training.py 40.9 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2

Mohammad's avatar
Mohammad committed
3
"""Pretrain utilities."""
4
5
6

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
7
import sys
8
9
10
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()
11
12
13
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

Neel Kant's avatar
Neel Kant committed
14
from megatron import get_args
15
from megatron import get_signal_handler
Mohammad's avatar
Mohammad committed
16
17
from megatron import get_timers
from megatron import get_tensorboard_writer
18
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
19
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
20
from megatron import is_last_rank
mohammad's avatar
mohammad committed
21
from megatron import update_num_microbatches
22
from megatron.core import mpu, tensor_parallel
Neel Kant's avatar
Neel Kant committed
23
from megatron import print_rank_0
24
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
25
26
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
27
from megatron.model import Float16Module
28
from megatron.model import GPTModel
29
from megatron.core.enums import ModelType
mohammad's avatar
mohammad committed
30
from megatron.optimizer import get_megatron_optimizer
Mohammad's avatar
Mohammad committed
31
from megatron.initialize import initialize_megatron
32
from megatron.initialize import write_args_to_tensorboard
33
from megatron.initialize import set_jit_fusion_options
34
from megatron.optimizer_param_scheduler import OptimizerParamScheduler
35
36
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
37
from megatron.utils import unwrap_model
Vijay Korthikanti's avatar
Vijay Korthikanti committed
38
from megatron.data.data_samplers import build_pretraining_data_loader
mohammad's avatar
mohammad committed
39
from megatron.utils import calc_params_l2_norm
40
from megatron.core.pipeline_parallel import get_forward_backward_func
41
from megatron.utils import report_memory
42
from megatron.model.vision.knn_monitor import compute_feature_bank
43

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
44

45
46
47
48
49
50
51
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


52
def pretrain(train_valid_test_dataset_provider,
53
             model_provider,
54
             model_type,
55
             forward_step_func,
56
             process_non_loss_data_func=None,
57
             extra_args_provider=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
58
             args_defaults={}):
59
60
61
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
62
63
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
64
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
65
        4) train the modle using the forward_step_func.
66
67

    Arguments:
68
69
70
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
71
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
72
        model_type: an enum that specifies the type of model being trained.
Mohammad's avatar
Mohammad committed
73
74
75
76
77
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
78
79
80
81
        process_non_loss_data_func: a function to post process outputs of the
            network. It can be used for dumping output tensors (e.g images) to
            tensorboard. It takes `collected data`(list of tensors),
            `current iteration index` and `tensorboard writer` as arguments.
Mohammad's avatar
Mohammad committed
82
83
84
85
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
86
87
    """

88
    # Initalize and get arguments, timers, and Tensorboard writer.
89
90
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
91
92
    # Set pytorch JIT layer fusion options and warmup JIT functions.
    set_jit_fusion_options()
93

94
95
96
97
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
98
    start_time_tensor = torch.cuda.DoubleTensor([_TRAIN_START_TIME])
99
100
101
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
102
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
103
104
105
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

106
    args = get_args()
Mohammad's avatar
Mohammad committed
107
    timers = get_timers()
108
109

    # Model, optimizer, and learning rate.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
110
111
112
    timers('model-and-optimizer-setup', log_level=0).start(barrier=True)
    model, optimizer, opt_param_scheduler = setup_model_and_optimizer(
        model_provider, model_type)
113
    timers('model-and-optimizer-setup').stop()
114
115
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
116
117

    # Data stuff.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
118
119
    timers('train/valid/test-data-iterators-setup', log_level=0).start(
        barrier=True)
120
    if args.virtual_pipeline_model_parallel_size is not None:
121
        all_data_iterators = [
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
122
123
            build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
124
125
            for _ in range(len(model))
        ]
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
126
127
128
129
130
131
        train_data_iterator = [data_iterators[0]
                               for data_iterators in all_data_iterators]
        valid_data_iterator = [data_iterators[1]
                               for data_iterators in all_data_iterators]
        test_data_iterator = [data_iterators[2]
                              for data_iterators in all_data_iterators]
132
133
134
135
136
    else:
        train_data_iterator, valid_data_iterator, test_data_iterator \
            = build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
    timers('train/valid/test-data-iterators-setup').stop()
mshoeybi's avatar
mshoeybi committed
137
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
138
139

