training.py 42.9 KB
Newer Older
liangjing's avatar
v1  
liangjing committed
1
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
2

Mohammad's avatar
Mohammad committed
3
"""Pretrain utilities."""
4
5
6

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
7
import sys
8
9
10
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()
11
12
13
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

Neel Kant's avatar
Neel Kant committed
14
from megatron import get_args
15
from megatron import get_signal_handler
Mohammad's avatar
Mohammad committed
16
17
from megatron import get_timers
from megatron import get_tensorboard_writer
18
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
19
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
20
from megatron import is_last_rank
mohammad's avatar
mohammad committed
21
from megatron import update_num_microbatches
22
from megatron.core import mpu, tensor_parallel
liangjing's avatar
v1  
liangjing committed
23
from megatron.core.utils import get_model_config
Neel Kant's avatar
Neel Kant committed
24
from megatron import print_rank_0
25
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
26
27
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
28
from megatron.model import Float16Module
29
from megatron.model import GPTModel
30
from megatron.core.enums import ModelType
mohammad's avatar
mohammad committed
31
from megatron.optimizer import get_megatron_optimizer
Mohammad's avatar
Mohammad committed
32
from megatron.initialize import initialize_megatron
33
from megatron.initialize import write_args_to_tensorboard
34
from megatron.initialize import set_jit_fusion_options
35
from megatron.optimizer_param_scheduler import OptimizerParamScheduler
36
37
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
38
from megatron.utils import unwrap_model
Vijay Korthikanti's avatar
Vijay Korthikanti committed
39
from megatron.data.data_samplers import build_pretraining_data_loader
mohammad's avatar
mohammad committed
40
from megatron.utils import calc_params_l2_norm
41
from megatron.core.pipeline_parallel import get_forward_backward_func
42
from megatron.utils import report_memory
43
from megatron.model.vision.knn_monitor import compute_feature_bank
44

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
45

46
47
48
49
50
51
52
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


53
def pretrain(train_valid_test_dataset_provider,
54
             model_provider,
55
             model_type,
56
             forward_step_func,
57
             process_non_loss_data_func=None,
58
             extra_args_provider=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
59
             args_defaults={}):
60
61
62
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
63
64
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
65
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
66
        4) train the modle using the forward_step_func.
67
68

    Arguments:
69
70
71
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
72
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
73
        model_type: an enum that specifies the type of model being trained.
Mohammad's avatar
Mohammad committed
74
75
76
77
78
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
79
80
81
82
        process_non_loss_data_func: a function to post process outputs of the
            network. It can be used for dumping output tensors (e.g images) to
            tensorboard. It takes `collected data`(list of tensors),
            `current iteration index` and `tensorboard writer` as arguments.
Mohammad's avatar
Mohammad committed
83
84
85
86
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
87
88
    """

89
    # Initalize and get arguments, timers, and Tensorboard writer.
90
91
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
92
93
    # Set pytorch JIT layer fusion options and warmup JIT functions.
    set_jit_fusion_options()
94

95
96
97
98
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
99
    start_time_tensor = torch.cuda.DoubleTensor([_TRAIN_START_TIME])
100
101
102
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
103
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
104
105
106
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

107
    args = get_args()
Mohammad's avatar
Mohammad committed
108
    timers = get_timers()
109
110

    # Model, optimizer, and learning rate.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
111
112
113
    timers('model-and-optimizer-setup', log_level=0).start(barrier=True)
    model, optimizer, opt_param_scheduler = setup_model_and_optimizer(
        model_provider, model_type)
114
    timers('model-and-optimizer-setup').stop()
115
116
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
liangjing's avatar
v1  
liangjing committed
117
    config = get_model_config(model[0])
118
119

    # Data stuff.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
120
121
    timers('train/valid/test-data-iterators-setup', log_level=0).start(
        barrier=True)
122
    if args.virtual_pipeline_model_parallel_size is not None:
123
        all_data_iterators = [
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
124
125
            build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
126
127
            for _ in range(len(model))
        ]
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
128
129
130
131
132
133
        train_data_iterator = [data_iterators[0]
                               for data_iterators in all_data_iterators]
        valid_data_iterator = [data_iterators[1]
                               for data_iterators in all_data_iterators]
        test_data_iterator = [data_iterators[2]
                              for data_iterators in all_data_iterators]
134
135
136
137
138
    else:
        train_data_iterator, valid_data_iterator, test_data_iterator \
            = build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
    timers('train/valid/test-data-iterators-setup').stop()
mshoeybi's avatar
mshoeybi committed
139
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
140
141

