"...lm-evaluation-harness.git" did not exist on "f079e322b857714fcef1ada9e78ddc606fe51e84"
training.py 38.1 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()

25
26
27
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

Neel Kant's avatar
Neel Kant committed
28
from megatron import get_args
Mohammad's avatar
Mohammad committed
29
30
from megatron import get_timers
from megatron import get_tensorboard_writer
31
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
32
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
33
from megatron import is_last_rank
mohammad's avatar
mohammad committed
34
from megatron import update_num_microbatches
35
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
36
from megatron import print_rank_0
37
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
38
39
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
40
from megatron.model import Float16Module
mohammad's avatar
mohammad committed
41
from megatron.optimizer import get_megatron_optimizer
Mohammad's avatar
Mohammad committed
42
from megatron.initialize import initialize_megatron
43
from megatron.initialize import write_args_to_tensorboard
44
45
46
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
47
from megatron.utils import unwrap_model
Vijay Korthikanti's avatar
Vijay Korthikanti committed
48
from megatron.data.data_samplers import build_pretraining_data_loader
mohammad's avatar
mohammad committed
49
from megatron.utils import calc_params_l2_norm
50
from megatron.schedules import forward_backward_no_pipelining
51
from megatron.schedules import forward_backward_pipelining_without_interleaving
52
from megatron.schedules import forward_backward_pipelining_with_interleaving
53
from megatron.utils import report_memory
54
55


56
57
58
59
60
61
62
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


63
def pretrain(train_valid_test_dataset_provider,
64
             model_provider,
65
66
             forward_step_func,
             extra_args_provider=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
67
             args_defaults={}):
68
69
70
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
71
72
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
73
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
74
        4) train the modle using the forward_step_func.
75
76

    Arguments:
77
78
79
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
80
81
82
83
84
85
86
87
88
89
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
90
91
    """

92
    # Initalize and get arguments, timers, and Tensorboard writer.
93
94
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
95

96
97
98
99
100
101
102
103
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
    start_time_tensor = torch.cuda.FloatTensor([_TRAIN_START_TIME])
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
104
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
105
106
107
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

108
    args = get_args()
Mohammad's avatar
Mohammad committed
109
    timers = get_timers()
110
111

    # Model, optimizer, and learning rate.
112
    timers('model-and-optimizer-setup').start()
Mohammad's avatar
Mohammad committed
113
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider)
114
    timers('model-and-optimizer-setup').stop()
115
116
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
117
118

    # Data stuff.
119
120
    timers('train/valid/test-data-iterators-setup').start()
    if args.virtual_pipeline_model_parallel_size is not None:
121
        all_data_iterators = [
122
123
124
            build_train_valid_test_data_iterators(train_valid_test_dataset_provider)
            for _ in range(len(model))
        ]
125
126
127
        train_data_iterator = [data_iterators[0] for data_iterators in all_data_iterators]
        valid_data_iterator = [data_iterators[1] for data_iterators in all_data_iterators]
        test_data_iterator = [data_iterators[2] for data_iterators in all_data_iterators]
128
129
130
131
132
    else:
        train_data_iterator, valid_data_iterator, test_data_iterator \
            = build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
    timers('train/valid/test-data-iterators-setup').stop()
mshoeybi's avatar
mshoeybi committed
133
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
134
135

    # Print setup timing.
136
137
    print_rank_0('done with setup ...')
    timers.log(['model-and-optimizer-setup', 'train/valid/test-data-iterators-setup'])
Mohammad's avatar
Mohammad committed
138
    print_rank_0('training ...')
139
140

    iteration = 0
zihanl's avatar
zihanl committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
    # if not args.run_dialog:
    if args.do_train and args.train_iters > 0:
        iteration = train(forward_step_func,
                        model, optimizer, lr_scheduler,
                        train_data_iterator, valid_data_iterator)
    print_datetime('after training is done')

    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
                                valid_data_iterator, model,
                                iteration, False)

    if args.save and iteration != 0:
        save_checkpoint(iteration, model, optimizer, lr_scheduler)

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                test_data_iterator, model,
                                0, True)
zihanl's avatar
zihanl committed
163
    
zihanl's avatar
zihanl committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    # else:
    #     # training for dialog/control model
    #     timers('interval-time').start() # start timers('interval-time') here to avoid it from starting multiple times
    #     for e in range(args.num_epoch):
    #         print_rank_0('> training on epoch %d' % (e+1))