    # Print setup timing.
140
    print_rank_0('done with setup ...')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
141
142
    timers.log(['model-and-optimizer-setup',
                'train/valid/test-data-iterators-setup'], barrier=True)
Mohammad's avatar
Mohammad committed
143
    print_rank_0('training ...')
144
145

    iteration = 0
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
146
147
148
149
150

    if args.dataloader_type == 'cyclic' and args.retro_add_retriever:
        args.train_iters = args.retro_cyclic_train_iters
        print_rank_0("retro cyclic train iters : %d" % args.train_iters)

151
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
152
        iteration = train(forward_step_func,
153
                          model, optimizer, opt_param_scheduler,
154
155
                          train_data_iterator, valid_data_iterator,
                          process_non_loss_data_func)
156
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
157

158
159
160
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
161
                                   valid_data_iterator, model,
162
163
                                   iteration, process_non_loss_data_func,
                                   False)
164
165

    if args.save and iteration != 0:
166
        save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
167
168
169
170
171
172

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
173
174
                                   0, process_non_loss_data_func,
                                   True)
175

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
192
193
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
194
195
            iterations += 1
        # Reset
196
        update_num_microbatches(0, consistency_check=False)
197
198
199
200
201
202
203
204
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

205

206
def get_model(model_provider_func, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=True):
207
    """Build the model."""
Mohammad's avatar
Mohammad committed
208
    args = get_args()
209
    args.model_type = model_type
210

211
    # Build model.
212
213
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
       args.virtual_pipeline_model_parallel_size is not None:
214
215
        assert model_type != ModelType.encoder_and_decoder, \
            "Interleaved schedule not supported for model with both encoder and decoder"
216
217
218
        model = []
        for i in range(args.virtual_pipeline_model_parallel_size):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
219
220
221
            # Set pre_process and post_process only after virtual rank is set.
            pre_process = mpu.is_pipeline_first_stage()
            post_process = mpu.is_pipeline_last_stage()
222
            this_model = model_provider_func(
223
224
225
                pre_process=pre_process,
                post_process=post_process
            )
226
            this_model.model_type = model_type
227
            model.append(this_model)
228
    else:
229
230
        pre_process = mpu.is_pipeline_first_stage()
        post_process = mpu.is_pipeline_last_stage()
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
        add_encoder = True
        add_decoder = True
        if model_type == ModelType.encoder_and_decoder:
            if mpu.get_pipeline_model_parallel_world_size() > 1:
                assert args.pipeline_model_parallel_split_rank is not None, \
                    "Split rank needs to be specified for model with both encoder and decoder"
                rank = mpu.get_pipeline_model_parallel_rank()
                split_rank = args.pipeline_model_parallel_split_rank
                world_size = mpu.get_pipeline_model_parallel_world_size()
                pre_process = rank == 0 or rank == split_rank
                post_process = (rank == (split_rank - 1)) or (
                        rank == (world_size - 1))
                add_encoder = mpu.is_pipeline_stage_before_split()
                add_decoder = mpu.is_pipeline_stage_after_split()
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process,
                add_encoder=add_encoder,
                add_decoder=add_decoder)
        else:
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process
            )
        model.model_type = model_type
256

257
258
    if not isinstance(model, list):
        model = [model]
259

260
261
262
263
264
265
    # Disallow training and inference with Transformer Engine
    # for non-GPT models
    args.allow_transformer_engine = all([type(m) == GPTModel for m in model])
    assert args.allow_transformer_engine or args.transformer_impl == 'local', \
        'Transformer Engine is only approved for GPT models'

266
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
267
268
269
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
270
271
    for model_module in model:
        for param in model_module.parameters():
272
            tensor_parallel.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
273

274
275
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
276
        print(' > number of parameters on (tensor, pipeline) '
277
              'model parallel rank ({}, {}): {}'.format(
278
279
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
280
281
            sum([sum([p.nelement() for p in model_module.parameters()])
                 for model_module in model])), flush=True)
282
283

    # GPU allocation.
284
285
    for model_module in model:
        model_module.cuda(torch.cuda.current_device())
286
287

    # Fp16 conversion.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
288
289
    if args.fp16 or args.bf16:
        model = [Float16Module(model_module, args) for model_module in model]
290

