training.py 39.8 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
import time
# The earliest we can measure the start time.
_TRAIN_START_TIME = time.time()
24
25
26
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

Neel Kant's avatar
Neel Kant committed
27
from megatron import get_args
28
from megatron import get_signal_handler
Mohammad's avatar
Mohammad committed
29
30
from megatron import get_timers
from megatron import get_tensorboard_writer
31
from megatron import get_current_global_batch_size
mohammad's avatar
mohammad committed
32
from megatron import get_num_microbatches
mohammad's avatar
mohammad committed
33
from megatron import is_last_rank
mohammad's avatar
mohammad committed
34
from megatron import update_num_microbatches
35
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
36
from megatron import print_rank_0
37
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
38
39
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
40
from megatron.model import Float16Module
41
from megatron.model import ModelType
mohammad's avatar
mohammad committed
42
from megatron.optimizer import get_megatron_optimizer
Mohammad's avatar
Mohammad committed
43
from megatron.initialize import initialize_megatron
44
from megatron.initialize import write_args_to_tensorboard
45
from megatron.optimizer_param_scheduler import OptimizerParamScheduler
46
47
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.utils import check_adlr_autoresume_termination
48
from megatron.utils import unwrap_model
Vijay Korthikanti's avatar
Vijay Korthikanti committed
49
from megatron.data.data_samplers import build_pretraining_data_loader
mohammad's avatar
mohammad committed
50
from megatron.utils import calc_params_l2_norm
51
from megatron.schedules import get_forward_backward_func
52
from megatron.utils import report_memory
53
from megatron.model.vision.knn_monitor import compute_feature_bank
54

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
55

56
57
58
59
60
61
62
def print_datetime(string):
    """Note that this call will sync across all ranks."""
    torch.distributed.barrier()
    time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print_rank_0('[' + string + '] datetime: {} '.format(time_str))


63
def pretrain(train_valid_test_dataset_provider,
64
             model_provider,
65
             model_type,
66
             forward_step_func,
67
             process_non_loss_data_func=None,
68
             extra_args_provider=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
69
             args_defaults={}):
70
71
72
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
73
74
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
75
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
76
        4) train the modle using the forward_step_func.
77
78

    Arguments:
79
80
81
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
82
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
83
        model_type: an enum that specifies the type of model being trained.
Mohammad's avatar
Mohammad committed
84
85
86
87
88
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
89
90
91
92
        process_non_loss_data_func: a function to post process outputs of the
            network. It can be used for dumping output tensors (e.g images) to
            tensorboard. It takes `collected data`(list of tensors),
            `current iteration index` and `tensorboard writer` as arguments.
Mohammad's avatar
Mohammad committed
93
94
95
96
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
97
98
    """

99
    # Initalize and get arguments, timers, and Tensorboard writer.
100
101
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
102

103
104
105
106
    # Adjust the startup time so it reflects the largest value.
    # This will be closer to what scheduler will see (outside of
    # image ... launches.
    global _TRAIN_START_TIME
107
    start_time_tensor = torch.cuda.DoubleTensor([_TRAIN_START_TIME])
108
109
110
    torch.distributed.all_reduce(start_time_tensor,
                                 op=torch.distributed.ReduceOp.MIN)
    _TRAIN_START_TIME = start_time_tensor.item()
mshoeybi's avatar
mshoeybi committed
111
    print_rank_0('time to initialize megatron (seconds): {:.3f}'.format(
112
113
114
        time.time() - _TRAIN_START_TIME))
    print_datetime('after megatron is initialized')

115
    args = get_args()
Mohammad's avatar
Mohammad committed
116
    timers = get_timers()
117
118

    # Model, optimizer, and learning rate.
119
    timers('model-and-optimizer-setup').start()
120
    model, optimizer, opt_param_scheduler = setup_model_and_optimizer(model_provider,
121
                                                               model_type)
122
    timers('model-and-optimizer-setup').stop()
123
124
    print_datetime('after model, optimizer, and learning rate '
                   'scheduler are built')
125
126