    #         if args.do_train and args.train_iters > 0:
    #             iteration += train(forward_step_func,
    #                             model, optimizer, lr_scheduler,
    #                             train_data_iterator, valid_data_iterator)
    #         print_datetime('after training is done')

    #         if args.do_valid:
    #             prefix = 'the end of training for val data'
    #             evaluate_and_print_results(prefix, forward_step_func,
    #                                     valid_data_iterator, model,
    #                                     iteration, False)

    #         # if args.train_module == "dialog":
    #         #     if (e+1) >= 6 and (e+1) <= 15 and args.save and iteration != 0:
    #         #         save_checkpoint(iteration, model, optimizer, lr_scheduler)
    #         if args.train_module == "control":
    #             if (e+1) >= 5 and (e+1) <= 9 and args.save and iteration != 0:
    #                 save_checkpoint(iteration, model, optimizer, lr_scheduler)

    #         if args.do_test:
    #             # Run on test data.
    #             prefix = 'the end of training for test data'
    #             evaluate_and_print_results(prefix, forward_step_func,
    #                                     test_data_iterator, model,
    #                                     0, True)
195

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
212
213
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
214
215
            iterations += 1
        # Reset
216
        update_num_microbatches(0, consistency_check=False)
217
218
219
220
221
222
223
224
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

225

Mohammad's avatar
Mohammad committed
226
def get_model(model_provider_func):
227
    """Build the model."""
Mohammad's avatar
Mohammad committed
228
    args = get_args()
229

230
    # Build model.
231
232
233
234
235
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
       args.virtual_pipeline_model_parallel_size is not None:
        model = []
        for i in range(args.virtual_pipeline_model_parallel_size):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
236
237
238
            # Set pre_process and post_process only after virtual rank is set.
            pre_process = mpu.is_pipeline_first_stage()
            post_process = mpu.is_pipeline_last_stage()
239
            this_model = model_provider_func(
240
241
242
                pre_process=pre_process,
                post_process=post_process
            )
243
            model.append(this_model)
244
    else:
245
246
        pre_process = mpu.is_pipeline_first_stage()
        post_process = mpu.is_pipeline_last_stage()
247
248
249
250
251
        model = model_provider_func(
            pre_process=pre_process,
            post_process=post_process
        )

252
253
    if not isinstance(model, list):
        model = [model]
254

255
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
256
257
258
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
259
260
261
    for model_module in model:
        for param in model_module.parameters():
            mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
262

263
264
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
265
        print(' > number of parameters on (tensor, pipeline) '
266
              'model parallel rank ({}, {}): {}'.format(
267
268
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
269
270
            sum([sum([p.nelement() for p in model_module.parameters()])
                 for model_module in model])), flush=True)
271
272

    # GPU allocation.
273
274
    for model_module in model:
        model_module.cuda(torch.cuda.current_device())
275
276

    # Fp16 conversion.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
277
278
    if args.fp16 or args.bf16:
        model = [Float16Module(model_module, args) for model_module in model]
279
280
281

    if args.DDP_impl == 'torch':
        i = torch.cuda.current_device()
282
283
284
        model = [torchDDP(model_module, device_ids=[i], output_device=i,
                          process_group=mpu.get_data_parallel_group())
                 for model_module in model]
285
        return model
286

287
    if args.DDP_impl == 'local':
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
288
289
290
291
        model = [LocalDDP(model_module,
                          args.accumulate_allreduce_grads_in_fp32,
                          args.use_contiguous_buffers_in_ddp)
                 for model_module in model]
292
293
        return model

294
    raise NotImplementedError('Unknown DDP implementation specified: {}. '
295
                              'Exiting.'.format(args.DDP_impl))
296
297


Mohammad's avatar
Mohammad committed
298
def get_learning_rate_scheduler(optimizer):
299
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
300
    args = get_args()
301

302
303
304
305
306
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
        decay_steps = args.lr_decay_iters * args.global_batch_size
307
308
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
309
310
        else:
            warmup_steps = args.lr_warmup_iters * args.global_batch_size
311
312
313
314
315
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
316
        update_train_iters(args)
317
318
319
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
        decay_steps = args.lr_decay_samples
320
321
        if args.lr_warmup_fraction is not None:
            warmup_steps = args.lr_warmup_fraction * decay_steps
322
323
        else:
            warmup_steps = args.lr_warmup_samples
324
    else:
325
326
327
        raise Exception(
            'either train-iters or train-samples should be provided.')