291
292
293
294
295
296
    if wrap_with_ddp:
        if args.DDP_impl == 'torch':
            i = torch.cuda.current_device()
            model = [torchDDP(model_module, device_ids=[i], output_device=i,
                              process_group=mpu.get_data_parallel_group())
                     for model_module in model]
297

298
299
300
301
302
        elif args.DDP_impl == 'local':
            model = [LocalDDP(model_module,
                              args.accumulate_allreduce_grads_in_fp32,
                              args.use_contiguous_buffers_in_local_ddp)
                     for model_module in model]
303
304
305
306
            # broad cast params from data parallel src rank to other data parallel ranks
            if args.data_parallel_random_init:
                for model_module in model:
                    model_module.broadcast_params()
307
308
309
        else:
            raise NotImplementedError('Unknown DDP implementation specified: '
                                      '{}. Exiting.'.format(args.DDP_impl))
310

311
    return model
312
313


314
def get_optimizer_param_scheduler(optimizer):
315
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
316
    args = get_args()
317

318
319
320
321
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
Vijay Korthikanti's avatar
Vijay Korthikanti committed
322
323
        lr_decay_steps = args.lr_decay_iters * args.global_batch_size
        wd_incr_steps = args.train_iters * args.global_batch_size
324
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
325
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
326
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
327
            lr_warmup_steps = args.lr_warmup_iters * args.global_batch_size
328
329
330
331
332
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
333
        update_train_iters(args)
334
335
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
Vijay Korthikanti's avatar
Vijay Korthikanti committed
336
337
        lr_decay_steps = args.lr_decay_samples
        wd_incr_steps = args.train_samples
338
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
339
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
340
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
341
            lr_warmup_steps = args.lr_warmup_samples
342
    else:
343
344
345
        raise Exception(
            'either train-iters or train-samples should be provided.')

346
    opt_param_scheduler = OptimizerParamScheduler(
347
        optimizer,
348
        max_lr=args.lr,
349
        min_lr=args.min_lr,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
350
351
352
        lr_warmup_steps=lr_warmup_steps,
        lr_decay_steps=lr_decay_steps,
        lr_decay_style=args.lr_decay_style,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
353
354
        start_wd=args.start_weight_decay,
        end_wd=args.end_weight_decay,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
355
        wd_incr_steps=wd_incr_steps,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
356
        wd_incr_style=args.weight_decay_incr_style,
357
358
        use_checkpoint_opt_param_scheduler=args.use_checkpoint_opt_param_scheduler,
        override_opt_param_scheduler=args.override_opt_param_scheduler)
359

360
    return opt_param_scheduler
361
362


363
364
365
366
367
def setup_model_and_optimizer(model_provider_func,
                              model_type,
                              no_wd_decay_cond=None,
                              scale_lr_cond=None,
                              lr_mult=1.0):
368
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
369
    args = get_args()
370

371
    model = get_model(model_provider_func, model_type)
372
    unwrapped_model = unwrap_model(model,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
373
                                   (torchDDP, LocalDDP, Float16Module))
Lawrence McAfee's avatar
Lawrence McAfee committed
374

375
    optimizer = get_megatron_optimizer(model, no_wd_decay_cond,
376
                                       scale_lr_cond, lr_mult)
377
    opt_param_scheduler = get_optimizer_param_scheduler(optimizer)
378
379

    if args.load is not None:
380
        timers = get_timers()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
381
        timers('load-checkpoint', log_level=0).start(barrier=True)
382
        args.iteration = load_checkpoint(model, optimizer, opt_param_scheduler)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
383
        timers('load-checkpoint').stop(barrier=True)
384
        timers.log(['load-checkpoint'])
385
386
387
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
388
    # We only support local DDP with multiple micro-batches.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
389
    if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1:
mohammad's avatar
mohammad committed
390
391
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
392
    # get model without FP16 and/or TorchDDP wrappers
Mostofa Patwary's avatar
Mostofa Patwary committed
393
394
    if args.iteration == 0 and len(unwrapped_model) == 1 \
        and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
Mostofa Patwary's avatar
Mostofa Patwary committed
395
        print_rank_0("Initializing ICT from pretrained BERT model")
Mostofa Patwary's avatar
Mostofa Patwary committed
396
        unwrapped_model[0].init_state_dict_from_bert()
Mostofa Patwary's avatar
Mostofa Patwary committed
397
398
        if args.fp16:
            optimizer.reload_model_params()
Neel Kant's avatar
Neel Kant committed
399

