training.py 39.5 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()
24
25
26
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

Neel Kant's avatar
Neel Kant committed
27
from megatron import get_args
28
from megatron import get_signal_handler
Mohammad's avatar
Mohammad committed
29
30
from megatron import get_timers
from megatron import get_tensorboard_writer
31
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
32
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
33
from megatron import is_last_rank
mohammad's avatar
mohammad committed
34
from megatron import update_num_microbatches
35
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
36
from megatron import print_rank_0
37
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
38
39
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
40
from megatron.model import Float16Module
41
from megatron.model import ModelType
mohammad's avatar
mohammad committed
42
from megatron.optimizer import get_megatron_optimizer
Mohammad's avatar
Mohammad committed
43
from megatron.initialize import initialize_megatron
44
from megatron.initialize import write_args_to_tensorboard
45
from megatron.optimizer_param_scheduler import OptimizerParamScheduler
46
47
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
48
from megatron.utils import unwrap_model
Vijay Korthikanti's avatar
Vijay Korthikanti committed
49
from megatron.data.data_samplers import build_pretraining_data_loader
mohammad's avatar
mohammad committed
50
from megatron.utils import calc_params_l2_norm
51
from megatron.schedules import get_forward_backward_func
52
from megatron.utils import report_memory
53
from megatron.model.vision.knn_monitor import compute_feature_bank
54

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
55

56
57
58
59
60
61
62
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


63
def pretrain(train_valid_test_dataset_provider,
64
             model_provider,
65
             model_type,
66
             forward_step_func,
67
             process_non_loss_data_func=None,
68
             extra_args_provider=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
69
             args_defaults={}):
70
71
72
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
73
74
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
75
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
76
        4) train the modle using the forward_step_func.
77
78

    Arguments:
79
80
81
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
82
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
83
        model_type: an enum that specifies the type of model being trained.
Mohammad's avatar
Mohammad committed
84
85
86
87
88
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
89
90
91
92
        process_non_loss_data_func: a function to post process outputs of the
            network. It can be used for dumping output tensors (e.g images) to
            tensorboard. It takes `collected data`(list of tensors),
            `current iteration index` and `tensorboard writer` as arguments.
Mohammad's avatar
Mohammad committed
93
94
95
96
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
97
98
    """

99
    # Initalize and get arguments, timers, and Tensorboard writer.
100
101
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
102

103
104
105
106
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
107
    start_time_tensor = torch.cuda.DoubleTensor([_TRAIN_START_TIME])
108
109
110
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
111
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
112
113
114
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

115
    args = get_args()
Mohammad's avatar
Mohammad committed
116
    timers = get_timers()
117
118

    # Model, optimizer, and learning rate.
119
    timers('model-and-optimizer-setup').start()
120
    model, optimizer, opt_param_scheduler = setup_model_and_optimizer(model_provider,
121
                                                               model_type)
122
    timers('model-and-optimizer-setup').stop()
123
124
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
125
126

    # Data stuff.
127
128
    timers('train/valid/test-data-iterators-setup').start()
    if args.virtual_pipeline_model_parallel_size is not None:
129
        all_data_iterators = [
130
131
132
            build_train_valid_test_data_iterators(train_valid_test_dataset_provider)
            for _ in range(len(model))
        ]
133
134
135
        train_data_iterator = [data_iterators[0] for data_iterators in all_data_iterators]
        valid_data_iterator = [data_iterators[1] for data_iterators in all_data_iterators]
        test_data_iterator = [data_iterators[2] for data_iterators in all_data_iterators]
136
137
138
139
140
    else:
        train_data_iterator, valid_data_iterator, test_data_iterator \
            = build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
    timers('train/valid/test-data-iterators-setup').stop()
mshoeybi's avatar
mshoeybi committed
141
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
142
143

    # Print setup timing.
144
145
    print_rank_0('done with setup ...')
    timers.log(['model-and-optimizer-setup', 'train/valid/test-data-iterators-setup'])
Mohammad's avatar
Mohammad committed
146
    print_rank_0('training ...')
147
148

    iteration = 0
149
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
150
        iteration = train(forward_step_func,
151
                          model, optimizer, opt_param_scheduler,
152
153
                          train_data_iterator, valid_data_iterator,
                          process_non_loss_data_func)
154
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
155

156
157
158
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
159
                                   valid_data_iterator, model,
160
161
                                   iteration, process_non_loss_data_func,
                                   False)
162
163

    if args.save and iteration != 0:
164
        save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
165
166
167
168
169
170

