training.py 36.5 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()

25
26
27
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

Neel Kant's avatar
Neel Kant committed
28
from megatron import get_args
Mohammad's avatar
Mohammad committed
29
30
from megatron import get_timers
from megatron import get_tensorboard_writer
31
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
32
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
33
from megatron import is_last_rank
mohammad's avatar
mohammad committed
34
from megatron import update_num_microbatches
35
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
36
from megatron import print_rank_0
37
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
38
39
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
40
from megatron.model import Float16Module
mohammad's avatar
mohammad committed
41
from megatron.optimizer import get_megatron_optimizer
Mohammad's avatar
Mohammad committed
42
from megatron.initialize import initialize_megatron
43
from megatron.initialize import write_args_to_tensorboard
44
45
46
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
47
from megatron.utils import unwrap_model
Vijay Korthikanti's avatar
Vijay Korthikanti committed
48
from megatron.data.data_samplers import build_pretraining_data_loader
mohammad's avatar
mohammad committed
49
from megatron.utils import calc_params_l2_norm
50
from megatron.schedules import forward_backward_no_pipelining
51
from megatron.schedules import forward_backward_pipelining_without_interleaving
52
from megatron.schedules import forward_backward_pipelining_with_interleaving
53
from megatron.utils import report_memory
54
55


56
57
58
59
60
61
62
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


63
def pretrain(train_valid_test_dataset_provider,
64
             model_provider,
65
66
             forward_step_func,
             extra_args_provider=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
67
             args_defaults={}):
68
69
70
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
71
72
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
73
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
74
        4) train the modle using the forward_step_func.
75
76

    Arguments:
77
78
79
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
80
81
82
83
84
85
86
87
88
89
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
90
91
    """

92
    # Initalize and get arguments, timers, and Tensorboard writer.
93
94
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
95

96
97
98
99
100
101
102
103
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
    start_time_tensor = torch.cuda.FloatTensor([_TRAIN_START_TIME])
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
104
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
105
106
107
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

108
    args = get_args()
Mohammad's avatar
Mohammad committed
109
    timers = get_timers()
110
111

    # Model, optimizer, and learning rate.
112
    timers('model-and-optimizer-setup').start()
Mohammad's avatar
Mohammad committed
113
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider)
114
    timers('model-and-optimizer-setup').stop()
115
116
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
117
118

    # Data stuff.
119
120
    timers('train/valid/test-data-iterators-setup').start()
    if args.virtual_pipeline_model_parallel_size is not None:
121
        all_data_iterators = [
122
123
124
            build_train_valid_test_data_iterators(train_valid_test_dataset_provider)
            for _ in range(len(model))
        ]
125
126
127
        train_data_iterator = [data_iterators[0] for data_iterators in all_data_iterators]
        valid_data_iterator = [data_iterators[1] for data_iterators in all_data_iterators]
        test_data_iterator = [data_iterators[2] for data_iterators in all_data_iterators]
128
129
130
131
132
    else:
        train_data_iterator, valid_data_iterator, test_data_iterator \
            = build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
    timers('train/valid/test-data-iterators-setup').stop()
mshoeybi's avatar
mshoeybi committed
133
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
134
135

    # Print setup timing.
136
137
    print_rank_0('done with setup ...')
    timers.log(['model-and-optimizer-setup', 'train/valid/test-data-iterators-setup'])
Mohammad's avatar
Mohammad committed
138
    print_rank_0('training ...')
139
140

    iteration = 0
141
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
142
143
144
        iteration = train(forward_step_func,
                          model, optimizer, lr_scheduler,
                          train_data_iterator, valid_data_iterator)
145
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
146

147
148
149
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
150
                                   valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
151
                                   iteration, False)
152
153

    if args.save and iteration != 0:
154
        save_checkpoint(iteration, model, optimizer, lr_scheduler)
155
156
157
158
159
160

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
Mohammad's avatar
Mohammad committed
161
                                   0, True)
162

