training.py 37.7 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()

25
26
27
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

Neel Kant's avatar
Neel Kant committed
28
from megatron import get_args
29
from megatron import get_signal_handler
Mohammad's avatar
Mohammad committed
30
31
from megatron import get_timers
from megatron import get_tensorboard_writer
32
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
33
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
34
from megatron import is_last_rank
mohammad's avatar
mohammad committed
35
from megatron import update_num_microbatches
36
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
37
from megatron import print_rank_0
38
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
39
40
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
41
from megatron.model import Float16Module
42
from megatron.model import ModelType
mohammad's avatar
mohammad committed
43
from megatron.optimizer import get_megatron_optimizer
Mohammad's avatar
Mohammad committed
44
from megatron.initialize import initialize_megatron
45
from megatron.initialize import write_args_to_tensorboard
46
47
48
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
49
from megatron.utils import unwrap_model
Vijay Korthikanti's avatar
Vijay Korthikanti committed
50
from megatron.data.data_samplers import build_pretraining_data_loader
mohammad's avatar
mohammad committed
51
from megatron.utils import calc_params_l2_norm
52
from megatron.schedules import get_forward_backward_func
53
from megatron.utils import report_memory
54
55


56
57
58
59
60
61
62
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


63
def pretrain(train_valid_test_dataset_provider,
64
             model_provider,
65
             model_type,
66
67
             forward_step_func,
             extra_args_provider=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
68
             args_defaults={}):
69
70
71
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
72
73
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
74
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
75
        4) train the modle using the forward_step_func.
76
77

    Arguments:
78
79
80
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
81
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
82
        model_type: an enum that specifies the type of model being trained.
Mohammad's avatar
Mohammad committed
83
84
85
86
87
88
89
90
91
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
92
93
    """

94
    # Initalize and get arguments, timers, and Tensorboard writer.
95
96
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
97

98
99
100
101
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
102
    start_time_tensor = torch.cuda.DoubleTensor([_TRAIN_START_TIME])
103
104
105
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
106
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
107
108
109
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

110
    args = get_args()
Mohammad's avatar
Mohammad committed
111
    timers = get_timers()
112
113

    # Model, optimizer, and learning rate.
114
    timers('model-and-optimizer-setup').start()
115
116
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider,
                                                               model_type)
117
    timers('model-and-optimizer-setup').stop()
118
119
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
120
121

    # Data stuff.
122
123
    timers('train/valid/test-data-iterators-setup').start()
    if args.virtual_pipeline_model_parallel_size is not None:
124
        all_data_iterators = [
125
126
127
            build_train_valid_test_data_iterators(train_valid_test_dataset_provider)
            for _ in range(len(model))
        ]
128
129
130
        train_data_iterator = [data_iterators[0] for data_iterators in all_data_iterators]
        valid_data_iterator = [data_iterators[1] for data_iterators in all_data_iterators]
        test_data_iterator = [data_iterators[2] for data_iterators in all_data_iterators]
131
132
133
134
135
    else:
        train_data_iterator, valid_data_iterator, test_data_iterator \
            = build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
    timers('train/valid/test-data-iterators-setup').stop()
mshoeybi's avatar
mshoeybi committed
136
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
137
138

    # Print setup timing.
139
140
    print_rank_0('done with setup ...')
    timers.log(['model-and-optimizer-setup', 'train/valid/test-data-iterators-setup'])
Mohammad's avatar
Mohammad committed
141
    print_rank_0('training ...')
142
143

    iteration = 0
zihanl's avatar
zihanl committed
144
145
146
    # if not args.run_dialog:
    if args.do_train and args.train_iters > 0:
        iteration = train(forward_step_func,
mohammad's avatar
mohammad committed
147
148
                          model, optimizer, lr_scheduler,
                          train_data_iterator, valid_data_iterator)
zihanl's avatar
zihanl committed
149
150
151
152
153
    print_datetime('after training is done')

    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
154
                                   valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
155
                                   iteration, False)
zihanl's avatar
zihanl committed
156
157
158
159
160
161
162
163

    if args.save and iteration != 0:
        save_checkpoint(iteration, model, optimizer, lr_scheduler)