328
329
    lr_scheduler = AnnealingLR(
        optimizer,
330
        max_lr=args.lr,
331
        min_lr=args.min_lr,
332
333
        warmup_steps=warmup_steps,
        decay_steps=decay_steps,
334
        decay_style=args.lr_decay_style,
335
336
337
338
339
340
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


Mohammad's avatar
Mohammad committed
341
def setup_model_and_optimizer(model_provider_func):
342
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
343
    args = get_args()
344

Mohammad's avatar
Mohammad committed
345
    model = get_model(model_provider_func)
346

347
    unwrapped_model = unwrap_model(model,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
348
                                   (torchDDP, LocalDDP, Float16Module))
349
350
    optimizer = get_megatron_optimizer(unwrapped_model)

Mohammad's avatar
Mohammad committed
351
    lr_scheduler = get_learning_rate_scheduler(optimizer)
352
353

    if args.load is not None:
354
355
356
357
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
358
        timers('load-checkpoint').start()
359
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
360
361
        # need to set train_samples to None
        args.train_samples = None
362
        torch.distributed.barrier()
363
364
        timers('load-checkpoint').stop()
        timers.log(['load-checkpoint'])
365
366
367
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
368
    # We only support local DDP with multiple micro-batches.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
369
    if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1:
mohammad's avatar
mohammad committed
370
371
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
372
    # get model without FP16 and/or TorchDDP wrappers
Mostofa Patwary's avatar
Mostofa Patwary committed
373
374
    if args.iteration == 0 and len(unwrapped_model) == 1 \
        and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
Mostofa Patwary's avatar
Mostofa Patwary committed
375
        print_rank_0("Initializing ICT from pretrained BERT model")
Mostofa Patwary's avatar
Mostofa Patwary committed
376
        unwrapped_model[0].init_state_dict_from_bert()
Mostofa Patwary's avatar
Mostofa Patwary committed
377
378
        if args.fp16:
            optimizer.reload_model_params()
Neel Kant's avatar
Neel Kant committed
379

380
381
382
    return model, optimizer, lr_scheduler


383
384
385
386
387
388
389
def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
390
391
392
393
394
    if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_ddp:
        for partition in model:
            partition.zero_grad_buffer()
    else:
        optimizer.zero_grad()
395
396

    if mpu.get_pipeline_model_parallel_world_size() > 1:
397
398
        if args.virtual_pipeline_model_parallel_size is not None:
            forward_backward_func = forward_backward_pipelining_with_interleaving
399
400
401
            assert get_num_microbatches() % args.pipeline_model_parallel_size == 0, \
                'number of microbatches is not divisible by pipeline-parallel ' \
                'size when using interleaved schedule'
402
        else:
403
            forward_backward_func = forward_backward_pipelining_without_interleaving
404
    else:
405
406
407
408
        forward_backward_func = forward_backward_no_pipelining
    losses_reduced = forward_backward_func(
        forward_step_func, data_iterator, model,
        optimizer, timers, forward_only=False)
409
410
411

    # All-reduce if needed.
    if args.DDP_impl == 'local':
412
        timers('backward-params-all-reduce').start()
413
        for model_module in model:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
414
            model_module.allreduce_gradients()
415
        timers('backward-params-all-reduce').stop()
416

417
418
419
420
    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
421
    timers('backward-embedding-all-reduce').start()
422
423
    if (mpu.is_pipeline_first_stage(ignore_virtual=True) or
        mpu.is_pipeline_last_stage(ignore_virtual=True)) and \
424
            mpu.get_pipeline_model_parallel_world_size() > 1:
425
426
427
428
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            unwrapped_model = model[0]
        elif mpu.is_pipeline_last_stage(ignore_virtual=True):
            unwrapped_model = model[-1]
429
        unwrapped_model = unwrap_model(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
430
            unwrapped_model, (torchDDP, LocalDDP, Float16Module))
431