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
179
180
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
181
182
            iterations += 1
        # Reset
183
        update_num_microbatches(0, consistency_check=False)
184
185
186
187
188
189
190
191
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

192

Mohammad's avatar
Mohammad committed
193
def get_model(model_provider_func):
194
    """Build the model."""
Mohammad's avatar
Mohammad committed
195
    args = get_args()
196

197
    # Build model.
198
199
200
201
202
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
       args.virtual_pipeline_model_parallel_size is not None:
        model = []
        for i in range(args.virtual_pipeline_model_parallel_size):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
203
204
205
            # Set pre_process and post_process only after virtual rank is set.
            pre_process = mpu.is_pipeline_first_stage()
            post_process = mpu.is_pipeline_last_stage()
206
            this_model = model_provider_func(
207
208
209
                pre_process=pre_process,
                post_process=post_process
            )
210
            model.append(this_model)
211
    else:
212
213
        pre_process = mpu.is_pipeline_first_stage()
        post_process = mpu.is_pipeline_last_stage()
214
215
216
217
218
        model = model_provider_func(
            pre_process=pre_process,
            post_process=post_process
        )

219
220
    if not isinstance(model, list):
        model = [model]
221

222
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
223
224
225
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
226
227
228
    for model_module in model:
        for param in model_module.parameters():
            mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
229

230
231
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
232
        print(' > number of parameters on (tensor, pipeline) '
233
              'model parallel rank ({}, {}): {}'.format(
234
235
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
236
237
            sum([sum([p.nelement() for p in model_module.parameters()])
                 for model_module in model])), flush=True)
238
239

    # GPU allocation.
240
241
    for model_module in model:
        model_module.cuda(torch.cuda.current_device())
242
243

    # Fp16 conversion.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
244
245
    if args.fp16 or args.bf16:
        model = [Float16Module(model_module, args) for model_module in model]
246
247
248

    if args.DDP_impl == 'torch':
        i = torch.cuda.current_device()
249
250
251
        model = [torchDDP(model_module, device_ids=[i], output_device=i,
                          process_group=mpu.get_data_parallel_group())
                 for model_module in model]
252
        return model
253

254
    if args.DDP_impl == 'local':
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
255
256
257
258
        model = [LocalDDP(model_module,
                          args.accumulate_allreduce_grads_in_fp32,
                          args.use_contiguous_buffers_in_ddp)
                 for model_module in model]
259
260
        return model

261
    raise NotImplementedError('Unknown DDP implementation specified: {}. '
262
                              'Exiting.'.format(args.DDP_impl))
263
264


Mohammad's avatar
Mohammad committed
265
def get_learning_rate_scheduler(optimizer):
266
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
267
    args = get_args()
268

269
270
271
272
273
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
        decay_steps = args.lr_decay_iters * args.global_batch_size
274
275
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
276
277
        else:
            warmup_steps = args.lr_warmup_iters * args.global_batch_size
278
279
280
281
282
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
283
        update_train_iters(args)
284
285
286
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
        decay_steps = args.lr_decay_samples
287
288
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
289
290
        else:
            warmup_steps = args.lr_warmup_samples
291
    else:
292
293
294
        raise Exception(
            'either train-iters or train-samples should be provided.')

295
296
    lr_scheduler = AnnealingLR(
        optimizer,
297
        max_lr=args.lr,
298
        min_lr=args.min_lr,
299
300
        warmup_steps=warmup_steps,
        decay_steps=decay_steps,
301
        decay_style=args.lr_decay_style,
302
303
304
305
306
307
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


Mohammad's avatar
Mohammad committed
308
def setup_model_and_optimizer(model_provider_func):
309
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
310
    args = get_args()
311

Mohammad's avatar
Mohammad committed
312
    model = get_model(model_provider_func)
313

314
    unwrapped_model = unwrap_model(model,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
315
                                   (torchDDP, LocalDDP, Float16Module))
316
317
    optimizer = get_megatron_optimizer(unwrapped_model)