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
164
                                   test_data_iterator, model,
Mohammad's avatar
Mohammad committed
165
                                   0, True)
zihanl's avatar
zihanl committed
166
  
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
183
184
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
185
186
            iterations += 1
        # Reset
187
        update_num_microbatches(0, consistency_check=False)
188
189
190
191
192
193
194
195
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

196

197
def get_model(model_provider_func, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=True):
198
    """Build the model."""
Mohammad's avatar
Mohammad committed
199
    args = get_args()
200
    args.model_type = model_type
201

202
    # Build model.
203
204
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
       args.virtual_pipeline_model_parallel_size is not None:
205
206
        assert model_type != ModelType.encoder_and_decoder, \
            "Interleaved schedule not supported for model with both encoder and decoder"
207
208
209
        model = []
        for i in range(args.virtual_pipeline_model_parallel_size):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
210
211
212
            # Set pre_process and post_process only after virtual rank is set.
            pre_process = mpu.is_pipeline_first_stage()
            post_process = mpu.is_pipeline_last_stage()
213
            this_model = model_provider_func(
214
215
216
                pre_process=pre_process,
                post_process=post_process
            )
217
            this_model.model_type = model_type
218
            model.append(this_model)
219
    else:
220
221
        pre_process = mpu.is_pipeline_first_stage()
        post_process = mpu.is_pipeline_last_stage()
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        add_encoder = True
        add_decoder = True
        if model_type == ModelType.encoder_and_decoder:
            if mpu.get_pipeline_model_parallel_world_size() > 1:
                assert args.pipeline_model_parallel_split_rank is not None, \
                    "Split rank needs to be specified for model with both encoder and decoder"
                rank = mpu.get_pipeline_model_parallel_rank()
                split_rank = args.pipeline_model_parallel_split_rank
                world_size = mpu.get_pipeline_model_parallel_world_size()
                pre_process = rank == 0 or rank == split_rank
                post_process = (rank == (split_rank - 1)) or (
                        rank == (world_size - 1))
                add_encoder = mpu.is_pipeline_stage_before_split()
                add_decoder = mpu.is_pipeline_stage_after_split()
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process,
                add_encoder=add_encoder,
                add_decoder=add_decoder)
        else:
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process
            )
        model.model_type = model_type
247

248
249
    if not isinstance(model, list):
        model = [model]
250

251
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
252
253
254
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
255
256
257
    for model_module in model:
        for param in model_module.parameters():
            mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
258

259
260
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
261
        print(' > number of parameters on (tensor, pipeline) '
262
              'model parallel rank ({}, {}): {}'.format(
263
264
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
265
266
            sum([sum([p.nelement() for p in model_module.parameters()])
                 for model_module in model])), flush=True)
267
268

    # GPU allocation.
269
270
    for model_module in model:
        model_module.cuda(torch.cuda.current_device())
271
272

    # Fp16 conversion.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
273
274
    if args.fp16 or args.bf16:
        model = [Float16Module(model_module, args) for model_module in model]
275

276
277
278
279
280
281
    if wrap_with_ddp:
        if args.DDP_impl == 'torch':
            i = torch.cuda.current_device()
            model = [torchDDP(model_module, device_ids=[i], output_device=i,
                              process_group=mpu.get_data_parallel_group())
                     for model_module in model]
282

283
284
285
286
287
        elif args.DDP_impl == 'local':
            model = [LocalDDP(model_module,
                              args.accumulate_allreduce_grads_in_fp32,
                              args.use_contiguous_buffers_in_local_ddp)
                     for model_module in model]
288

289
290
291
        else:
            raise NotImplementedError('Unknown DDP implementation specified: '
                                      '{}. Exiting.'.format(args.DDP_impl))
292

293
    return model
294
295


Mohammad's avatar
Mohammad committed
296
def get_learning_rate_scheduler(optimizer):
297
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
298
    args = get_args()
299

300
301
302
303
304
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
        decay_steps = args.lr_decay_iters * args.global_batch_size
305
306
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
307
308
        else:
            warmup_steps = args.lr_warmup_iters * args.global_batch_size
309
310
311
312
313
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
314
        update_train_iters(args)
315
316
317
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
        decay_steps = args.lr_decay_samples
318
319
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
320
321
        else:
            warmup_steps = args.lr_warmup_samples
322
    else:
323
324
325
        raise Exception(
            'either train-iters or train-samples should be provided.')