432
433
        if unwrapped_model.share_word_embeddings:
            word_embeddings_weight = unwrapped_model.word_embeddings_weight()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
434
435
436
437
438
            if args.DDP_impl == 'local':
                grad = word_embeddings_weight.main_grad
            else:
                grad = word_embeddings_weight.grad
            torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
439
    timers('backward-embedding-all-reduce').stop()
440

441
442
    # Update parameters.
    timers('optimizer').start()
443
    update_successful, grad_norm, num_zeros_in_grad = optimizer.step()
444
445
446
    timers('optimizer').stop()

    # Update learning rate.
447
    if update_successful:
448
449
450
451
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
        lr_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
452
        skipped_iter = 0
453
454
455
    else:
        skipped_iter = 1

456
    if mpu.is_pipeline_last_stage(ignore_virtual=True):
457
458
459
460
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
461
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
462
463
        return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
    return {}, skipped_iter, grad_norm, num_zeros_in_grad
464
465


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
466
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
467
                 loss_scale, report_memory_flag, skipped_iter,
468
                 grad_norm, params_norm, num_zeros_in_grad):
Mohammad's avatar
Mohammad committed
469
470
471
472
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
473

mohammad's avatar
mohammad committed
474
475
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
476
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
477
478
479
480
481
482
483
484
485
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
486
487
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
488
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
489
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
490
    for key in loss_dict:
mohammad's avatar
mohammad committed
491
        if not skipped_iter:
492
493
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
494
495
496
497
498
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
499
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
500
501
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
502
503
504

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
505

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
506
507
508
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
509
510
511
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
512
    add_to_logging('forward-backward-send-forward-backward-recv')
513
514
515
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
516
    add_to_logging('backward-send-forward-recv')
517
    add_to_logging('backward-send-backward-recv')
518
    add_to_logging('backward-params-all-reduce')
519
    add_to_logging('backward-embedding-all-reduce')
520
    add_to_logging('optimizer-copy-to-main-grad')
mohammad's avatar
mohammad committed
521
    add_to_logging('optimizer-unscale-and-check-inf')
522
523
    add_to_logging('optimizer-clip-main-grad')
    add_to_logging('optimizer-copy-main-to-model-params')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
524
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
525
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
526

mohammad's avatar
mohammad committed
527
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
528
529
530
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
531
532
533
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
534
    # Tensorboard values.
535
536
537
538
539
540
541
542
543
544
    if writer and (iteration % args.tensorboard_log_interval == 0 ) and \
       is_last_rank():
        if args.log_learning_rate_to_tensorboard:
            writer.add_scalar('learning-rate', learning_rate, iteration)
            writer.add_scalar('learning-rate vs samples', learning_rate,
                              args.consumed_train_samples)
        if args.log_batch_size_to_tensorboard:
            writer.add_scalar('batch-size', batch_size, iteration)
            writer.add_scalar('batch-size vs samples', batch_size,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
545
        for key in loss_dict:
mohammad's avatar
mohammad committed
546
547
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
548
                              args.consumed_train_samples)
549
550
551
552
        if args.log_loss_scale_to_tensorboard:
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
                              args.consumed_train_samples)
553
554
555
556
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
557
558
559
        if num_zeros_in_grad is not None:
            writer.add_scalar('num-zeros', num_zeros_in_grad, iteration)
            writer.add_scalar('num-zeros vs samples', num_zeros_in_grad,
Rewon Child's avatar
Rewon Child committed
560
                              args.consumed_train_samples)
mohammad's avatar
mohammad committed
561
562
563
564
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
565
566
567
        if args.log_timers_to_tensorboard:
            timers.write(timers_to_log, writer, iteration,
                         normalizer=total_iterations)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
568
569

    if iteration % args.log_interval == 0:
570
        elapsed_time = timers('interval-time').elapsed()
mohammad's avatar
mohammad committed
571
        elapsed_time_per_iteration = elapsed_time / total_iterations
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
572
        if writer and torch.distributed.get_rank() == 0:
573
574
575
            if args.log_timers_to_tensorboard:
                writer.add_scalar('iteration-time',
                                  elapsed_time_per_iteration, iteration)
576
577
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
578
        log_string += ' consumed samples: {:12d} |'.format(
579
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
580
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
581
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
582
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
583
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
584
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
585
586
587
588
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
589
590
591
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
592
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
593
594
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
595
596
        if num_zeros_in_grad is not None:
            log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
mohammad's avatar
mohammad committed
597
598
        if params_norm is not None:
            log_string += ' params norm: {:.3f} |'.format(params_norm)
mohammad's avatar
mohammad committed
599
600
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
601
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
602
603
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
604
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
605
        total_loss_dict[nan_iters_key] = 0
606
        print_rank_last(log_string)
607
608
609
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
610
611
612
613
614
615
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