Mohammad's avatar
Mohammad committed
318
    lr_scheduler = get_learning_rate_scheduler(optimizer)
319
320

    if args.load is not None:
321
322
323
324
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
325
        timers('load-checkpoint').start()
326
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
327
328
        # need to set train_samples to None
        args.train_samples = None
329
        torch.distributed.barrier()
330
331
        timers('load-checkpoint').stop()
        timers.log(['load-checkpoint'])
332
333
334
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
335
    # We only support local DDP with multiple micro-batches.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
336
    if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1:
mohammad's avatar
mohammad committed
337
338
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
339
    # get model without FP16 and/or TorchDDP wrappers
Mostofa Patwary's avatar
Mostofa Patwary committed
340
341
    if args.iteration == 0 and len(unwrapped_model) == 1 \
        and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
Mostofa Patwary's avatar
Mostofa Patwary committed
342
        print_rank_0("Initializing ICT from pretrained BERT model")
Mostofa Patwary's avatar
Mostofa Patwary committed
343
        unwrapped_model[0].init_state_dict_from_bert()
Mostofa Patwary's avatar
Mostofa Patwary committed
344
345
        if args.fp16:
            optimizer.reload_model_params()
Neel Kant's avatar
Neel Kant committed
346

347
348
349
    return model, optimizer, lr_scheduler


350
351
352
353
354
355
356
def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
357
358
359
360
361
    if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_ddp:
        for partition in model:
            partition.zero_grad_buffer()
    else:
        optimizer.zero_grad()
362
363

    if mpu.get_pipeline_model_parallel_world_size() > 1:
364
365
        if args.virtual_pipeline_model_parallel_size is not None:
            forward_backward_func = forward_backward_pipelining_with_interleaving
366
367
368
            assert get_num_microbatches() % args.pipeline_model_parallel_size == 0, \
                'number of microbatches is not divisible by pipeline-parallel ' \
                'size when using interleaved schedule'
369
        else:
370
            forward_backward_func = forward_backward_pipelining_without_interleaving
371
    else:
372
373
374
375
        forward_backward_func = forward_backward_no_pipelining
    losses_reduced = forward_backward_func(
        forward_step_func, data_iterator, model,
        optimizer, timers, forward_only=False)
376
377
378

    # All-reduce if needed.
    if args.DDP_impl == 'local':
379
        timers('backward-params-all-reduce').start()
380
        for model_module in model:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
381
            model_module.allreduce_gradients()
382
        timers('backward-params-all-reduce').stop()
383

384
385
386
387
    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
388
    timers('backward-embedding-all-reduce').start()
389
390
    if (mpu.is_pipeline_first_stage(ignore_virtual=True) or
        mpu.is_pipeline_last_stage(ignore_virtual=True)) and \
391
            mpu.get_pipeline_model_parallel_world_size() > 1:
392
393
394
395
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            unwrapped_model = model[0]
        elif mpu.is_pipeline_last_stage(ignore_virtual=True):
            unwrapped_model = model[-1]
396
        unwrapped_model = unwrap_model(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
397
            unwrapped_model, (torchDDP, LocalDDP, Float16Module))
398

399
400
        if unwrapped_model.share_word_embeddings:
            word_embeddings_weight = unwrapped_model.word_embeddings_weight()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
401
402
403
404
405
            if args.DDP_impl == 'local':
                grad = word_embeddings_weight.main_grad
            else:
                grad = word_embeddings_weight.grad
            torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
406
    timers('backward-embedding-all-reduce').stop()
407

408
409
    # Update parameters.
    timers('optimizer').start()
410
    update_successful, grad_norm, num_zeros_in_grad = optimizer.step()
411
412
413
    timers('optimizer').stop()

    # Update learning rate.
414
    if update_successful:
415
416
417
418
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
        lr_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
419
        skipped_iter = 0
420
421
422
    else:
        skipped_iter = 1