    # Print setup timing.
142
    print_rank_0('done with setup ...')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
143
144
    timers.log(['model-and-optimizer-setup',
                'train/valid/test-data-iterators-setup'], barrier=True)
145

liangjing's avatar
v1  
liangjing committed
146
147
    if not args.skip_train:
        print_rank_0('training ...')
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
148

liangjing's avatar
v1  
liangjing committed
149
150
151
        if args.dataloader_type == 'cyclic' and args.retro_add_retriever:
            args.train_iters = args.retro_cyclic_train_iters
            print_rank_0("retro cyclic train iters : %d" % args.train_iters)
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
152

liangjing's avatar
v1  
liangjing committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
        iteration = 0
        if args.do_train and args.train_iters > 0:
            iteration = train(forward_step_func,
                              model, optimizer, opt_param_scheduler,
                              train_data_iterator, valid_data_iterator,
                              process_non_loss_data_func, config)

        print_datetime('after training is done')

        if args.save and iteration != 0:
            save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
    else:
        print_rank_0('skipping training (--skip-train is on) ...')

        iteration = args.iteration
Mohammad's avatar
Mohammad committed
168

169
    if args.do_valid:
liangjing's avatar
v1  
liangjing committed
170
        prefix = f'iteration {iteration} on validation set'
171
        evaluate_and_print_results(prefix, forward_step_func,
172
                                   valid_data_iterator, model,
liangjing's avatar
v1  
liangjing committed
173
174
                                   iteration, process_non_loss_data_func, config,
                                   verbose=True, write_to_tensorboard=not args.skip_train)
175
176

    if args.do_test:
liangjing's avatar
v1  
liangjing committed
177
        prefix = f'iteration {iteration} on test set'
178
179
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
liangjing's avatar
v1  
liangjing committed
180
181
182
                                   iteration, process_non_loss_data_func, config,
                                   verbose=True, write_to_tensorboard=not args.skip_train)

183

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
200
201
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
202
203
            iterations += 1
        # Reset
204
        update_num_microbatches(0, consistency_check=False)
205
206
207
208
209
210
211
212
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

213

214
def get_model(model_provider_func, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=True):
215
    """Build the model."""
Mohammad's avatar
Mohammad committed
216
    args = get_args()
217
    args.model_type = model_type
218

219
    # Build model.
220
221
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
       args.virtual_pipeline_model_parallel_size is not None:
222
223
        assert model_type != ModelType.encoder_and_decoder, \
            "Interleaved schedule not supported for model with both encoder and decoder"
224
225
226
        model = []
        for i in range(args.virtual_pipeline_model_parallel_size):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
227
228
229
            # Set pre_process and post_process only after virtual rank is set.
            pre_process = mpu.is_pipeline_first_stage()
            post_process = mpu.is_pipeline_last_stage()
230
            this_model = model_provider_func(
231
232
233
                pre_process=pre_process,
                post_process=post_process
            )
234
            this_model.model_type = model_type
235
            model.append(this_model)
236
    else:
237
238
        pre_process = mpu.is_pipeline_first_stage()
        post_process = mpu.is_pipeline_last_stage()
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
        add_encoder = True
        add_decoder = True
        if model_type == ModelType.encoder_and_decoder:
            if mpu.get_pipeline_model_parallel_world_size() > 1:
                assert args.pipeline_model_parallel_split_rank is not None, \
                    "Split rank needs to be specified for model with both encoder and decoder"
                rank = mpu.get_pipeline_model_parallel_rank()
                split_rank = args.pipeline_model_parallel_split_rank
                world_size = mpu.get_pipeline_model_parallel_world_size()
                pre_process = rank == 0 or rank == split_rank
                post_process = (rank == (split_rank - 1)) or (
                        rank == (world_size - 1))
                add_encoder = mpu.is_pipeline_stage_before_split()
                add_decoder = mpu.is_pipeline_stage_after_split()
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process,
                add_encoder=add_encoder,
                add_decoder=add_decoder)
        else:
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process
            )
        model.model_type = model_type
264