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
171
172
                                   0, process_non_loss_data_func,
                                   True)
173

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
190
191
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
192
193
            iterations += 1
        # Reset
194
        update_num_microbatches(0, consistency_check=False)
195
196
197
198
199
200
201
202
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

203

204
def get_model(model_provider_func, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=True):
205
    """Build the model."""
Mohammad's avatar
Mohammad committed
206
    args = get_args()
207
    args.model_type = model_type
208

209
    # Build model.
210
211
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
       args.virtual_pipeline_model_parallel_size is not None:
212
213
        assert model_type != ModelType.encoder_and_decoder, \
            "Interleaved schedule not supported for model with both encoder and decoder"
214
215
216
        model = []
        for i in range(args.virtual_pipeline_model_parallel_size):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
217
218
219
            # Set pre_process and post_process only after virtual rank is set.
            pre_process = mpu.is_pipeline_first_stage()
            post_process = mpu.is_pipeline_last_stage()
220
            this_model = model_provider_func(
221
222
223
                pre_process=pre_process,
                post_process=post_process
            )
224
            this_model.model_type = model_type
225
            model.append(this_model)
226
    else:
227
228
        pre_process = mpu.is_pipeline_first_stage()
        post_process = mpu.is_pipeline_last_stage()
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
        add_encoder = True
        add_decoder = True
        if model_type == ModelType.encoder_and_decoder:
            if mpu.get_pipeline_model_parallel_world_size() > 1:
                assert args.pipeline_model_parallel_split_rank is not None, \
                    "Split rank needs to be specified for model with both encoder and decoder"
                rank = mpu.get_pipeline_model_parallel_rank()
                split_rank = args.pipeline_model_parallel_split_rank
                world_size = mpu.get_pipeline_model_parallel_world_size()
                pre_process = rank == 0 or rank == split_rank
                post_process = (rank == (split_rank - 1)) or (
                        rank == (world_size - 1))
                add_encoder = mpu.is_pipeline_stage_before_split()
                add_decoder = mpu.is_pipeline_stage_after_split()
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process,
                add_encoder=add_encoder,
                add_decoder=add_decoder)
        else:
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process
            )
        model.model_type = model_type
254

255
256
    if not isinstance(model, list):
        model = [model]
257

258
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
259
260
261
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
262
263
264
    for model_module in model:
        for param in model_module.parameters():
            mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
265

266
267
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
268
        print(' > number of parameters on (tensor, pipeline) '
269
              'model parallel rank ({}, {}): {}'.format(
270
271
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
272
273
            sum([sum([p.nelement() for p in model_module.parameters()])
                 for model_module in model])), flush=True)
274
275

    # GPU allocation.
276
277
    for model_module in model:
        model_module.cuda(torch.cuda.current_device())
278
279

    # Fp16 conversion.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
280
281
    if args.fp16 or args.bf16:
        model = [Float16Module(model_module, args) for model_module in model]
282

283
284
285
286
287
288
    if wrap_with_ddp:
        if args.DDP_impl == 'torch':
            i = torch.cuda.current_device()
            model = [torchDDP(model_module, device_ids=[i], output_device=i,
                              process_group=mpu.get_data_parallel_group())
                     for model_module in model]
289

290
291
292
293
294
        elif args.DDP_impl == 'local':
            model = [LocalDDP(model_module,
                              args.accumulate_allreduce_grads_in_fp32,
                              args.use_contiguous_buffers_in_local_ddp)
                     for model_module in model]
295
296
297
298
            # broad cast params from data parallel src rank to other data parallel ranks
            if args.data_parallel_random_init:
                for model_module in model:
                    model_module.broadcast_params()
299
300
301
        else:
            raise NotImplementedError('Unknown DDP implementation specified: '
                                      '{}. Exiting.'.format(args.DDP_impl))
302

303
    return model
304
305


306
def get_optimizer_param_scheduler(optimizer):
307
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
308
    args = get_args()
309

310
311
312
313
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
Vijay Korthikanti's avatar
Vijay Korthikanti committed
314
315
        lr_decay_steps = args.lr_decay_iters * args.global_batch_size
        wd_incr_steps = args.train_iters * args.global_batch_size
316
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
317
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
318
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
319
            lr_warmup_steps = args.lr_warmup_iters * args.global_batch_size
320
321
322
323
324
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
325
        update_train_iters(args)
326
327
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
Vijay Korthikanti's avatar
Vijay Korthikanti committed
328
329
        lr_decay_steps = args.lr_decay_samples
        wd_incr_steps = args.train_samples
330
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
331
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
332
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
333
            lr_warmup_steps = args.lr_warmup_samples
334
    else:
335
336
337
        raise Exception(
            'either train-iters or train-samples should be provided.')