    # Data stuff.
127
128
    timers('train/valid/test-data-iterators-setup').start()
    if args.virtual_pipeline_model_parallel_size is not None:
129
        all_data_iterators = [
130
131
132
            build_train_valid_test_data_iterators(train_valid_test_dataset_provider)
            for _ in range(len(model))
        ]
133
134
135
        train_data_iterator = [data_iterators[0] for data_iterators in all_data_iterators]
        valid_data_iterator = [data_iterators[1] for data_iterators in all_data_iterators]
        test_data_iterator = [data_iterators[2] for data_iterators in all_data_iterators]
136
137
138
139
140
    else:
        train_data_iterator, valid_data_iterator, test_data_iterator \
            = build_train_valid_test_data_iterators(
                train_valid_test_dataset_provider)
    timers('train/valid/test-data-iterators-setup').stop()
mshoeybi's avatar
mshoeybi committed
141
    print_datetime('after dataloaders are built')
Mohammad's avatar
Mohammad committed
142
143

    # Print setup timing.
144
145
    print_rank_0('done with setup ...')
    timers.log(['model-and-optimizer-setup', 'train/valid/test-data-iterators-setup'])
Mohammad's avatar
Mohammad committed
146
    print_rank_0('training ...')
147
148

    iteration = 0
149
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
150
        iteration = train(forward_step_func,
151
                          model, optimizer, opt_param_scheduler,
152
153
                          train_data_iterator, valid_data_iterator,
                          process_non_loss_data_func)
154
    print_datetime('after training is done')
Mohammad's avatar
Mohammad committed
155

156
157
158
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
159
                                   valid_data_iterator, model,
160
161
                                   iteration, process_non_loss_data_func,
                                   False)
162
163

    if args.save and iteration != 0:
164
        save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
165
166
167
168
169
170

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
171
172
                                   0, process_non_loss_data_func,
                                   True)
173

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
190
191
            update_num_microbatches(consumed_samples, consistency_check=False)
            consumed_samples += get_current_global_batch_size()
192
193
            iterations += 1
        # Reset
194
        update_num_microbatches(0, consistency_check=False)
195
196
197
198
199
200
201
202
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

203

204
def get_model(model_provider_func, model_type=ModelType.encoder_or_decoder, wrap_with_ddp=True):
205
    """Build the model."""
Mohammad's avatar
Mohammad committed
206
    args = get_args()
207
    args.model_type = model_type
208

209
    # Build model.
210
211
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
       args.virtual_pipeline_model_parallel_size is not None:
212
213
        assert model_type != ModelType.encoder_and_decoder, \
            "Interleaved schedule not supported for model with both encoder and decoder"
214
215
216
        model = []
        for i in range(args.virtual_pipeline_model_parallel_size):
            mpu.set_virtual_pipeline_model_parallel_rank(i)
217
218
219
            # Set pre_process and post_process only after virtual rank is set.
            pre_process = mpu.is_pipeline_first_stage()
            post_process = mpu.is_pipeline_last_stage()
220
            this_model = model_provider_func(
221
222
223
                pre_process=pre_process,
                post_process=post_process
            )
224
            this_model.model_type = model_type
225
            model.append(this_model)
226
    else:
227
228
        pre_process = mpu.is_pipeline_first_stage()
        post_process = mpu.is_pipeline_last_stage()
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
        add_encoder = True
        add_decoder = True
        if model_type == ModelType.encoder_and_decoder:
            if mpu.get_pipeline_model_parallel_world_size() > 1:
                assert args.pipeline_model_parallel_split_rank is not None, \
                    "Split rank needs to be specified for model with both encoder and decoder"
                rank = mpu.get_pipeline_model_parallel_rank()
                split_rank = args.pipeline_model_parallel_split_rank
                world_size = mpu.get_pipeline_model_parallel_world_size()
                pre_process = rank == 0 or rank == split_rank
                post_process = (rank == (split_rank - 1)) or (
                        rank == (world_size - 1))
                add_encoder = mpu.is_pipeline_stage_before_split()
                add_decoder = mpu.is_pipeline_stage_after_split()
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process,
                add_encoder=add_encoder,
                add_decoder=add_decoder)
        else:
            model = model_provider_func(
                pre_process=pre_process,
                post_process=post_process
            )
        model.model_type = model_type
254

255
256
    if not isinstance(model, list):
        model = [model]
257

258
    # Set tensor model parallel attributes if not set.
mohammad's avatar
mohammad committed
259
260
261
    # Only parameters that are already tensor model parallel have these
    # attributes set for them. We should make sure the default attributes
    # are set for all params so the optimizer can use them.
262
263
264
    for model_module in model:
        for param in model_module.parameters():
            mpu.set_defaults_if_not_set_tensor_model_parallel_attributes(param)
265