265
266
    if not isinstance(model, list):
        model = [model]
267

268
269
270
271
272
273
    # Disallow training and inference with Transformer Engine
    # for non-GPT models
    args.allow_transformer_engine = all([type(m) == GPTModel for m in model])
    assert args.allow_transformer_engine or args.transformer_impl == 'local', \
        'Transformer Engine is only approved for GPT models'

274
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
275
276
277
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
278
279
    for model_module in model:
        for param in model_module.parameters():
280
            tensor_parallel.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
281

282
283
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
284
        print(' > number of parameters on (tensor, pipeline) '
285
              'model parallel rank ({}, {}): {}'.format(
286
287
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
288
289
            sum([sum([p.nelement() for p in model_module.parameters()])
                 for model_module in model])), flush=True)
290
291

    # GPU allocation.
292
293
    for model_module in model:
        model_module.cuda(torch.cuda.current_device())
294
295

    # Fp16 conversion.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
296
297
    if args.fp16 or args.bf16:
        model = [Float16Module(model_module, args) for model_module in model]
298

299
300
301
302
303
304
    if wrap_with_ddp:
        if args.DDP_impl == 'torch':
            i = torch.cuda.current_device()
            model = [torchDDP(model_module, device_ids=[i], output_device=i,
                              process_group=mpu.get_data_parallel_group())
                     for model_module in model]
305

306
307
308
309
310
        elif args.DDP_impl == 'local':
            model = [LocalDDP(model_module,
                              args.accumulate_allreduce_grads_in_fp32,
                              args.use_contiguous_buffers_in_local_ddp)
                     for model_module in model]
311
312
313
314
            # broad cast params from data parallel src rank to other data parallel ranks
            if args.data_parallel_random_init:
                for model_module in model:
                    model_module.broadcast_params()
315
316
317
        else:
            raise NotImplementedError('Unknown DDP implementation specified: '
                                      '{}. Exiting.'.format(args.DDP_impl))
318

319
    return model
320
321


322
def get_optimizer_param_scheduler(optimizer):
323
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
324
    args = get_args()
325

326
327
328
329
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
Vijay Korthikanti's avatar
Vijay Korthikanti committed
330
331
        lr_decay_steps = args.lr_decay_iters * args.global_batch_size
        wd_incr_steps = args.train_iters * args.global_batch_size
332
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
333
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
334
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
335
            lr_warmup_steps = args.lr_warmup_iters * args.global_batch_size
336
337
338
339
340
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
341
        update_train_iters(args)
342
343
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
Vijay Korthikanti's avatar
Vijay Korthikanti committed
344
345
        lr_decay_steps = args.lr_decay_samples
        wd_incr_steps = args.train_samples
346
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
347
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
348
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
349
            lr_warmup_steps = args.lr_warmup_samples
350
    else:
351
352
353
        raise Exception(
            'either train-iters or train-samples should be provided.')

354
    opt_param_scheduler = OptimizerParamScheduler(
355
        optimizer,
liangjing's avatar
v1  
liangjing committed
356
        init_lr=args.lr_warmup_init,
357
        max_lr=args.lr,
358
        min_lr=args.min_lr,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
359
360
361
        lr_warmup_steps=lr_warmup_steps,
        lr_decay_steps=lr_decay_steps,
        lr_decay_style=args.lr_decay_style,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
362
363
        start_wd=args.start_weight_decay,
        end_wd=args.end_weight_decay,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
364
        wd_incr_steps=wd_incr_steps,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
365
        wd_incr_style=args.weight_decay_incr_style,
366
367
        use_checkpoint_opt_param_scheduler=args.use_checkpoint_opt_param_scheduler,
        override_opt_param_scheduler=args.override_opt_param_scheduler)
368

369
    return opt_param_scheduler
370
371


372
373
374
375
376
def setup_model_and_optimizer(model_provider_func,
                              model_type,
                              no_wd_decay_cond=None,
                              scale_lr_cond=None,
                              lr_mult=1.0):
377
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
378
    args = get_args()
379

380
    model = get_model(model_provider_func, model_type)
381
    unwrapped_model = unwrap_model(model,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
382
                                   (torchDDP, LocalDDP, Float16Module))
Lawrence McAfee's avatar
Lawrence McAfee committed
383