326
327
    lr_scheduler = AnnealingLR(
        optimizer,
328
        max_lr=args.lr,
329
        min_lr=args.min_lr,
330
331
        warmup_steps=warmup_steps,
        decay_steps=decay_steps,
332
        decay_style=args.lr_decay_style,
333
334
335
336
337
338
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


339
def setup_model_and_optimizer(model_provider_func, model_type):
340
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
341
    args = get_args()
342

343
    model = get_model(model_provider_func, model_type)
344

345
    unwrapped_model = unwrap_model(model,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
346
                                   (torchDDP, LocalDDP, Float16Module))
347
348
    optimizer = get_megatron_optimizer(unwrapped_model)

Mohammad's avatar
Mohammad committed
349
    lr_scheduler = get_learning_rate_scheduler(optimizer)
350
351

    if args.load is not None:
352
353
354
355
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
356
        timers('load-checkpoint').start()
357
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
358
359
        # need to set train_samples to None
        args.train_samples = None
360
        torch.distributed.barrier()
361
362
        timers('load-checkpoint').stop()
        timers.log(['load-checkpoint'])
363
364
365
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
366
    # We only support local DDP with multiple micro-batches.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
367
    if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1:
mohammad's avatar
mohammad committed
368
369
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
370
    # get model without FP16 and/or TorchDDP wrappers
Mostofa Patwary's avatar
Mostofa Patwary committed
371
372
    if args.iteration == 0 and len(unwrapped_model) == 1 \
        and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
Mostofa Patwary's avatar
Mostofa Patwary committed
373
        print_rank_0("Initializing ICT from pretrained BERT model")
Mostofa Patwary's avatar
Mostofa Patwary committed
374
        unwrapped_model[0].init_state_dict_from_bert()
Mostofa Patwary's avatar
Mostofa Patwary committed
375
376
        if args.fp16:
            optimizer.reload_model_params()
Neel Kant's avatar
Neel Kant committed
377

378
379
380
    return model, optimizer, lr_scheduler


381
382
383
384
385
386
387
def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
388
    if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_local_ddp:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
389
390
        for partition in model:
            partition.zero_grad_buffer()
391
    optimizer.zero_grad()
392

393
    forward_backward_func = get_forward_backward_func()
394
395
396
    losses_reduced = forward_backward_func(
        forward_step_func, data_iterator, model,
        optimizer, timers, forward_only=False)
397

398
    # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
399
    if args.empty_unused_memory_level >= 1:
400
401
        torch.cuda.empty_cache()

402
403
    # All-reduce if needed.
    if args.DDP_impl == 'local':
404
        timers('backward-params-all-reduce').start()
405
        for model_module in model:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
406
            model_module.allreduce_gradients()
407
        timers('backward-params-all-reduce').stop()
408

409
410
411
412
    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
413
    timers('backward-embedding-all-reduce').start()
414
    if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
415
            mpu.get_pipeline_model_parallel_world_size() > 1:
416
417
418
419
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            unwrapped_model = model[0]
        elif mpu.is_pipeline_last_stage(ignore_virtual=True):
            unwrapped_model = model[-1]
420
421
        else:  # We do not support the interleaved schedule for T5 yet.
            unwrapped_model = model[0]
422
        unwrapped_model = unwrap_model(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
423
            unwrapped_model, (torchDDP, LocalDDP, Float16Module))
424

425
426
        if unwrapped_model.share_word_embeddings:
            word_embeddings_weight = unwrapped_model.word_embeddings_weight()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
427
428
429
430
431
            if args.DDP_impl == 'local':
                grad = word_embeddings_weight.main_grad
            else:
                grad = word_embeddings_weight.grad
            torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
432
    timers('backward-embedding-all-reduce').stop()
433