400
    return model, optimizer, opt_param_scheduler
401
402


403

404
def train_step(forward_step_func, data_iterator,
Lawrence McAfee's avatar
Lawrence McAfee committed
405
               model, optimizer, opt_param_scheduler):
406
407
408
409
410
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
411
    if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_local_ddp:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
412
413
        for partition in model:
            partition.zero_grad_buffer()
414
    optimizer.zero_grad()
415

416
    # Forward pass.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
417
418
    timers('forward-backward', log_level=1).start(
        barrier=args.barrier_with_L1_time)
419
    forward_backward_func = get_forward_backward_func()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
420
    fwd_bwd_timers = timers if args.timing_log_level > 1 else None
421
    losses_reduced = forward_backward_func(
422
423
424
425
426
427
428
429
430
431
        forward_step_func=forward_step_func,
        data_iterator=data_iterator,
        model=model,
        num_microbatches=get_num_microbatches(),
        dtype=args.params_dtype,
        tensor_shape=(args.seq_length, args.micro_batch_size, args.hidden_size),
        grad_scaler=optimizer.scale_loss,
        sequence_parallel=args.sequence_parallel,
        forward_only=False,
        timers=fwd_bwd_timers)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
432
    timers('forward-backward').stop()
433

434
    # Empty unused memory.
Lawrence McAfee's avatar
Lawrence McAfee committed
435
    if args.empty_unused_memory_level >= 1:
436
437
        torch.cuda.empty_cache()

438
    # Reduce gradients.
439
    optimizer.reduce_model_grads(args, timers)
440

Lawrence McAfee's avatar
Lawrence McAfee committed
441
    # Vision gradients.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
442
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
443
444
445
446
        unwrapped_model = unwrap_model(model[0],
                                       (torchDDP, LocalDDP, Float16Module))
        unwrapped_model.cancel_gradients_last_layer(args.curr_iteration)

447
    # Update parameters.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
448
    timers('optimizer', log_level=1).start(barrier=args.barrier_with_L1_time)
Lawrence McAfee's avatar
Lawrence McAfee committed
449
    update_successful, grad_norm, num_zeros_in_grad = optimizer.step(args, timers)
450
451
    timers('optimizer').stop()

452
    # Gather params.
453
    if update_successful:
Lawrence McAfee's avatar
Lawrence McAfee committed
454
        optimizer.gather_model_params(args, timers)
455

Lawrence McAfee's avatar
Lawrence McAfee committed
456
    # Vision momentum.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
457
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
458
459
460
461
        unwrapped_model = unwrap_model(model[0],
                                       (torchDDP, LocalDDP, Float16Module))
        unwrapped_model.update_momentum(args.curr_iteration)

462
    # Update learning rate.
463
    if update_successful:
464
465
466
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
467
        opt_param_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
468
        skipped_iter = 0
469
470
471
    else:
        skipped_iter = 1

472
    # Empty unused memory.
Lawrence McAfee's avatar
Lawrence McAfee committed
473
    if args.empty_unused_memory_level >= 2:
474
475
        torch.cuda.empty_cache()

476
    if mpu.is_pipeline_last_stage(ignore_virtual=True):
477
478
479
480
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
481
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
482
483
        return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
    return {}, skipped_iter, grad_norm, num_zeros_in_grad
484
485


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
486
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
487
                 loss_scale, report_memory_flag, skipped_iter,
488
                 grad_norm, params_norm, num_zeros_in_grad):
Mohammad's avatar
Mohammad committed
489
490
491
492
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
493

mohammad's avatar
mohammad committed
494
495
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
496
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
497
498
499
500
501
502
503
504
505
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
506
507
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
508
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
509
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
510
    for key in loss_dict:
mohammad's avatar
mohammad committed
511
        if not skipped_iter:
512
513
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
514
515
516
517
518
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
519
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
520
521
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
522
523