384
    optimizer = get_megatron_optimizer(model, no_wd_decay_cond,
385
                                       scale_lr_cond, lr_mult)
386
    opt_param_scheduler = get_optimizer_param_scheduler(optimizer)
387
388

    if args.load is not None:
389
        timers = get_timers()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
390
        timers('load-checkpoint', log_level=0).start(barrier=True)
391
        args.iteration = load_checkpoint(model, optimizer, opt_param_scheduler)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
392
        timers('load-checkpoint').stop(barrier=True)
393
        timers.log(['load-checkpoint'])
394
395
396
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
397
    # We only support local DDP with multiple micro-batches.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
398
    if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1:
mohammad's avatar
mohammad committed
399
400
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
401
    # get model without FP16 and/or TorchDDP wrappers
Mostofa Patwary's avatar
Mostofa Patwary committed
402
403
    if args.iteration == 0 and len(unwrapped_model) == 1 \
        and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
Mostofa Patwary's avatar
Mostofa Patwary committed
404
        print_rank_0("Initializing ICT from pretrained BERT model")
Mostofa Patwary's avatar
Mostofa Patwary committed
405
        unwrapped_model[0].init_state_dict_from_bert()
Mostofa Patwary's avatar
Mostofa Patwary committed
406
407
        if args.fp16:
            optimizer.reload_model_params()
Neel Kant's avatar
Neel Kant committed
408

409
    return model, optimizer, opt_param_scheduler
410
411


412

413
def train_step(forward_step_func, data_iterator,
liangjing's avatar
v1  
liangjing committed
414
               model, optimizer, opt_param_scheduler, config):
415
416
417
418
419
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
420
    if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_local_ddp:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
421
422
        for partition in model:
            partition.zero_grad_buffer()
423
    optimizer.zero_grad()
424

425
    # Forward pass.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
426
427
    timers('forward-backward', log_level=1).start(
        barrier=args.barrier_with_L1_time)
428
    forward_backward_func = get_forward_backward_func()
liangjing's avatar
v1  
liangjing committed
429
430
431
432
433

    # set timers to None if none of the timers in fwd_bwd are active, just to save the checks
    if args.timing_log_level < 2:
        config.timers = None

434
    losses_reduced = forward_backward_func(
435
436
437
438
        forward_step_func=forward_step_func,
        data_iterator=data_iterator,
        model=model,
        num_microbatches=get_num_microbatches(),
liangjing's avatar
v1  
liangjing committed
439
440
441
442
443
444
445
446
        seq_length=args.seq_length,
        micro_batch_size=args.micro_batch_size,
        decoder_seq_length=args.decoder_seq_length,
        forward_only=False)

    # reset timers if necessary
    if config.timers is None:
        config.timers = timers
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
447
    timers('forward-backward').stop()
448

449
    # Empty unused memory.
Lawrence McAfee's avatar
Lawrence McAfee committed
450
    if args.empty_unused_memory_level >= 1:
451
452
        torch.cuda.empty_cache()

453
    # Reduce gradients.
454
    optimizer.reduce_model_grads(args, timers)
455

Lawrence McAfee's avatar
Lawrence McAfee committed
456
    # Vision gradients.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
457
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
458
459
460
461
        unwrapped_model = unwrap_model(model[0],
                                       (torchDDP, LocalDDP, Float16Module))
        unwrapped_model.cancel_gradients_last_layer(args.curr_iteration)

462
    # Update parameters.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
463
    timers('optimizer', log_level=1).start(barrier=args.barrier_with_L1_time)
Lawrence McAfee's avatar
Lawrence McAfee committed
464
    update_successful, grad_norm, num_zeros_in_grad = optimizer.step(args, timers)
465
466
    timers('optimizer').stop()

467
    # Gather params.
468
    if update_successful:
Lawrence McAfee's avatar
Lawrence McAfee committed
469
        optimizer.gather_model_params(args, timers)
470

Lawrence McAfee's avatar
Lawrence McAfee committed
471
    # Vision momentum.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
472
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
473
474
475
476
        unwrapped_model = unwrap_model(model[0],
                                       (torchDDP, LocalDDP, Float16Module))
        unwrapped_model.update_momentum(args.curr_iteration)

477
    # Update learning rate.
478
    if update_successful:
479
480
481
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
482
        opt_param_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
483
        skipped_iter = 0
484
485
486
    else:
        skipped_iter = 1

487
    # Empty unused memory.
Lawrence McAfee's avatar
Lawrence McAfee committed
488
    if args.empty_unused_memory_level >= 2:
489
490
        torch.cuda.empty_cache()