338
    opt_param_scheduler = OptimizerParamScheduler(
339
        optimizer,
340
        max_lr=args.lr,
341
        min_lr=args.min_lr,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
342
343
344
        lr_warmup_steps=lr_warmup_steps,
        lr_decay_steps=lr_decay_steps,
        lr_decay_style=args.lr_decay_style,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
345
346
        start_wd=args.start_weight_decay,
        end_wd=args.end_weight_decay,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
347
        wd_incr_steps=wd_incr_steps,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
348
        wd_incr_style=args.weight_decay_incr_style,
349
350
        use_checkpoint_opt_param_scheduler=args.use_checkpoint_opt_param_scheduler,
        override_opt_param_scheduler=args.override_opt_param_scheduler)
351

352
    return opt_param_scheduler
353
354


355
356
357
358
359
def setup_model_and_optimizer(model_provider_func,
                              model_type,
                              no_wd_decay_cond=None,
                              scale_lr_cond=None,
                              lr_mult=1.0):
360
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
361
    args = get_args()
362

363
    model = get_model(model_provider_func, model_type)
364
    unwrapped_model = unwrap_model(model,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
365
                                   (torchDDP, LocalDDP, Float16Module))
Lawrence McAfee's avatar
Lawrence McAfee committed
366

367
    optimizer = get_megatron_optimizer(model, no_wd_decay_cond,
368
                                       scale_lr_cond, lr_mult)
369
    opt_param_scheduler = get_optimizer_param_scheduler(optimizer)
370
371

    if args.load is not None:
372
373
374
375
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
376
        timers('load-checkpoint').start()
377
        args.iteration = load_checkpoint(model, optimizer, opt_param_scheduler)
378
        torch.distributed.barrier()
379
380
        timers('load-checkpoint').stop()
        timers.log(['load-checkpoint'])
381
382
383
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
384
    # We only support local DDP with multiple micro-batches.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
385
    if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1:
mohammad's avatar
mohammad committed
386
387
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
388
    # get model without FP16 and/or TorchDDP wrappers
Mostofa Patwary's avatar
Mostofa Patwary committed
389
390
    if args.iteration == 0 and len(unwrapped_model) == 1 \
        and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
Mostofa Patwary's avatar
Mostofa Patwary committed
391
        print_rank_0("Initializing ICT from pretrained BERT model")
Mostofa Patwary's avatar
Mostofa Patwary committed
392
        unwrapped_model[0].init_state_dict_from_bert()
Mostofa Patwary's avatar
Mostofa Patwary committed
393
394
        if args.fp16:
            optimizer.reload_model_params()
Neel Kant's avatar
Neel Kant committed
395

396
    return model, optimizer, opt_param_scheduler
397
398


399
def train_step(forward_step_func, data_iterator,
Lawrence McAfee's avatar
Lawrence McAfee committed
400
               model, optimizer, opt_param_scheduler):
401
402
403
404
405
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
406
    if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_local_ddp:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
407
408
        for partition in model:
            partition.zero_grad_buffer()
409
    optimizer.zero_grad()
410

411
    # Forward pass.
412
    forward_backward_func = get_forward_backward_func()
413
414
415
    losses_reduced = forward_backward_func(
        forward_step_func, data_iterator, model,
        optimizer, timers, forward_only=False)
416

417
    # Empty unused memory.
Lawrence McAfee's avatar
Lawrence McAfee committed
418
    if args.empty_unused_memory_level >= 1:
419
420
        torch.cuda.empty_cache()

421
    # Reduce gradients.
422
    optimizer.reduce_model_grads(args, timers)
423

Lawrence McAfee's avatar
Lawrence McAfee committed
424
    # Vision gradients.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
425
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
426
427
428
429
        unwrapped_model = unwrap_model(model[0],
                                       (torchDDP, LocalDDP, Float16Module))
        unwrapped_model.cancel_gradients_last_layer(args.curr_iteration)