    # Logging.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
    timers_to_log = [
        'forward-backward',
        'forward-compute',
        'backward-compute',
        'batch-generator',
        'forward-recv',
        'forward-send',
        'backward-recv',
        'backward-send',
        'forward-send-forward-recv',
        'forward-send-backward-recv',
        'backward-send-forward-recv',
        'backward-send-backward-recv',
        'forward-backward-send-forward-backward-recv',
        'layernorm-grads-all-reduce',
        'embedding-grads-all-reduce',
        'grads-all-reduce',
        'grads-reduce-scatter',
        'params-all-gather',
        'optimizer-copy-to-main-grad',
        'optimizer-unscale-and-check-inf',
        'optimizer-clip-main-grad',
        'optimizer-count-zeros',
        'optimizer-inner-step',
        'optimizer-copy-main-to-model-params',
        'optimizer']
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
550

mohammad's avatar
mohammad committed
551
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
552
553
554
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
555
556
557
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
558
    # Tensorboard values.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
559
560
561
562
563
564
    # Timer requires all the ranks to call.
    if args.log_timers_to_tensorboard and \
       (iteration % args.tensorboard_log_interval == 0):
        timers.write(timers_to_log, writer, iteration,
                     normalizer=total_iterations)
    if writer and (iteration % args.tensorboard_log_interval == 0):
565
566
567
568
569
570
571
572
        if args.log_learning_rate_to_tensorboard:
            writer.add_scalar('learning-rate', learning_rate, iteration)
            writer.add_scalar('learning-rate vs samples', learning_rate,
                              args.consumed_train_samples)
        if args.log_batch_size_to_tensorboard:
            writer.add_scalar('batch-size', batch_size, iteration)
            writer.add_scalar('batch-size vs samples', batch_size,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
573
        for key in loss_dict:
mohammad's avatar
mohammad committed
574
575
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
576
                              args.consumed_train_samples)
577
578
579
580
        if args.log_loss_scale_to_tensorboard:
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
                              args.consumed_train_samples)
581
582
583
584
        if args.log_world_size_to_tensorboard:
            writer.add_scalar('world-size', args.world_size, iteration)
            writer.add_scalar('world-size vs samples', args.world_size,
                              args.consumed_train_samples)
585
586
587
588
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
589
590
591
        if num_zeros_in_grad is not None:
            writer.add_scalar('num-zeros', num_zeros_in_grad, iteration)
            writer.add_scalar('num-zeros vs samples', num_zeros_in_grad,
Rewon Child's avatar
Rewon Child committed
592
                              args.consumed_train_samples)
mohammad's avatar
mohammad committed
593
594
595
596
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
        if args.log_memory_to_tensorboard:
            mem_stats = torch.cuda.memory_stats()
            writer.add_scalar(
                "mem-reserved-bytes",
                mem_stats["reserved_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-bytes",
                mem_stats["allocated_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-count",
                mem_stats["allocation.all.current"],
                iteration,
            )
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
614
615

    if iteration % args.log_interval == 0:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
616
        elapsed_time = timers('interval-time').elapsed(barrier=True)
mohammad's avatar
mohammad committed
617
        elapsed_time_per_iteration = elapsed_time / total_iterations
mshoeybi's avatar
mshoeybi committed
618
        if writer:
619
620
621
            if args.log_timers_to_tensorboard:
                writer.add_scalar('iteration-time',
                                  elapsed_time_per_iteration, iteration)
622
623
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
624
        log_string += ' consumed samples: {:12d} |'.format(
625
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
626
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
627
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
628
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
629
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
630
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
631
632
633
634
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
635
636
637
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
638
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
639
640
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
641
642
        if num_zeros_in_grad is not None:
            log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
mohammad's avatar
mohammad committed
643
644
        if params_norm is not None:
            log_string += ' params norm: {:.3f} |'.format(params_norm)
mohammad's avatar
mohammad committed
645
646
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
647
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
648
649
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
650
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
651
        total_loss_dict[nan_iters_key] = 0
652
        print_rank_last(log_string)
653
654
655
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
656
657
658
659
660
661
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