491
    if mpu.is_pipeline_last_stage(ignore_virtual=True):
492
493
494
495
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
496
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
497
498
        return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
    return {}, skipped_iter, grad_norm, num_zeros_in_grad
499
500


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
501
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
502
                 loss_scale, report_memory_flag, skipped_iter,
503
                 grad_norm, params_norm, num_zeros_in_grad):
Mohammad's avatar
Mohammad committed
504
505
506
507
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
508

mohammad's avatar
mohammad committed
509
510
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
511
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
512
513
514
515
516
517
518
519
520
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
521
522
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
523
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
524
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
525
    for key in loss_dict:
mohammad's avatar
mohammad committed
526
        if not skipped_iter:
527
528
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
529
530
531
532
533
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
534
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
535
536
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
537
538

    # Logging.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
    timers_to_log = [
        'forward-backward',
        'forward-compute',
        'backward-compute',
        'batch-generator',
        'forward-recv',
        'forward-send',
        'backward-recv',
        'backward-send',
        'forward-send-forward-recv',
        'forward-send-backward-recv',
        'backward-send-forward-recv',
        'backward-send-backward-recv',
        'forward-backward-send-forward-backward-recv',
        'layernorm-grads-all-reduce',
        'embedding-grads-all-reduce',
        'grads-all-reduce',
        'grads-reduce-scatter',
        'params-all-gather',
        'optimizer-copy-to-main-grad',
        'optimizer-unscale-and-check-inf',
        'optimizer-clip-main-grad',
        'optimizer-count-zeros',
        'optimizer-inner-step',
        'optimizer-copy-main-to-model-params',
        'optimizer']
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
565

mohammad's avatar
mohammad committed
566
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
567
568
569
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
570
571
572
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
573
    # Tensorboard values.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
574
575
576
577
578
579
    # Timer requires all the ranks to call.
    if args.log_timers_to_tensorboard and \
       (iteration % args.tensorboard_log_interval == 0):
        timers.write(timers_to_log, writer, iteration,
                     normalizer=total_iterations)
    if writer and (iteration % args.tensorboard_log_interval == 0):
580
581
582
583
584
585
586
587
        if args.log_learning_rate_to_tensorboard:
            writer.add_scalar('learning-rate', learning_rate, iteration)
            writer.add_scalar('learning-rate vs samples', learning_rate,
                              args.consumed_train_samples)
        if args.log_batch_size_to_tensorboard:
            writer.add_scalar('batch-size', batch_size, iteration)
            writer.add_scalar('batch-size vs samples', batch_size,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
588
        for key in loss_dict:
mohammad's avatar
mohammad committed
589
590
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
591
                              args.consumed_train_samples)
592
593
594
595
        if args.log_loss_scale_to_tensorboard:
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
                              args.consumed_train_samples)
596
597
598
599
        if args.log_world_size_to_tensorboard:
            writer.add_scalar('world-size', args.world_size, iteration)
            writer.add_scalar('world-size vs samples', args.world_size,
                              args.consumed_train_samples)
600
601
602
603
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
604
605
606
        if num_zeros_in_grad is not None:
            writer.add_scalar('num-zeros', num_zeros_in_grad, iteration)
            writer.add_scalar('num-zeros vs samples', num_zeros_in_grad,
Rewon Child's avatar
Rewon Child committed
607
                              args.consumed_train_samples)
mohammad's avatar
mohammad committed
608
609
610
611
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
        if args.log_memory_to_tensorboard:
            mem_stats = torch.cuda.memory_stats()
            writer.add_scalar(
                "mem-reserved-bytes",
                mem_stats["reserved_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-bytes",
                mem_stats["allocated_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-count",
                mem_stats["allocation.all.current"],
                iteration,
            )
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
629
630

    if iteration % args.log_interval == 0:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
631
        elapsed_time = timers('interval-time').elapsed(barrier=True)
mohammad's avatar
mohammad committed
632
        elapsed_time_per_iteration = elapsed_time / total_iterations
mshoeybi's avatar
mshoeybi committed
633
        if writer:
634
635
636
            if args.log_timers_to_tensorboard:
                writer.add_scalar('iteration-time',
                                  elapsed_time_per_iteration, iteration)
637
638
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
639
        log_string += ' consumed samples: {:12d} |'.format(
640
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
641
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
642
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
643
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
644
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
645
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
646
647
648
649
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
650
651
652
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
653
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
654
655
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
656
657
        if num_zeros_in_grad is not None:
            log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
mohammad's avatar
mohammad committed
658
659
        if params_norm is not None:
            log_string += ' params norm: {:.3f} |'.format(params_norm)
mohammad's avatar
mohammad committed
660
661
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
662
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
663
664
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
665
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
666
        total_loss_dict[nan_iters_key] = 0
667
        print_rank_last(log_string)
668
669
670
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
671
672
673
674
675
676
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