434
435
    # Update parameters.
    timers('optimizer').start()
436
    update_successful, grad_norm, num_zeros_in_grad = optimizer.step()
437
438
439
    timers('optimizer').stop()

    # Update learning rate.
440
    if update_successful:
441
442
443
444
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
        lr_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
445
        skipped_iter = 0
446
447
448
    else:
        skipped_iter = 1

449
    # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
450
    if args.empty_unused_memory_level >= 2:
451
452
        torch.cuda.empty_cache()

453
    if mpu.is_pipeline_last_stage(ignore_virtual=True):
454
455
456
457
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
458
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
459
460
        return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
    return {}, skipped_iter, grad_norm, num_zeros_in_grad
461
462


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
463
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
464
                 loss_scale, report_memory_flag, skipped_iter,
465
                 grad_norm, params_norm, num_zeros_in_grad):
Mohammad's avatar
Mohammad committed
466
467
468
469
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
470

mohammad's avatar
mohammad committed
471
472
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
473
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
474
475
476
477
478
479
480
481
482
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
483
484
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
485
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
486
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
487
    for key in loss_dict:
mohammad's avatar
mohammad committed
488
        if not skipped_iter:
489
490
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
491
492
493
494
495
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
496
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
497
498
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
499
500
501

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
502

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
503
504
505
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
506
507
508
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
509
    add_to_logging('forward-backward-send-forward-backward-recv')
510
511
512
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
513
    add_to_logging('backward-send-forward-recv')
514
    add_to_logging('backward-send-backward-recv')
515
    add_to_logging('backward-params-all-reduce')
516
    add_to_logging('backward-embedding-all-reduce')
517
    add_to_logging('optimizer-copy-to-main-grad')
mohammad's avatar
mohammad committed
518
    add_to_logging('optimizer-unscale-and-check-inf')
519
520
    add_to_logging('optimizer-clip-main-grad')
    add_to_logging('optimizer-copy-main-to-model-params')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
521
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
522
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
523

mohammad's avatar
mohammad committed
524
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
525
526
527
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
528
529
530
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
531
    # Tensorboard values.
532
533
534
535
536
537
538
539
540
541
    if writer and (iteration % args.tensorboard_log_interval == 0 ) and \
       is_last_rank():
        if args.log_learning_rate_to_tensorboard:
            writer.add_scalar('learning-rate', learning_rate, iteration)
            writer.add_scalar('learning-rate vs samples', learning_rate,
                              args.consumed_train_samples)
        if args.log_batch_size_to_tensorboard:
            writer.add_scalar('batch-size', batch_size, iteration)
            writer.add_scalar('batch-size vs samples', batch_size,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
542
        for key in loss_dict:
mohammad's avatar
mohammad committed
543
544
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
545
                              args.consumed_train_samples)
546
547
548
549
        if args.log_loss_scale_to_tensorboard:
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
                              args.consumed_train_samples)
550
551
552
553
        if args.log_world_size_to_tensorboard:
            writer.add_scalar('world-size', args.world_size, iteration)
            writer.add_scalar('world-size vs samples', args.world_size,
                              args.consumed_train_samples)
554
555
556
557
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
558
559
560
        if num_zeros_in_grad is not None:
            writer.add_scalar('num-zeros', num_zeros_in_grad, iteration)
            writer.add_scalar('num-zeros vs samples', num_zeros_in_grad,
Rewon Child's avatar
Rewon Child committed
561
                              args.consumed_train_samples)
mohammad's avatar
mohammad committed
562
563
564
565
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
566
567
568
        if args.log_timers_to_tensorboard:
            timers.write(timers_to_log, writer, iteration,
                         normalizer=total_iterations)
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
        if args.log_memory_to_tensorboard:
            mem_stats = torch.cuda.memory_stats()
            writer.add_scalar(
                "mem-reserved-bytes",
                mem_stats["reserved_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-bytes",
                mem_stats["allocated_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-count",
                mem_stats["allocation.all.current"],
                iteration,
            )
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
586
587