430
431
    # Update parameters.
    timers('optimizer').start()
Lawrence McAfee's avatar
Lawrence McAfee committed
432
    update_successful, grad_norm, num_zeros_in_grad = optimizer.step(args, timers)
433
434
    timers('optimizer').stop()

435
    # Gather params.
436
    if update_successful:
Lawrence McAfee's avatar
Lawrence McAfee committed
437
        optimizer.gather_model_params(args, timers)
438

Lawrence McAfee's avatar
Lawrence McAfee committed
439
    # Vision momentum.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
440
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
441
442
443
444
        unwrapped_model = unwrap_model(model[0],
                                       (torchDDP, LocalDDP, Float16Module))
        unwrapped_model.update_momentum(args.curr_iteration)

445
    # Update learning rate.
446
    if update_successful:
447
448
449
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
450
        opt_param_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
451
        skipped_iter = 0
452
453
454
    else:
        skipped_iter = 1

455
    # Empty unused memory.
Lawrence McAfee's avatar
Lawrence McAfee committed
456
    if args.empty_unused_memory_level >= 2:
457
458
        torch.cuda.empty_cache()

459
    if mpu.is_pipeline_last_stage(ignore_virtual=True):
460
461
462
463
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
464
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
465
466
        return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
    return {}, skipped_iter, grad_norm, num_zeros_in_grad
467
468


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
469
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
470
                 loss_scale, report_memory_flag, skipped_iter,
471
                 grad_norm, params_norm, num_zeros_in_grad):
Mohammad's avatar
Mohammad committed
472
473
474
475
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
476

mohammad's avatar
mohammad committed
477
478
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
479
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
480
481
482
483
484
485
486
487
488
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
489
490
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
491
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
492
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
493
    for key in loss_dict:
mohammad's avatar
mohammad committed
494
        if not skipped_iter:
495
496
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
497
498
499
500
501
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
502
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
503
504
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
505
506
507

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
508

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
509
510
511
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
512
513
514
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
515
    add_to_logging('forward-backward-send-forward-backward-recv')
516
517
518
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
519
    add_to_logging('backward-send-forward-recv')
520
    add_to_logging('backward-send-backward-recv')
521
    add_to_logging('backward-params-all-reduce')
522
    add_to_logging('backward-embedding-all-reduce')
523
    add_to_logging('optimizer-copy-to-main-grad')
mohammad's avatar
mohammad committed
524
    add_to_logging('optimizer-unscale-and-check-inf')
525
    add_to_logging('optimizer-clip-main-grad')
526
527
    add_to_logging('optimizer-count-zeros')
    add_to_logging('optimizer-inner-step')
528
    add_to_logging('optimizer-copy-main-to-model-params')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
529
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
530
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
531

mohammad's avatar
mohammad committed
532
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
533
534
535
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
536
537
538
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
539
    # Tensorboard values.
540
541
542
543
544
545
546
547
548
549
    if writer and (iteration % args.tensorboard_log_interval == 0 ) and \
       is_last_rank():
        if args.log_learning_rate_to_tensorboard:
            writer.add_scalar('learning-rate', learning_rate, iteration)
            writer.add_scalar('learning-rate vs samples', learning_rate,
                              args.consumed_train_samples)
        if args.log_batch_size_to_tensorboard:
            writer.add_scalar('batch-size', batch_size, iteration)
            writer.add_scalar('batch-size vs samples', batch_size,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
550
        for key in loss_dict:
mohammad's avatar
mohammad committed
551
552
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
553
                              args.consumed_train_samples)
554
555
556
557
        if args.log_loss_scale_to_tensorboard:
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
                              args.consumed_train_samples)
558
559
560
561
        if args.log_world_size_to_tensorboard:
            writer.add_scalar('world-size', args.world_size, iteration)
            writer.add_scalar('world-size vs samples', args.world_size,
                              args.consumed_train_samples)
562
563
564
565
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
566
567
568
        if num_zeros_in_grad is not None:
            writer.add_scalar('num-zeros', num_zeros_in_grad, iteration)
            writer.add_scalar('num-zeros vs samples', num_zeros_in_grad,
Rewon Child's avatar
Rewon Child committed
569
                              args.consumed_train_samples)
mohammad's avatar
mohammad committed
570
571
572
573
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
574
575
576
        if args.log_timers_to_tensorboard:
            timers.write(timers_to_log, writer, iteration,
                         normalizer=total_iterations)
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
        if args.log_memory_to_tensorboard:
            mem_stats = torch.cuda.memory_stats()
            writer.add_scalar(
                "mem-reserved-bytes",
                mem_stats["reserved_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-bytes",
                mem_stats["allocated_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-count",
                mem_stats["allocation.all.current"],
                iteration,
            )
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
594
595