266
267
    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
268
        print(' > number of parameters on (tensor, pipeline) '
269
              'model parallel rank ({}, {}): {}'.format(
270
271
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
272
273
            sum([sum([p.nelement() for p in model_module.parameters()])
                 for model_module in model])), flush=True)
274
275

    # GPU allocation.
276
277
    for model_module in model:
        model_module.cuda(torch.cuda.current_device())
278
279

    # Fp16 conversion.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
280
281
    if args.fp16 or args.bf16:
        model = [Float16Module(model_module, args) for model_module in model]
282

283
284
285
286
287
288
    if wrap_with_ddp:
        if args.DDP_impl == 'torch':
            i = torch.cuda.current_device()
            model = [torchDDP(model_module, device_ids=[i], output_device=i,
                              process_group=mpu.get_data_parallel_group())
                     for model_module in model]
289

290
291
292
293
294
        elif args.DDP_impl == 'local':
            model = [LocalDDP(model_module,
                              args.accumulate_allreduce_grads_in_fp32,
                              args.use_contiguous_buffers_in_local_ddp)
                     for model_module in model]
295
296
297
298
            # broad cast params from data parallel src rank to other data parallel ranks
            if args.data_parallel_random_init:
                for model_module in model:
                    model_module.broadcast_params()
299
300
301
        else:
            raise NotImplementedError('Unknown DDP implementation specified: '
                                      '{}. Exiting.'.format(args.DDP_impl))
302

303
    return model
304
305


306
def get_optimizer_param_scheduler(optimizer):
307
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
308
    args = get_args()
309

310
311
312
313
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
Vijay Korthikanti's avatar
Vijay Korthikanti committed
314
315
        lr_decay_steps = args.lr_decay_iters * args.global_batch_size
        wd_incr_steps = args.train_iters * args.global_batch_size
316
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
317
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
318
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
319
            lr_warmup_steps = args.lr_warmup_iters * args.global_batch_size
320
321
322
323
324
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
325
        update_train_iters(args)
326
327
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
Vijay Korthikanti's avatar
Vijay Korthikanti committed
328
329
        lr_decay_steps = args.lr_decay_samples
        wd_incr_steps = args.train_samples
330
        if args.lr_warmup_fraction is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
331
            lr_warmup_steps = args.lr_warmup_fraction * lr_decay_steps
332
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
333
            lr_warmup_steps = args.lr_warmup_samples
334
    else:
335
336
337
        raise Exception(
            'either train-iters or train-samples should be provided.')

338
    opt_param_scheduler = OptimizerParamScheduler(
339
        optimizer,
340
        max_lr=args.lr,
341
        min_lr=args.min_lr,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
342
343
344
        lr_warmup_steps=lr_warmup_steps,
        lr_decay_steps=lr_decay_steps,
        lr_decay_style=args.lr_decay_style,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
345
346
        start_wd=args.start_weight_decay,
        end_wd=args.end_weight_decay,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
347
        wd_incr_steps=wd_incr_steps,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
348
        wd_incr_style=args.weight_decay_incr_style,
349
350
        use_checkpoint_opt_param_scheduler=args.use_checkpoint_opt_param_scheduler,
        override_opt_param_scheduler=args.override_opt_param_scheduler)
351

352
    return opt_param_scheduler
353
354


355
356
357
358
359
def setup_model_and_optimizer(model_provider_func,
                              model_type,
                              no_wd_decay_cond=None,
                              scale_lr_cond=None,
                              lr_mult=1.0):
360
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
361
    args = get_args()
362

363
    model = get_model(model_provider_func, model_type)
364
    unwrapped_model = unwrap_model(model,
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
365
                                   (torchDDP, LocalDDP, Float16Module))
Lawrence McAfee's avatar
Lawrence McAfee committed
366