677
def save_checkpoint_and_time(iteration, model, optimizer, opt_param_scheduler):
678
679
680
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
681
    timers('save-checkpoint', log_level=0).start(barrier=True)
682
    save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
683
    timers('save-checkpoint').stop(barrier=True)
684
    timers.log(['save-checkpoint'])
685
686


687
def train(forward_step_func, model, optimizer, opt_param_scheduler,
688
          train_data_iterator, valid_data_iterator,
liangjing's avatar
v1  
liangjing committed
689
          process_non_loss_data_func, config):
690
    """Train the model function."""
Mohammad's avatar
Mohammad committed
691
692
    args = get_args()
    timers = get_timers()
693

694
695
696
    # Write args to tensorboard
    write_args_to_tensorboard()

697
    # Turn on training mode which enables dropout.
698
699
    for model_module in model:
        model_module.train()
700
701
702
703
704
705
706

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

liangjing's avatar
v1  
liangjing committed
707
708
709
710
    # Setup some training config params
    config.grad_scale_func = optimizer.scale_loss
    config.timers = timers

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
711
    timers('interval-time', log_level=0).start(barrier=True)
712
    print_datetime('before the start of training step')
713
714
    report_memory_flag = True
    while iteration < args.train_iters:
liangjing's avatar
v1  
liangjing committed
715
716
717
718
719
720
        if args.profile and \
           iteration == args.profile_step_start and \
           torch.distributed.get_rank() in args.profile_ranks:
            torch.cuda.cudart().cudaProfilerStart()
            torch.autograd.profiler.emit_nvtx(record_shapes=True).__enter__()

mohammad's avatar
mohammad committed
721
        update_num_microbatches(args.consumed_train_samples)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
722
        args.curr_iteration = iteration
723
724
725
726
727
        loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
            train_step(forward_step_func,
                       train_data_iterator,
                       model,
                       optimizer,
liangjing's avatar
v1  
liangjing committed
728
729
                       opt_param_scheduler,
                       config)
730
        iteration += 1
731
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
732
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
733
                                       get_num_microbatches()
734
735

        # Logging.
736
        loss_scale = optimizer.get_loss_scale().item()
737
738
739
        params_norm = None
        if args.log_params_norm:
            params_norm = calc_params_l2_norm(model)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
740
741
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
742
                                          iteration, loss_scale,
743
                                          report_memory_flag, skipped_iter,
744
                                          grad_norm, params_norm, num_zeros_in_grad)
745
746

        # Autoresume
747
748
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
749
            check_adlr_autoresume_termination(iteration, model, optimizer,
750
                                              opt_param_scheduler)
751
752
753
754
755
756

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
757
                                       valid_data_iterator, model,
758
                                       iteration, process_non_loss_data_func,
liangjing's avatar
v1  
liangjing committed
759
                                       config, False)
760

761
762
        # Checkpointing
        saved_checkpoint = False
763
764
765
766
        if args.exit_signal_handler:
            signal_handler = get_signal_handler()
            if any(signal_handler.signals_received()):
                save_checkpoint_and_time(iteration, model, optimizer,
767
                                         opt_param_scheduler)
768
769
770
                print_datetime('exiting program after receiving SIGTERM.')
                sys.exit()

771
772
773
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
774
                                     opt_param_scheduler)
775
776
            saved_checkpoint = True

777
778
779
780
781
782
783
784
785
786
787
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
788
                                             opt_param_scheduler)
789
                print_datetime('exiting program after {} minutes'.format(train_time))
790
791
                sys.exit()