    if iteration % args.log_interval == 0:
596
        elapsed_time = timers('interval-time').elapsed()
mohammad's avatar
mohammad committed
597
        elapsed_time_per_iteration = elapsed_time / total_iterations
mshoeybi's avatar
mshoeybi committed
598
        if writer:
599
600
601
            if args.log_timers_to_tensorboard:
                writer.add_scalar('iteration-time',
                                  elapsed_time_per_iteration, iteration)
602
603
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
604
        log_string += ' consumed samples: {:12d} |'.format(
605
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
606
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
607
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
608
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
609
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
610
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
611
612
613
614
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
615
616
617
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
618
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
619
620
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
621
622
        if num_zeros_in_grad is not None:
            log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
mohammad's avatar
mohammad committed
623
624
        if params_norm is not None:
            log_string += ' params norm: {:.3f} |'.format(params_norm)
mohammad's avatar
mohammad committed
625
626
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
627
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
628
629
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
630
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
631
        total_loss_dict[nan_iters_key] = 0
632
        print_rank_last(log_string)
633
634
635
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
636
637
638
639
640
641
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


642
def save_checkpoint_and_time(iteration, model, optimizer, opt_param_scheduler):
643
644
645
646
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
647
    timers('save-checkpoint').start()
648
    save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
649
    torch.distributed.barrier()
650
651
    timers('save-checkpoint').stop()
    timers.log(['save-checkpoint'])
652
653


654
def train(forward_step_func, model, optimizer, opt_param_scheduler,
655
656
          train_data_iterator, valid_data_iterator,
          process_non_loss_data_func):
657
    """Train the model function."""
Mohammad's avatar
Mohammad committed
658
659
    args = get_args()
    timers = get_timers()
660

661
662
663
    # Write args to tensorboard
    write_args_to_tensorboard()

664
    # Turn on training mode which enables dropout.
665
666
    for model_module in model:
        model_module.train()
667
668
669
670
671
672
673

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

674
    timers('interval-time').start()
675
    print_datetime('before the start of training step')
676
677
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
678
        update_num_microbatches(args.consumed_train_samples)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
679
        args.curr_iteration = iteration
680
681
682
683
684
        loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
            train_step(forward_step_func,
                       train_data_iterator,
                       model,
                       optimizer,
Lawrence McAfee's avatar
Lawrence McAfee committed
685
                       opt_param_scheduler)
686
        iteration += 1
687
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
688
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
689
                                       get_num_microbatches()
690
691

        # Logging.
692
        loss_scale = optimizer.get_loss_scale().item()
693
694
695
        params_norm = None
        if args.log_params_norm:
            params_norm = calc_params_l2_norm(model)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
696
697
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
698
                                          iteration, loss_scale,
699
                                          report_memory_flag, skipped_iter,
700
                                          grad_norm, params_norm, num_zeros_in_grad)
701
702

        # Autoresume
703
704
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
705
            check_adlr_autoresume_termination(iteration, model, optimizer,
706
                                              opt_param_scheduler)
707
708
709
710
711
712

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
713
                                       valid_data_iterator, model,
714
715
                                       iteration, process_non_loss_data_func,
                                       False)
716

717
718
        # Checkpointing
        saved_checkpoint = False
719
720
721
722
        if args.exit_signal_handler:
            signal_handler = get_signal_handler()
            if any(signal_handler.signals_received()):
                save_checkpoint_and_time(iteration, model, optimizer,
723
                                         opt_param_scheduler)
724
725
726
                print_datetime('exiting program after receiving SIGTERM.')
                sys.exit()

727
728
729
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
730
                                     opt_param_scheduler)
731
732
            saved_checkpoint = True

733
734
735
736
737
738
739
740
741
742
743
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
744
                                             opt_param_scheduler)
745
                print_datetime('exiting program after {} minutes'.format(train_time))
746
747
                sys.exit()

748
        # Exiting based on iterations
749
        if args.exit_interval and iteration % args.exit_interval == 0:
750
751
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
752
                                         opt_param_scheduler)
753
            torch.distributed.barrier()
754
            print_datetime('exiting program at iteration {}'.format(iteration))
Mohammad's avatar
Mohammad committed
755
            sys.exit()
756