423
    if mpu.is_pipeline_last_stage(ignore_virtual=True):
424
425
426
427
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
428
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
429
430
        return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
    return {}, skipped_iter, grad_norm, num_zeros_in_grad
431
432


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
433
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
434
                 loss_scale, report_memory_flag, skipped_iter,
435
                 grad_norm, params_norm, num_zeros_in_grad):
Mohammad's avatar
Mohammad committed
436
437
438
439
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
440

mohammad's avatar
mohammad committed
441
442
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
443
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
444
445
446
447
448
449
450
451
452
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
453
454
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
455
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
456
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
457
    for key in loss_dict:
mohammad's avatar
mohammad committed
458
        if not skipped_iter:
459
460
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
461
462
463
464
465
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
466
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
467
468
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
469
470
471

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
472

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
473
474
475
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
476
477
478
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
479
    add_to_logging('forward-backward-send-forward-backward-recv')
480
481
482
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
483
    add_to_logging('backward-send-forward-recv')
484
    add_to_logging('backward-send-backward-recv')
485
    add_to_logging('backward-params-all-reduce')
486
    add_to_logging('backward-embedding-all-reduce')
487
    add_to_logging('optimizer-copy-to-main-grad')
mohammad's avatar
mohammad committed
488
    add_to_logging('optimizer-unscale-and-check-inf')
489
490
    add_to_logging('optimizer-clip-main-grad')
    add_to_logging('optimizer-copy-main-to-model-params')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
491
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
492
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
493

mohammad's avatar
mohammad committed
494
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
495
496
497
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
498
499
500
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
501
    # Tensorboard values.
502
503
504
505
506
507
508
509
510
511
    if writer and (iteration % args.tensorboard_log_interval == 0 ) and \
       is_last_rank():
        if args.log_learning_rate_to_tensorboard:
            writer.add_scalar('learning-rate', learning_rate, iteration)
            writer.add_scalar('learning-rate vs samples', learning_rate,
                              args.consumed_train_samples)
        if args.log_batch_size_to_tensorboard:
            writer.add_scalar('batch-size', batch_size, iteration)
            writer.add_scalar('batch-size vs samples', batch_size,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
512
        for key in loss_dict:
mohammad's avatar
mohammad committed
513
514
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
515
                              args.consumed_train_samples)
516
517
518
519
        if args.log_loss_scale_to_tensorboard:
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
                              args.consumed_train_samples)
520
521
522
523
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
524
525
526
        if num_zeros_in_grad is not None:
            writer.add_scalar('num-zeros', num_zeros_in_grad, iteration)
            writer.add_scalar('num-zeros vs samples', num_zeros_in_grad,
Rewon Child's avatar
Rewon Child committed
527
                              args.consumed_train_samples)
mohammad's avatar
mohammad committed
528
529
530
531
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
532
533
534
        if args.log_timers_to_tensorboard:
            timers.write(timers_to_log, writer, iteration,
                         normalizer=total_iterations)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
535
536

    if iteration % args.log_interval == 0:
537
        elapsed_time = timers('interval-time').elapsed()
mohammad's avatar
mohammad committed
538
        elapsed_time_per_iteration = elapsed_time / total_iterations
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
539
        if writer and torch.distributed.get_rank() == 0:
540
541
542
            if args.log_timers_to_tensorboard:
                writer.add_scalar('iteration-time',
                                  elapsed_time_per_iteration, iteration)
543
544
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
545
        log_string += ' consumed samples: {:12d} |'.format(
546
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
547
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
548
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
549
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
550
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
551
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
552
553
554
555
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
556
557
558
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
559
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
560
561
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
562
563
        if num_zeros_in_grad is not None:
            log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
mohammad's avatar
mohammad committed
564
565
        if params_norm is not None:
            log_string += ' params norm: {:.3f} |'.format(params_norm)
mohammad's avatar
mohammad committed
566
567
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
568
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
569
570
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
571
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
572
        total_loss_dict[nan_iters_key] = 0
573
        print_rank_last(log_string)
574
575
576
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
577
578
579
580
581
582
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