616
617
618
619
620
def save_checkpoint_and_time(iteration, model, optimizer, lr_scheduler):
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
621
    timers('save-checkpoint').start()
622
623
    save_checkpoint(iteration, model, optimizer, lr_scheduler)
    torch.distributed.barrier()
624
625
    timers('save-checkpoint').stop()
    timers.log(['save-checkpoint'])
626
627


628
def train(forward_step_func, model, optimizer, lr_scheduler,
629
          train_data_iterator, valid_data_iterator):
630
    """Train the model function."""
Mohammad's avatar
Mohammad committed
631
632
    args = get_args()
    timers = get_timers()
633

634
635
636
    # Write args to tensorboard
    write_args_to_tensorboard()

637
    # Turn on training mode which enables dropout.
638
639
    for model_module in model:
        model_module.train()
640
641
642
643
644
645
646

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

zihanl's avatar
zihanl committed
647
648
    # if not args.run_dialog:
    timers('interval-time').start()
zihanl's avatar
zihanl committed
649

650
    print_datetime('before the start of training step')
651
652
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
653
        update_num_microbatches(args.consumed_train_samples)
654
655
656
657
658
659
        loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
            train_step(forward_step_func,
                       train_data_iterator,
                       model,
                       optimizer,
                       lr_scheduler)
660
        iteration += 1
661
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
662
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
663
                                       get_num_microbatches()
664
665

        # Logging.
666
        loss_scale = optimizer.get_loss_scale().item()
667
668
669
        params_norm = None
        if args.log_params_norm:
            params_norm = calc_params_l2_norm(model)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
670
671
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
672
                                          iteration, loss_scale,
673
                                          report_memory_flag, skipped_iter,
674
                                          grad_norm, params_norm, num_zeros_in_grad)
675
676

        # Autoresume
677
678
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
679
            check_adlr_autoresume_termination(iteration, model, optimizer,
680
                                              lr_scheduler)
681
682
683
684
685
686

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
687
                                       valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
688
                                       iteration, False)
689

690
691
692
693
694
695
696
697
        # Checkpointing
        saved_checkpoint = False
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
                                     lr_scheduler)
            saved_checkpoint = True

698
699
700
701
702
703
704
705
706
707
708
709
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
                                             lr_scheduler)
710
                print_datetime('exiting program after {} minutes'.format(train_time))
711
712
                sys.exit()

713
        # Exiting based on iterations
714
        if args.exit_interval and iteration % args.exit_interval == 0:
715
716
717
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
                                         lr_scheduler)
718
            torch.distributed.barrier()
719
            print_datetime('exiting program at iteration {}'.format(iteration))
Mohammad's avatar
Mohammad committed
720
            sys.exit()
721

722

mohammad's avatar
mohammad committed
723
    return iteration
724
725


Mohammad's avatar
Mohammad committed
726
def evaluate(forward_step_func, data_iterator, model, verbose=False):
727
    """Evaluation."""
Mohammad's avatar
Mohammad committed
728
    args = get_args()
729
730

    # Turn on evaluation mode which disables dropout.
731
732
    for model_module in model:
        model_module.eval()
733
734
735
736
737
738
739
740
741
742

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
743

744
745
746
            if mpu.get_pipeline_model_parallel_world_size() > 1:
                if args.virtual_pipeline_model_parallel_size is not None:
                    forward_backward_func = forward_backward_pipelining_with_interleaving
747
                else:
748
                    forward_backward_func = forward_backward_pipelining_without_interleaving
749
750
751
752
753
754
755
756
757
            else:
                forward_backward_func = forward_backward_no_pipelining
            loss_dicts = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True)