757

mohammad's avatar
mohammad committed
758
    return iteration
759
760


761
762
763
764
765
def evaluate(forward_step_func,
             data_iterator,
             model,
             process_non_loss_data_func,
             verbose=False):
766
    """Evaluation."""
Mohammad's avatar
Mohammad committed
767
    args = get_args()
768

Vijay Korthikanti's avatar
Vijay Korthikanti committed
769
770
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
        compute_feature_bank(model)
771

772
    # Turn on evaluation mode which disables dropout.
773
774
    for model_module in model:
        model_module.eval()
775
776
777
778
779
780
781
782
783
784

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
785

786
            forward_backward_func = get_forward_backward_func()
787
788
789
790
            loss_dicts = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True)

791
            # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
792
            if args.empty_unused_memory_level >= 1:
793
794
                torch.cuda.empty_cache()

795
796
797
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                # Reduce across processes.
                for loss_dict in loss_dicts:
798
                    for key in loss_dict:
799
800
                        total_loss_dict[key] = total_loss_dict.get(
                            key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
801

802
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
803
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
804
                                           * get_num_microbatches()
805
806
807
808
809
810
        collected_non_loss_data = None
        if process_non_loss_data_func is not None and is_last_rank():
            collected_non_loss_data = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True, collect_non_loss_data=True)

811
    # Move model back to the train mode.
812
813
    for model_module in model:
        model_module.train()
814
815

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
816
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
817

818
    return total_loss_dict, collected_non_loss_data
819
820
821

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
822
823
                               iteration, process_non_loss_data_func,
                               verbose=False):
824
    """Helper function to evaluate and dump results on screen."""
825
    args = get_args()
Mohammad's avatar
Mohammad committed
826
827
    writer = get_tensorboard_writer()

828
829
830
    total_loss_dict, collected_non_loss_data = evaluate(
        forward_step_func, data_iterator, model,
        process_non_loss_data_func, verbose)
831
832
833
834
835
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
mshoeybi's avatar
mshoeybi committed
836
        if writer:
mohammad's avatar
mohammad committed
837
            writer.add_scalar('{} validation'.format(key),
838
839
                              total_loss_dict[key].item(),
                              iteration)
mohammad's avatar
mohammad committed
840
            writer.add_scalar('{} validation vs samples'.format(key),
841
842
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
843
            if args.log_validation_ppl_to_tensorboard:
mohammad's avatar
mohammad committed
844
                writer.add_scalar('{} validation ppl'.format(key), ppl,
845
                                  iteration)
mohammad's avatar
mohammad committed
846
                writer.add_scalar('{} validation ppl vs samples'.format(key),
847
                                  ppl, args.consumed_train_samples)
848

849
850
851
    if process_non_loss_data_func is not None and writer and is_last_rank():
        process_non_loss_data_func(collected_non_loss_data, iteration, writer)

852
    length = len(string) + 1
853
854
855
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
856
857


Vijay Korthikanti's avatar
Vijay Korthikanti committed
858
def cyclic_iter(iter):
859
    while True:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
860
        for x in iter:
861
862
            yield x

863
864
865
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
866
    args = get_args()
867

868
869
870
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
871
872
873

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
874
875
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
876
        args.consumed_train_samples = args.iteration * args.global_batch_size
877
    if args.iteration > 0 and args.consumed_valid_samples == 0:
878
879
880
        if args.train_samples is None:
            args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
                args.eval_iters * args.global_batch_size
881

882
    # Data loader only on rank 0 of each model parallel group.
883
    if mpu.get_tensor_model_parallel_rank() == 0:
884
885

        # Number of train/valid/test samples.
886
887
888
889
890
891
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
892
        test_iters = args.eval_iters
893
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
894
895
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
896
897
898
899
900
901
902
903
904
905
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
906
907
908
909
910
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
911
912
913
914
915
916
917
918
919
920
921
922
923

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
924
925
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
926
927
928
929
930
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

    # Build iterators.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
931
932
933
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic']

934
    if train_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
935
936
        train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(train_dataloader))
937
938
939
    else:
        train_data_iterator = None

940
    if valid_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
941
942
        valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(valid_dataloader))
943
    else:
944
        valid_data_iterator = None
945

946
    if test_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
947
948
        test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
                             else iter(cyclic_iter(test_dataloader))
949
950
951
    else:
        test_data_iterator = None

952
    return train_data_iterator, valid_data_iterator, test_data_iterator