583
584
585
586
587
def save_checkpoint_and_time(iteration, model, optimizer, lr_scheduler):
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
588
    timers('save-checkpoint').start()
589
590
    save_checkpoint(iteration, model, optimizer, lr_scheduler)
    torch.distributed.barrier()
591
592
    timers('save-checkpoint').stop()
    timers.log(['save-checkpoint'])
593
594


595
def train(forward_step_func, model, optimizer, lr_scheduler,
596
          train_data_iterator, valid_data_iterator):
597
    """Train the model function."""
Mohammad's avatar
Mohammad committed
598
599
    args = get_args()
    timers = get_timers()
600

601
602
603
    # Write args to tensorboard
    write_args_to_tensorboard()

604
    # Turn on training mode which enables dropout.
605
606
    for model_module in model:
        model_module.train()
607
608
609
610
611
612
613

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

614
    timers('interval-time').start()
615
    print_datetime('before the start of training step')
616
617
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
618
        update_num_microbatches(args.consumed_train_samples)
619
620
621
622
623
624
        loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
            train_step(forward_step_func,
                       train_data_iterator,
                       model,
                       optimizer,
                       lr_scheduler)
625
        iteration += 1
626
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
627
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
628
                                       get_num_microbatches()
629
630

        # Logging.
631
        loss_scale = optimizer.get_loss_scale().item()
632
633
634
        params_norm = None
        if args.log_params_norm:
            params_norm = calc_params_l2_norm(model)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
635
636
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
637
                                          iteration, loss_scale,
638
                                          report_memory_flag, skipped_iter,
639
                                          grad_norm, params_norm, num_zeros_in_grad)
640
641

        # Autoresume
642
643
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
644
            check_adlr_autoresume_termination(iteration, model, optimizer,
645
                                              lr_scheduler)
646
647
648
649
650
651

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
652
                                       valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
653
                                       iteration, False)
654

655
656
657
658
659
660
661
662
        # Checkpointing
        saved_checkpoint = False
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
                                     lr_scheduler)
            saved_checkpoint = True

663
664
665
666
667
668
669
670
671
672
673
674
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
                                             lr_scheduler)
675
                print_datetime('exiting program after {} minutes'.format(train_time))
676
677
                sys.exit()

678
        # Exiting based on iterations
679
        if args.exit_interval and iteration % args.exit_interval == 0:
680
681
682
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
                                         lr_scheduler)
683
            torch.distributed.barrier()
684
            print_datetime('exiting program at iteration {}'.format(iteration))
Mohammad's avatar
Mohammad committed
685
            sys.exit()
686

687

mohammad's avatar
mohammad committed
688
    return iteration
689
690


Mohammad's avatar
Mohammad committed
691
def evaluate(forward_step_func, data_iterator, model, verbose=False):
692
    """Evaluation."""
Mohammad's avatar
Mohammad committed
693
    args = get_args()
694
695

    # Turn on evaluation mode which disables dropout.
696
697
    for model_module in model:
        model_module.eval()
698
699
700
701
702
703
704
705
706
707

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
708

709
710
711
            if mpu.get_pipeline_model_parallel_world_size() > 1:
                if args.virtual_pipeline_model_parallel_size is not None:
                    forward_backward_func = forward_backward_pipelining_with_interleaving
712
                else:
713
                    forward_backward_func = forward_backward_pipelining_without_interleaving
714
715
716
717
718
719
720
721
722
            else:
                forward_backward_func = forward_backward_no_pipelining
            loss_dicts = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True)

            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                # Reduce across processes.
                for loss_dict in loss_dicts:
723
                    for key in loss_dict:
724
725
                        total_loss_dict[key] = total_loss_dict.get(
                            key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
726

727
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
728
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
729
                                           * get_num_microbatches()
730
    # Move model back to the train mode.
731
732
    for model_module in model:
        model_module.train()
733
734