662
def save_checkpoint_and_time(iteration, model, optimizer, opt_param_scheduler):
663
664
665
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
666
    timers('save-checkpoint', log_level=0).start(barrier=True)
667
    save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
668
    timers('save-checkpoint').stop(barrier=True)
669
    timers.log(['save-checkpoint'])
670
671


672
def train(forward_step_func, model, optimizer, opt_param_scheduler,
673
674
          train_data_iterator, valid_data_iterator,
          process_non_loss_data_func):
675
    """Train the model function."""
Mohammad's avatar
Mohammad committed
676
677
    args = get_args()
    timers = get_timers()
678

679
680
681
    # Write args to tensorboard
    write_args_to_tensorboard()

682
    # Turn on training mode which enables dropout.
683
684
    for model_module in model:
        model_module.train()
685
686
687
688
689
690
691

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
692
    timers('interval-time', log_level=0).start(barrier=True)
693
    print_datetime('before the start of training step')
694
695
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
696
        update_num_microbatches(args.consumed_train_samples)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
697
        args.curr_iteration = iteration
698
699
700
701
702
        loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
            train_step(forward_step_func,
                       train_data_iterator,
                       model,
                       optimizer,
Lawrence McAfee's avatar
Lawrence McAfee committed
703
                       opt_param_scheduler)
704
        iteration += 1
705
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
706
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
707
                                       get_num_microbatches()
708
709

        # Logging.
710
        loss_scale = optimizer.get_loss_scale().item()
711
712
713
        params_norm = None
        if args.log_params_norm:
            params_norm = calc_params_l2_norm(model)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
714
715
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
716
                                          iteration, loss_scale,
717
                                          report_memory_flag, skipped_iter,
718
                                          grad_norm, params_norm, num_zeros_in_grad)
719
720

        # Autoresume
721
722
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
723
            check_adlr_autoresume_termination(iteration, model, optimizer,
724
                                              opt_param_scheduler)
725
726
727
728
729
730

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
731
                                       valid_data_iterator, model,
732
733
                                       iteration, process_non_loss_data_func,
                                       False)
734

735
736
        # Checkpointing
        saved_checkpoint = False
737
738
739
740
        if args.exit_signal_handler:
            signal_handler = get_signal_handler()
            if any(signal_handler.signals_received()):
                save_checkpoint_and_time(iteration, model, optimizer,
741
                                         opt_param_scheduler)
742
743
744
                print_datetime('exiting program after receiving SIGTERM.')
                sys.exit()

745
746
747
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
748
                                     opt_param_scheduler)
749
750
            saved_checkpoint = True

751
752
753
754
755
756
757
758
759
760
761
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
762
                                             opt_param_scheduler)
763
                print_datetime('exiting program after {} minutes'.format(train_time))
764
765
                sys.exit()

766
        # Exiting based on iterations
767
        if args.exit_interval and iteration % args.exit_interval == 0:
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
768
            if args.save and not saved_checkpoint:
769
                save_checkpoint_and_time(iteration, model, optimizer,
770
                                         opt_param_scheduler)
771
            torch.distributed.barrier()
772
            print_datetime('exiting program at iteration {}'.format(iteration))
Mohammad's avatar
Mohammad committed
773
            sys.exit()
774

775

mohammad's avatar
mohammad committed
776
    return iteration
777
778


779
780
781
782
783
def evaluate(forward_step_func,
             data_iterator,
             model,
             process_non_loss_data_func,
             verbose=False):
784
    """Evaluation."""
Mohammad's avatar
Mohammad committed
785
    args = get_args()
786

Vijay Korthikanti's avatar
Vijay Korthikanti committed
787
788
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
        compute_feature_bank(model)
789

790
    # Turn on evaluation mode which disables dropout.
791
792
    for model_module in model:
        model_module.eval()
793
794
795
796
797
798
799
800
801
802

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
803

804
            forward_backward_func = get_forward_backward_func()
805
            loss_dicts = forward_backward_func(
806
807
808
809
810
811
812
813
814
                forward_step_func=forward_step_func,
                data_iterator=data_iterator,
                model=model,
                num_microbatches=get_num_microbatches(),
                dtype=args.params_dtype,
                tensor_shape=(args.seq_length, args.micro_batch_size, args.hidden_size),
                sequence_parallel=args.sequence_parallel,
                forward_only=True,
                timers=None)
815