367
    optimizer = get_megatron_optimizer(model, no_wd_decay_cond,
368
                                       scale_lr_cond, lr_mult)
369
    opt_param_scheduler = get_optimizer_param_scheduler(optimizer)
370
371

    if args.load is not None:
372
373
374
375
        timers = get_timers()
        # Extra barrier is added to make sure all ranks report the
        # max time.
        torch.distributed.barrier()
376
        timers('load-checkpoint').start()
377
        args.iteration = load_checkpoint(model, optimizer, opt_param_scheduler)
378
        torch.distributed.barrier()
379
380
        timers('load-checkpoint').stop()
        timers.log(['load-checkpoint'])
381
382
383
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
384
    # We only support local DDP with multiple micro-batches.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
385
    if len(model) > 1 or mpu.get_pipeline_model_parallel_world_size() > 1:
mohammad's avatar
mohammad committed
386
387
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
388
    # get model without FP16 and/or TorchDDP wrappers
Mostofa Patwary's avatar
Mostofa Patwary committed
389
390
    if args.iteration == 0 and len(unwrapped_model) == 1 \
        and hasattr(unwrapped_model[0], 'init_state_dict_from_bert'):
Mostofa Patwary's avatar
Mostofa Patwary committed
391
        print_rank_0("Initializing ICT from pretrained BERT model")
Mostofa Patwary's avatar
Mostofa Patwary committed
392
        unwrapped_model[0].init_state_dict_from_bert()
Mostofa Patwary's avatar
Mostofa Patwary committed
393
394
        if args.fp16:
            optimizer.reload_model_params()
Neel Kant's avatar
Neel Kant committed
395

396
    return model, optimizer, opt_param_scheduler
397
398


399
def train_step(forward_step_func, data_iterator,
Lawrence McAfee's avatar
Lawrence McAfee committed
400
               model, optimizer, opt_param_scheduler):
401
402
403
404
405
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
406
    if args.DDP_impl == 'local' and args.use_contiguous_buffers_in_local_ddp:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
407
408
        for partition in model:
            partition.zero_grad_buffer()
409
    optimizer.zero_grad()
410

411
    # Forward pass.
412
    forward_backward_func = get_forward_backward_func()
413
414
415
    losses_reduced = forward_backward_func(
        forward_step_func, data_iterator, model,
        optimizer, timers, forward_only=False)
416

417
    # Empty unused memory.
Lawrence McAfee's avatar
Lawrence McAfee committed
418
    if args.empty_unused_memory_level >= 1:
419
420
        torch.cuda.empty_cache()

421
    # Reduce gradients.
Lawrence McAfee's avatar
Lawrence McAfee committed
422
    timers('backward-reduce-model-grads').start()
423
    optimizer.reduce_model_grads(args, timers)
Lawrence McAfee's avatar
Lawrence McAfee committed
424
    timers('backward-reduce-model-grads').stop()
425

Lawrence McAfee's avatar
Lawrence McAfee committed
426
    # Vision gradients.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
427
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
428
429
430
431
        unwrapped_model = unwrap_model(model[0],
                                       (torchDDP, LocalDDP, Float16Module))
        unwrapped_model.cancel_gradients_last_layer(args.curr_iteration)

432
433
    # Update parameters.
    timers('optimizer').start()
Lawrence McAfee's avatar
Lawrence McAfee committed
434
    update_successful, grad_norm, num_zeros_in_grad = optimizer.step(args, timers)
435
436
    timers('optimizer').stop()

437
    # Gather params.
438
    if update_successful:
Lawrence McAfee's avatar
Lawrence McAfee committed
439
        timers('backward-gather-model-params').start()
Lawrence McAfee's avatar
Lawrence McAfee committed
440
        optimizer.gather_model_params(args, timers)
Lawrence McAfee's avatar
Lawrence McAfee committed
441
        timers('backward-gather-model-params').stop()
442

Lawrence McAfee's avatar
Lawrence McAfee committed
443
    # Vision momentum.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
444
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
445
446
447
448
        unwrapped_model = unwrap_model(model[0],
                                       (torchDDP, LocalDDP, Float16Module))
        unwrapped_model.update_momentum(args.curr_iteration)

449
    # Update learning rate.
450
    if update_successful:
451
452
453
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
454
        opt_param_scheduler.step(increment=increment)
mohammad's avatar
mohammad committed
455
        skipped_iter = 0
456
457
458
    else:
        skipped_iter = 1

459
    # Empty unused memory.
Lawrence McAfee's avatar
Lawrence McAfee committed
460
    if args.empty_unused_memory_level >= 2:
461
462
        torch.cuda.empty_cache()

463
    if mpu.is_pipeline_last_stage(ignore_virtual=True):
464
465
466
467
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
468
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
469
470
        return loss_reduced, skipped_iter, grad_norm, num_zeros_in_grad
    return {}, skipped_iter, grad_norm, num_zeros_in_grad
471
472