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
735
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
736
737
738
739
740

    return total_loss_dict

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
Mohammad's avatar
Mohammad committed
741
                               iteration, verbose=False):
742
    """Helper function to evaluate and dump results on screen."""
743
    args = get_args()
Mohammad's avatar
Mohammad committed
744
745
746
    writer = get_tensorboard_writer()

    total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
747
748
749
750
751
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
752
        if writer and is_last_rank():
mohammad's avatar
mohammad committed
753
            writer.add_scalar('{} validation'.format(key),
754
755
                              total_loss_dict[key].item(),
                              iteration)
mohammad's avatar
mohammad committed
756
            writer.add_scalar('{} validation vs samples'.format(key),
757
758
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
759
            if args.log_validation_ppl_to_tensorboard:
mohammad's avatar
mohammad committed
760
                writer.add_scalar('{} validation ppl'.format(key), ppl,
761
                                  iteration)
mohammad's avatar
mohammad committed
762
                writer.add_scalar('{} validation ppl vs samples'.format(key),
763
                                  ppl, args.consumed_train_samples)
764
765

    length = len(string) + 1
766
767
768
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
769
770


Vijay Korthikanti's avatar
Vijay Korthikanti committed
771
def cyclic_iter(iter):
772
    while True:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
773
        for x in iter:
774
775
            yield x

776
777
778
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
779
    args = get_args()
780

781
782
783
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
784
785
786

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
787
788
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
789
        args.consumed_train_samples = args.iteration * args.global_batch_size
790
    if args.iteration > 0 and args.consumed_valid_samples == 0:
791
792
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
793
        args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
mohammad's avatar
mohammad committed
794
            args.eval_iters * args.global_batch_size
795

796
797
798
799
800
    if args.run_dialog:
        args.consumed_train_samples = 0
        args.consumed_valid_samples = 0
        args.iteration = 0

801
    # Data loader only on rank 0 of each model parallel group.
802
    if mpu.get_tensor_model_parallel_rank() == 0:
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
        
        if args.run_dialog:
            # Build the datasets.
            train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider()

            print_rank_0(' > datasets target sizes:')
            train_size = len(train_ds)
            valid_size = len(valid_ds)
            test_size = len(test_ds)
            print_rank_0('    train:      {}'.format(train_size))
            print_rank_0('    validation: {}'.format(valid_size))
            print_rank_0('    test:       {}'.format(test_size))

            args.train_iters = train_size // args.global_batch_size
            args.eval_iters = valid_size // args.global_batch_size
            args.test_iters = test_size // args.global_batch_size
819

820
        else:
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
            # Number of train/valid/test samples.
            if args.train_samples:
                train_samples = args.train_samples
            else:
                train_samples = args.train_iters * args.global_batch_size
            eval_iters = (args.train_iters // args.eval_interval + 1) * \
                        args.eval_iters
            test_iters = args.eval_iters
            train_val_test_num_samples = [train_samples,
                                        eval_iters * args.global_batch_size,
                                        test_iters * args.global_batch_size]
            print_rank_0(' > datasets target sizes (minimum size):')
            print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
            print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
            print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

            # Build the datasets.
            train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
                train_val_test_num_samples)
840
841

        # Build dataloders.
842
843
844
845
846
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
847
848
849
850
851
852
853
854
855
856
857
858
859

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
860
861
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
862
863
864
865
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

Vijay Korthikanti's avatar
Vijay Korthikanti committed
866

867
    # Build iterators.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
868
869
870
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic']

871
    if train_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
872
873
        train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(train_dataloader))
874
875
876
    else:
        train_data_iterator = None

877
    if valid_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
878
879
        valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(valid_dataloader))
880
    else:
881
        valid_data_iterator = None
882

883
    if test_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
884
885
        test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
                             else iter(cyclic_iter(test_dataloader))
886
887
888
    else:
        test_data_iterator = None

889
    return train_data_iterator, valid_data_iterator, test_data_iterator