoresume_termination(iteration, model, optimizer,
717
                                              opt_param_scheduler)
718
719
720
721
722
723

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
724
                                       valid_data_iterator, model,
725
726
                                       iteration, process_non_loss_data_func,
                                       False)
727

728
729
        # Checkpointing
        saved_checkpoint = False
730
731
732
733
        if args.exit_signal_handler:
            signal_handler = get_signal_handler()
            if any(signal_handler.signals_received()):
                save_checkpoint_and_time(iteration, model, optimizer,
734
                                         opt_param_scheduler)
735
736
737
                print_datetime('exiting program after receiving SIGTERM.')
                sys.exit()

738
739
740
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
741
                                     opt_param_scheduler)
742
743
            saved_checkpoint = True

744
745
746
747
748
749
750
751
752
753
754
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
755
                                             opt_param_scheduler)
756
                print_datetime('exiting program after {} minutes'.format(train_time))
757
758
                sys.exit()

759
        # Exiting based on iterations
760
        if args.exit_interval and iteration % args.exit_interval == 0:
761
762
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
763
                                         opt_param_scheduler)
764
            torch.distributed.barrier()
765
            print_datetime('exiting program at iteration {}'.format(iteration))
Mohammad's avatar
Mohammad committed
766
            sys.exit()
767

768

mohammad's avatar
mohammad committed
769
    return iteration
770
771


772
773
774
775
776
def evaluate(forward_step_func,
             data_iterator,
             model,
             process_non_loss_data_func,
             verbose=False):
777
    """Evaluation."""
Mohammad's avatar
Mohammad committed
778
    args = get_args()
779

Vijay Korthikanti's avatar
Vijay Korthikanti committed
780
781
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
        compute_feature_bank(model)
782

783
    # Turn on evaluation mode which disables dropout.
784
785
    for model_module in model:
        model_module.eval()
786
787
788
789
790
791
792
793
794
795

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
796

797
            forward_backward_func = get_forward_backward_func()
798
799
800
801
            loss_dicts = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True)

802
            # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
803
            if args.empty_unused_memory_level >= 1:
804
805
                torch.cuda.empty_cache()

806
807
808
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                # Reduce across processes.
                for loss_dict in loss_dicts:
809
                    for key in loss_dict:
810
811
                        total_loss_dict[key] = total_loss_dict.get(
                            key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
812

813
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
814
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
815
                                           * get_num_microbatches()
816
817
818
819
820
821
        collected_non_loss_data = None
        if process_non_loss_data_func is not None and is_last_rank():
            collected_non_loss_data = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True, collect_non_loss_data=True)

822
    # Move model back to the train mode.
823
824
    for model_module in model:
        model_module.train()
825
826

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
827
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
828

829
    return total_loss_dict, collected_non_loss_data
830
831
832

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
833
834
                               iteration, process_non_loss_data_func,
                               verbose=False):
835
    """Helper function to evaluate and dump results on screen."""
836
    args = get_args()
Mohammad's avatar
Mohammad committed
837
838
    writer = get_tensorboard_writer()

839
840
841
    total_loss_dict, collected_non_loss_data = evaluate(
        forward_step_func, data_iterator, model,
        process_non_loss_data_func, verbose)
842
843
844
845
846
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
mshoeybi's avatar
mshoeybi committed
847
        if writer:
mohammad's avatar
mohammad committed
848
            writer.add_scalar('{} validation'.format(key),
849
850
                              total_loss_dict[key].item(),
                              iteration)
mohammad's avatar
mohammad committed
851
            writer.add_scalar('{} validation vs samples'.format(key),
852
853
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
854
            if args.log_validation_ppl_to_tensorboard:
mohammad's avatar
mohammad committed
855
                writer.add_scalar('{} validation ppl'.format(key), ppl,
856
                                  iteration)
mohammad's avatar
mohammad committed
857
                writer.add_scalar('{} validation ppl vs samples'.format(key),
858
                                  ppl, args.consumed_train_samples)
859

860
861
862
    if process_non_loss_data_func is not None and writer and is_last_rank():
        process_non_loss_data_func(collected_non_loss_data, iteration, writer)

863
    length = len(string) + 1
864
865
866
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
867
868


Vijay Korthikanti's avatar
Vijay Korthikanti committed
869
def cyclic_iter(iter):
870
    while True:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
871
        for x in iter:
872
873
            yield x

874
875
876
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
877
    args = get_args()
878

879
880
881
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
882
883
884

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
885
886
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
887
        args.consumed_train_samples = args.iteration * args.global_batch_size
888
    if args.iteration > 0 and args.consumed_valid_samples == 0:
889
890
891
        if args.train_samples is None:
            args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
                args.eval_iters * args.global_batch_size
892

893
    # Data loader only on rank 0 of each model parallel group.
894
    if mpu.get_tensor_model_parallel_rank() == 0:
895
896

        # Number of train/valid/test samples.
897
898
899
900
901
902
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
903
        test_iters = args.eval_iters
904
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
905
906
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
907
908
909
910
911
912
913
914
915
916
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
917
918
919
920
921
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
922
923
924
925
926
927
928
929
930
931
932
933
934

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
935
936
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
937
938
939
940
941
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

    # Build iterators.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
942
943
944
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic']

945
    if train_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
946
947
        train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(train_dataloader))
948
949
950
    else:
        train_data_iterator = None

951
    if valid_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
952
953
        valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(valid_dataloader))
954
    else:
955
        valid_data_iterator = None
956

957
    if test_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
958
959
        test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
                             else iter(cyclic_iter(test_dataloader))
960
961
962
    else:
        test_data_iterator = None

963
    return train_data_iterator, valid_data_iterator, test_data_iterator