792
        # Exiting based on iterations
793
        if args.exit_interval and iteration % args.exit_interval == 0:
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
794
            if args.save and not saved_checkpoint:
795
                save_checkpoint_and_time(iteration, model, optimizer,
796
                                         opt_param_scheduler)
797
            torch.distributed.barrier()
798
            print_datetime('exiting program at iteration {}'.format(iteration))
Mohammad's avatar
Mohammad committed
799
            sys.exit()
800

liangjing's avatar
v1  
liangjing committed
801
802
803
804
        if args.profile and \
           iteration == args.profile_step_end and \
           torch.distributed.get_rank() in args.profile_ranks:
            torch.cuda.cudart().cudaProfilerStop()
805

mohammad's avatar
mohammad committed
806
    return iteration
807
808


809
810
811
812
def evaluate(forward_step_func,
             data_iterator,
             model,
             process_non_loss_data_func,
liangjing's avatar
v1  
liangjing committed
813
             config,
814
             verbose=False):
815
    """Evaluation."""
Mohammad's avatar
Mohammad committed
816
    args = get_args()
817

Vijay Korthikanti's avatar
Vijay Korthikanti committed
818
819
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
        compute_feature_bank(model)
820

821
    # Turn on evaluation mode which disables dropout.
822
823
    for model_module in model:
        model_module.eval()
824
825
826

    total_loss_dict = {}

liangjing's avatar
v1  
liangjing committed
827
828
829
830
831
    # make validation batch size independent from training batch size
    eval_batch_size = args.global_batch_size
    eval_num_microbatches = eval_batch_size // \
        (args.micro_batch_size * args.data_parallel_size)

832
833
    with torch.no_grad():
        iteration = 0
liangjing's avatar
v1  
liangjing committed
834
835
        if verbose:
            print_rank_0(f'Evaluating on {args.eval_iters * eval_batch_size} samples')
836
837
        while iteration < args.eval_iters:
            iteration += 1
liangjing's avatar
v1  
liangjing committed
838
839
            if verbose:
                print_rank_0(f'Evaluating iter {iteration}/{args.eval_iters}')
840

841
            forward_backward_func = get_forward_backward_func()
liangjing's avatar
v1  
liangjing committed
842
843
            # Don't care about timing during evaluation
            config.timers = None
844
            loss_dicts = forward_backward_func(
845
846
847
                forward_step_func=forward_step_func,
                data_iterator=data_iterator,
                model=model,
liangjing's avatar
v1  
liangjing committed
848
849
850
851
852
853
                num_microbatches=eval_num_microbatches,
                seq_length=args.seq_length,
                micro_batch_size=args.micro_batch_size,
                decoder_seq_length=args.decoder_seq_length,
                forward_only=True)
            config.timers = get_timers()
854

855
            # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
856
            if args.empty_unused_memory_level >= 1:
857
858
                torch.cuda.empty_cache()

859
860
861
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                # Reduce across processes.
                for loss_dict in loss_dicts:
862
                    for key in loss_dict:
863
864
                        total_loss_dict[key] = total_loss_dict.get(
                            key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
865

liangjing's avatar
v1  
liangjing committed
866
867
            args.consumed_valid_samples += eval_batch_size

868
869
870
        collected_non_loss_data = None
        if process_non_loss_data_func is not None and is_last_rank():
            collected_non_loss_data = forward_backward_func(
liangjing's avatar
v1  
liangjing committed
871
872
873
874
875
876
877
878
879
                forward_step_func=forward_step_func,
                data_iterator=data_iterator,
                model=model,
                num_microbatches=get_num_microbatches(),
                seq_length=args.seq_length,
                micro_batch_size=args.micro_batch_size,
                decoder_seq_length=args.decoder_seq_length,
                forward_only=True,
                collect_non_loss_data=True)
880

881
    # Move model back to the train mode.
882
883
    for model_module in model:
        model_module.train()
884
885

    for key in total_loss_dict:
liangjing's avatar
v1  
liangjing committed
886
        total_loss_dict[key] /= args.eval_iters * eval_num_microbatches
887

888
    return total_loss_dict, collected_non_loss_data
889
890
891

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
liangjing's avatar
v1  
liangjing committed
892
893
                               iteration, process_non_loss_data_func, config,
                               verbose=False, write_to_tensorboard=True):
894
    """Helper function to evaluate and dump results on screen."""
895
    args = get_args()
liangjing's avatar
v1  
liangjing committed
896
897
898
899
    if write_to_tensorboard:
        writer = get_tensorboard_writer()
    else:
        writer = None
Mohammad's avatar
Mohammad committed
900