    if iteration % args.log_interval == 0:
588
        elapsed_time = timers('interval-time').elapsed()
mohammad's avatar
mohammad committed
589
        elapsed_time_per_iteration = elapsed_time / total_iterations
mshoeybi's avatar
mshoeybi committed
590
        if writer:
591
592
593
            if args.log_timers_to_tensorboard:
                writer.add_scalar('iteration-time',
                                  elapsed_time_per_iteration, iteration)
594
595
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
596
        log_string += ' consumed samples: {:12d} |'.format(
597
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
598
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
599
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
600
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
601
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
602
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
603
604
605
606
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
607
608
609
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
610
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
611
612
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
613
614
        if num_zeros_in_grad is not None:
            log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
mohammad's avatar
mohammad committed
615
616
        if params_norm is not None:
            log_string += ' params norm: {:.3f} |'.format(params_norm)
mohammad's avatar
mohammad committed
617
618
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
619
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
620
621
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
622
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
623
        total_loss_dict[nan_iters_key] = 0
624
        print_rank_last(log_string)
625
626
627
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
628
629
630
631
632
633
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


634
635
636
637
638
def save_checkpoint_and_time(iteration, model, optimizer, lr_scheduler):
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
639
    timers('save-checkpoint').start()
640
641
    save_checkpoint(iteration, model, optimizer, lr_scheduler)
    torch.distributed.barrier()
642
643
    timers('save-checkpoint').stop()
    timers.log(['save-checkpoint'])
644
645


646
def train(forward_step_func, model, optimizer, lr_scheduler,
647
          train_data_iterator, valid_data_iterator):
648
    """Train the model function."""
Mohammad's avatar
Mohammad committed
649
650
    args = get_args()
    timers = get_timers()
651

652
653
654
    # Write args to tensorboard
    write_args_to_tensorboard()

655
    # Turn on training mode which enables dropout.
656
657
    for model_module in model:
        model_module.train()
658
659
660
661
662
663
664

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

zihanl's avatar
zihanl committed
665
666
    # if not args.run_dialog:
    timers('interval-time').start()
zihanl's avatar
zihanl committed
667

668
    print_datetime('before the start of training step')
669
670
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
671
        update_num_microbatches(args.consumed_train_samples)
672
673
674
675
676
677
        loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
            train_step(forward_step_func,
                       train_data_iterator,
                       model,
                       optimizer,
                       lr_scheduler)
678
        iteration += 1
679
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
680
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
681
                                       get_num_microbatches()
682
683

        # Logging.
684
        loss_scale = optimizer.get_loss_scale().item()
685
686
687
        params_norm = None
        if args.log_params_norm:
            params_norm = calc_params_l2_norm(model)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
688
689
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
690
                                          iteration, loss_scale,
691
                                          report_memory_flag, skipped_iter,
692
                                          grad_norm, params_norm, num_zeros_in_grad)
693
694

        # Autoresume
695
696
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
697
            check_adlr_autoresume_termination(iteration, model, optimizer,
698
                                              lr_scheduler)
699
700
701
702
703
704

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
705
                                       valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
706
                                       iteration, False)
707

708
709
        # Checkpointing
        saved_checkpoint = False
710
711
712
713
714
715
716
717
        if args.exit_signal_handler:
            signal_handler = get_signal_handler()
            if any(signal_handler.signals_received()):
                save_checkpoint_and_time(iteration, model, optimizer,
                                         lr_scheduler)
                print_datetime('exiting program after receiving SIGTERM.')
                sys.exit()

718
719
720
721
722
723
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
                                     lr_scheduler)
            saved_checkpoint = True

724
725
726
727
728
729
730
731
732
733
734
735
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
                                             lr_scheduler)
736
                print_datetime('exiting program after {} minutes'.format(train_time))
737
738
                sys.exit()

739
        # Exiting based on iterations
740
        if args.exit_interval and iteration % args.exit_interval == 0:
741
742
743
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
                                         lr_scheduler)
744
            torch.distributed.barrier()
745
            print_datetime('exiting program at iteration {}'.format(iteration))
Mohammad's avatar
Mohammad committed
746
            sys.exit()
747