816
            # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
817
            if args.empty_unused_memory_level >= 1:
818
819
                torch.cuda.empty_cache()

820
821
822
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                # Reduce across processes.
                for loss_dict in loss_dicts:
823
                    for key in loss_dict:
824
825
                        total_loss_dict[key] = total_loss_dict.get(
                            key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
826

827
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
828
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
829
                                           * get_num_microbatches()
830
831
832
833
834
835
        collected_non_loss_data = None
        if process_non_loss_data_func is not None and is_last_rank():
            collected_non_loss_data = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True, collect_non_loss_data=True)

836
    # Move model back to the train mode.
837
838
    for model_module in model:
        model_module.train()
839
840

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
841
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
842

843
    return total_loss_dict, collected_non_loss_data
844
845
846

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
847
848
                               iteration, process_non_loss_data_func,
                               verbose=False):
849
    """Helper function to evaluate and dump results on screen."""
850
    args = get_args()
Mohammad's avatar
Mohammad committed
851
852
    writer = get_tensorboard_writer()

853
854
855
    total_loss_dict, collected_non_loss_data = evaluate(
        forward_step_func, data_iterator, model,
        process_non_loss_data_func, verbose)
856
857
858
859
860
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
mshoeybi's avatar
mshoeybi committed
861
        if writer:
mohammad's avatar
mohammad committed
862
            writer.add_scalar('{} validation'.format(key),
863
864
                              total_loss_dict[key].item(),
                              iteration)
mohammad's avatar
mohammad committed
865
            writer.add_scalar('{} validation vs samples'.format(key),
866
867
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
868
            if args.log_validation_ppl_to_tensorboard:
mohammad's avatar
mohammad committed
869
                writer.add_scalar('{} validation ppl'.format(key), ppl,
870
                                  iteration)
mohammad's avatar
mohammad committed
871
                writer.add_scalar('{} validation ppl vs samples'.format(key),
872
                                  ppl, args.consumed_train_samples)
873

874
875
876
    if process_non_loss_data_func is not None and writer and is_last_rank():
        process_non_loss_data_func(collected_non_loss_data, iteration, writer)

877
    length = len(string) + 1
878
879
880
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
881
882


Vijay Korthikanti's avatar
Vijay Korthikanti committed
883
def cyclic_iter(iter):
884
    while True:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
885
        for x in iter:
886
887
            yield x

Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
888
889

def build_train_valid_test_data_loaders(
890
891
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
892
    args = get_args()
893

894
895
896
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
897
898
899

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
900
901
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
902
        args.consumed_train_samples = args.iteration * args.global_batch_size
903
    if args.iteration > 0 and args.consumed_valid_samples == 0:
904
905
906
        if args.train_samples is None:
            args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
                args.eval_iters * args.global_batch_size
907

908
    # Data loader only on rank 0 of each model parallel group.
909
    if mpu.get_tensor_model_parallel_rank() == 0:
910
911

        # Number of train/valid/test samples.
912
913
914
915
916
917
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
918
        test_iters = args.eval_iters
919
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
920
921
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
922
923
924
925
926
927
928
929
930
931
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
932
933
934
935
936
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
937
938
939
940
941
942
943
944
945
946
947
948
949

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
950
951
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
952
953
954
955
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
956
957
958
959
960
961
962
963
964
965
966
967
968
    return train_dataloader, valid_dataloader, test_dataloader


def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):

    args = get_args()

    # Build loaders.
    train_dataloader, valid_dataloader, test_dataloader = \
        build_train_valid_test_data_loaders(
            build_train_valid_test_datasets_provider)

969
    # Build iterators.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
970
971
972
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic']

973
    if train_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
974
975
        train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(train_dataloader))
976
977
978
    else:
        train_data_iterator = None

979
    if valid_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
980
981
        valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(valid_dataloader))
982
    else:
983
        valid_data_iterator = None
984

985
    if test_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
986
987
        test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
                             else iter(cyclic_iter(test_dataloader))
988
989
990
    else:
        test_data_iterator = None

991
    return train_data_iterator, valid_data_iterator, test_data_iterator