901
902
    total_loss_dict, collected_non_loss_data = evaluate(
        forward_step_func, data_iterator, model,
liangjing's avatar
v1  
liangjing committed
903
        process_non_loss_data_func, config, verbose)
904
905
906
907
908
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
mshoeybi's avatar
mshoeybi committed
909
        if writer:
mohammad's avatar
mohammad committed
910
            writer.add_scalar('{} validation'.format(key),
911
912
                              total_loss_dict[key].item(),
                              iteration)
mohammad's avatar
mohammad committed
913
            writer.add_scalar('{} validation vs samples'.format(key),
914
915
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
916
            if args.log_validation_ppl_to_tensorboard:
mohammad's avatar
mohammad committed
917
                writer.add_scalar('{} validation ppl'.format(key), ppl,
918
                                  iteration)
mohammad's avatar
mohammad committed
919
                writer.add_scalar('{} validation ppl vs samples'.format(key),
920
                                  ppl, args.consumed_train_samples)
921

922
923
924
    if process_non_loss_data_func is not None and writer and is_last_rank():
        process_non_loss_data_func(collected_non_loss_data, iteration, writer)

925
    length = len(string) + 1
926
927
928
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
929
930


Vijay Korthikanti's avatar
Vijay Korthikanti committed
931
def cyclic_iter(iter):
932
    while True:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
933
        for x in iter:
934
935
            yield x

Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
936

liangjing's avatar
v1  
liangjing committed
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
def build_train_valid_test_datasets(build_train_valid_test_datasets_provider):
    """Build pretraining datasets."""

    args = get_args()

    # Number of train/valid/test samples.
    if args.train_samples:
        train_samples = args.train_samples
    else:
        train_samples = args.train_iters * args.global_batch_size
    eval_iters = (args.train_iters // args.eval_interval + 1) * \
                 args.eval_iters
    test_iters = args.eval_iters
    train_val_test_num_samples = [train_samples,
                                  eval_iters * args.global_batch_size,
                                  test_iters * args.global_batch_size]
    print_rank_0(' > datasets target sizes (minimum size):')
    print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
    print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
    print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

    # Build the datasets.
    return build_train_valid_test_datasets_provider(train_val_test_num_samples)


Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
962
def build_train_valid_test_data_loaders(
963
        build_train_valid_test_datasets_provider):
liangjing's avatar
v1  
liangjing committed
964
965
    """Build pretraining data loaders."""

Mohammad's avatar
Mohammad committed
966
    args = get_args()
967

968
969
970
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
971
972
973

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
974
975
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
976
        args.consumed_train_samples = args.iteration * args.global_batch_size
977
    if args.iteration > 0 and args.consumed_valid_samples == 0:
978
979
980
        if args.train_samples is None:
            args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
                args.eval_iters * args.global_batch_size
981

982
    # Data loader only on rank 0 of each model parallel group.
983
    if mpu.get_tensor_model_parallel_rank() == 0:
984

liangjing's avatar
v1  
liangjing committed
985
986
987
        # Build datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
            build_train_valid_test_datasets_provider)
988
989

        # Build dataloders.
990
991
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
liangjing's avatar
v1  
liangjing committed
992
993
994
995
996
        if args.skip_train:
            valid_dataloader = build_pretraining_data_loader(valid_ds, 0)
        else:
            valid_dataloader = build_pretraining_data_loader(
                valid_ds, args.consumed_valid_samples)
997
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
1011
1012
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
1013
1014
1015
1016
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
1017
1018
1019
1020
1021
    return train_dataloader, valid_dataloader, test_dataloader


def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
liangjing's avatar
v1  
liangjing committed
1022
    """Build pretraining data iterators."""
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
1023
1024
1025
1026
1027
1028
1029
1030

    args = get_args()

    # Build loaders.
    train_dataloader, valid_dataloader, test_dataloader = \
        build_train_valid_test_data_loaders(
            build_train_valid_test_datasets_provider)

1031
    # Build iterators.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1032
1033
1034
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic']

1035
    if train_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1036
1037
        train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(train_dataloader))
1038
1039
1040
    else:
        train_data_iterator = None

1041
    if valid_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1042
1043
        valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(valid_dataloader))
1044
    else:
1045
        valid_data_iterator = None
1046

1047
    if test_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1048
1049
        test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
                             else iter(cyclic_iter(test_dataloader))
1050
1051
1052
    else:
        test_data_iterator = None

1053
    return train_data_iterator, valid_data_iterator, test_data_iterator