            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                # Reduce across processes.
                for loss_dict in loss_dicts:
758
                    for key in loss_dict:
759
760
                        total_loss_dict[key] = total_loss_dict.get(
                            key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
761

762
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
763
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
764
                                           * get_num_microbatches()
765
    # Move model back to the train mode.
766
767
    for model_module in model:
        model_module.train()
768
769

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
770
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
771
772
773
774
775

    return total_loss_dict

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
Mohammad's avatar
Mohammad committed
776
                               iteration, verbose=False):
777
    """Helper function to evaluate and dump results on screen."""
778
    args = get_args()
Mohammad's avatar
Mohammad committed
779
780
781
    writer = get_tensorboard_writer()

    total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
782
783
784
785
786
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
787
        if writer and is_last_rank():
mohammad's avatar
mohammad committed
788
            writer.add_scalar('{} validation'.format(key),
789
790
                              total_loss_dict[key].item(),
                              iteration)
mohammad's avatar
mohammad committed
791
            writer.add_scalar('{} validation vs samples'.format(key),
792
793
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
794
            if args.log_validation_ppl_to_tensorboard:
mohammad's avatar
mohammad committed
795
                writer.add_scalar('{} validation ppl'.format(key), ppl,
796
                                  iteration)
mohammad's avatar
mohammad committed
797
                writer.add_scalar('{} validation ppl vs samples'.format(key),
798
                                  ppl, args.consumed_train_samples)
799
800

    length = len(string) + 1
801
802
803
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
804
805


Vijay Korthikanti's avatar
Vijay Korthikanti committed
806
def cyclic_iter(iter):
807
    while True:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
808
        for x in iter:
809
810
            yield x

811
812
813
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
814
    args = get_args()
815

816
817
818
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
819
820
821

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
822
823
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
824
        args.consumed_train_samples = args.iteration * args.global_batch_size
825
    if args.iteration > 0 and args.consumed_valid_samples == 0:
826
827
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
828
        args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
mohammad's avatar
mohammad committed
829
            args.eval_iters * args.global_batch_size
830

zihanl's avatar
zihanl committed
831
832
833
834
    # if args.run_dialog:
    #     args.consumed_train_samples = 0
    #     args.consumed_valid_samples = 0
    #     args.iteration = 0
835

836
    # Data loader only on rank 0 of each model parallel group.
837
    if mpu.get_tensor_model_parallel_rank() == 0:
838
        
zihanl's avatar
zihanl committed
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
        # if args.run_dialog:
        #     # Build the datasets.
        #     train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider()

        #     print_rank_0(' > datasets target sizes:')
        #     train_size = len(train_ds)
        #     valid_size = len(valid_ds)
        #     test_size = len(test_ds)
        #     print_rank_0('    train:      {}'.format(train_size))
        #     print_rank_0('    validation: {}'.format(valid_size))
        #     print_rank_0('    test:       {}'.format(test_size))

        #     batch_size = args.global_batch_size
        #     args.train_iters = train_size // batch_size + 1
        #     args.eval_iters = valid_size // batch_size + 1
        #     args.test_iters = test_size // batch_size + 1

        # else:
        # Number of train/valid/test samples.
        if args.train_samples:
            train_samples = args.train_samples
860
        else:
zihanl's avatar
zihanl committed
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                    args.eval_iters
        test_iters = args.eval_iters
        train_val_test_num_samples = [train_samples,
                                    eval_iters * args.global_batch_size,
                                    test_iters * args.global_batch_size]
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)
876
877

        # Build dataloders.
878
879
880
881
882
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
883
884
885
886
887
888
889
890
891
892
893
894
895

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
896
897
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
898
899
900
901
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

Vijay Korthikanti's avatar
Vijay Korthikanti committed
902

903
    # Build iterators.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
904
905
906
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic']

907
    if train_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
908
909
        train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(train_dataloader))
910
911
912
    else:
        train_data_iterator = None

913
    if valid_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
914
915
        valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(valid_dataloader))
916
    else:
917
        valid_data_iterator = None
918

919
    if test_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
920
921
        test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
                             else iter(cyclic_iter(test_dataloader))
922
923
924
    else:
        test_data_iterator = None

925
    return train_data_iterator, valid_data_iterator, test_data_iterator