748

mohammad's avatar
mohammad committed
749
    return iteration
750
751


Mohammad's avatar
Mohammad committed
752
def evaluate(forward_step_func, data_iterator, model, verbose=False):
753
    """Evaluation."""
Mohammad's avatar
Mohammad committed
754
    args = get_args()
755
756

    # Turn on evaluation mode which disables dropout.
757
758
    for model_module in model:
        model_module.eval()
759
760
761
762
763
764
765
766
767
768

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
769

770
            forward_backward_func = get_forward_backward_func()
771
772
773
774
            loss_dicts = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True)

775
            # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
776
            if args.empty_unused_memory_level >= 1:
777
778
                torch.cuda.empty_cache()

779
780
781
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                # Reduce across processes.
                for loss_dict in loss_dicts:
782
                    for key in loss_dict:
783
784
                        total_loss_dict[key] = total_loss_dict.get(
                            key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
785

786
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
787
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
788
                                           * get_num_microbatches()
789
    # Move model back to the train mode.
790
791
    for model_module in model:
        model_module.train()
792
793

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
794
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
795
796
797
798
799

    return total_loss_dict

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
Mohammad's avatar
Mohammad committed
800
                               iteration, verbose=False):
801
    """Helper function to evaluate and dump results on screen."""
802
    args = get_args()
Mohammad's avatar
Mohammad committed
803
804
805
    writer = get_tensorboard_writer()

    total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
806
807
808
809
810
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
mshoeybi's avatar
mshoeybi committed
811
        if writer:
mohammad's avatar
mohammad committed
812
            writer.add_scalar('{} validation'.format(key),
813
814
                              total_loss_dict[key].item(),
                              iteration)
mohammad's avatar
mohammad committed
815
            writer.add_scalar('{} validation vs samples'.format(key),
816
817
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
818
            if args.log_validation_ppl_to_tensorboard:
mohammad's avatar
mohammad committed
819
                writer.add_scalar('{} validation ppl'.format(key), ppl,
820
                                  iteration)
mohammad's avatar
mohammad committed
821
                writer.add_scalar('{} validation ppl vs samples'.format(key),
822
                                  ppl, args.consumed_train_samples)
823
824

    length = len(string) + 1
825
826
827
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
828
829


Vijay Korthikanti's avatar
Vijay Korthikanti committed
830
def cyclic_iter(iter):
831
    while True:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
832
        for x in iter:
833
834
            yield x

835
836
837
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
838
    args = get_args()
839

840
841
842
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
843
844
845

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
846
847
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
848
        args.consumed_train_samples = args.iteration * args.global_batch_size
849
    if args.iteration > 0 and args.consumed_valid_samples == 0:
850
851
852
        if args.train_samples is None:
            args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
                args.eval_iters * args.global_batch_size
853

854
    # Data loader only on rank 0 of each model parallel group.
855
    if mpu.get_tensor_model_parallel_rank() == 0:
856
        
zihanl's avatar
zihanl committed
857
858
859
        # Number of train/valid/test samples.
        if args.train_samples:
            train_samples = args.train_samples
860
        else:
zihanl's avatar
zihanl committed
861
862
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
zihanl's avatar
zihanl committed
863
                      args.eval_iters
zihanl's avatar
zihanl committed
864
865
        test_iters = args.eval_iters
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
866
867
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
zihanl's avatar
zihanl committed
868
869
870
871
872
873
874
875
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)
876
877

        # Build dataloders.
878
879
880
881
882
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
883
884
885
886
887
888
889
890
891
892
893
894
895

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
896
897
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
898
899
900
901
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

Vijay Korthikanti's avatar
Vijay Korthikanti committed
902

903
    # Build iterators.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
904
905
906
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic']

907
    if train_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
908
909
        train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(train_dataloader))
910
911
912
    else:
        train_data_iterator = None

913
    if valid_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
914
915
        valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(valid_dataloader))
916
    else:
917
        valid_data_iterator = None
918

919
    if test_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
920
921
        test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
                             else iter(cyclic_iter(test_dataloader))
922
923
924
    else:
        test_data_iterator = None

925
    return train_data_iterator, valid_data_iterator, test_data_iterator