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
473
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
474
                 loss_scale, report_memory_flag, skipped_iter,
475
                 grad_norm, params_norm, num_zeros_in_grad):
Mohammad's avatar
Mohammad committed
476
477
478
479
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
480

mohammad's avatar
mohammad committed
481
482
    # Advanced, skipped, and Nan iterations.
    advanced_iters_key = 'advanced iterations'
mohammad's avatar
mohammad committed
483
    skipped_iters_key = 'skipped iterations'
mohammad's avatar
mohammad committed
484
485
486
487
488
489
490
491
492
    nan_iters_key = 'nan iterations'
    # Advanced iterations.
    if not skipped_iter:
        total_loss_dict[advanced_iters_key] = total_loss_dict.get(
            advanced_iters_key, 0) + 1
    else:
        if advanced_iters_key not in total_loss_dict:
            total_loss_dict[advanced_iters_key] = 0
    # Skipped iterations.
mohammad's avatar
mohammad committed
493
494
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
495
    # Update losses and set nan iterations
mohammad's avatar
mohammad committed
496
    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
497
    for key in loss_dict:
mohammad's avatar
mohammad committed
498
        if not skipped_iter:
499
500
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
501
502
503
504
505
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
506
            got_nan = got_nan or is_nan
mohammad's avatar
mohammad committed
507
508
    total_loss_dict[nan_iters_key] = total_loss_dict.get(
        nan_iters_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
509
510
511

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
512

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
513
514
515
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
516
517
518
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
519
    add_to_logging('forward-backward-send-forward-backward-recv')
520
521
522
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
523
    add_to_logging('backward-send-forward-recv')
524
    add_to_logging('backward-send-backward-recv')
525
    add_to_logging('backward-params-all-reduce')
526
    add_to_logging('backward-embedding-all-reduce')
Lawrence McAfee's avatar
Lawrence McAfee committed
527
528
    add_to_logging('backward-reduce-model-grads')
    add_to_logging('backward-gather-model-params')
529
    add_to_logging('optimizer-copy-to-main-grad')
mohammad's avatar
mohammad committed
530
    add_to_logging('optimizer-unscale-and-check-inf')
531
    add_to_logging('optimizer-clip-main-grad')
532
533
    add_to_logging('optimizer-count-zeros')
    add_to_logging('optimizer-inner-step')
534
    add_to_logging('optimizer-copy-main-to-model-params')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
535
    add_to_logging('optimizer')
mohammad's avatar
mohammad committed
536
    add_to_logging('batch-generator')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
537

mohammad's avatar
mohammad committed
538
    # Calculate batch size.
mshoeybi's avatar
mshoeybi committed
539
540
541
    batch_size = args.micro_batch_size * args.data_parallel_size * \
        get_num_microbatches()

mohammad's avatar
mohammad committed
542
543
544
    total_iterations = total_loss_dict[advanced_iters_key] + \
                       total_loss_dict[skipped_iters_key]

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
545
    # Tensorboard values.
546
547
548
549
550
551
552
553
554
555
    if writer and (iteration % args.tensorboard_log_interval == 0 ) and \
       is_last_rank():
        if args.log_learning_rate_to_tensorboard:
            writer.add_scalar('learning-rate', learning_rate, iteration)
            writer.add_scalar('learning-rate vs samples', learning_rate,
                              args.consumed_train_samples)
        if args.log_batch_size_to_tensorboard:
            writer.add_scalar('batch-size', batch_size, iteration)
            writer.add_scalar('batch-size vs samples', batch_size,
                              args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
556
        for key in loss_dict:
mohammad's avatar
mohammad committed
557
558
            writer.add_scalar(key , loss_dict[key], iteration)
            writer.add_scalar(key + ' vs samples', loss_dict[key],
559
                              args.consumed_train_samples)
560
561
562
563
        if args.log_loss_scale_to_tensorboard:
            writer.add_scalar('loss-scale', loss_scale, iteration)
            writer.add_scalar('loss-scale vs samples', loss_scale,
                              args.consumed_train_samples)
564
565
566
567
        if args.log_world_size_to_tensorboard:
            writer.add_scalar('world-size', args.world_size, iteration)
            writer.add_scalar('world-size vs samples', args.world_size,
                              args.consumed_train_samples)
568
569
570
571
        if grad_norm is not None:
            writer.add_scalar('grad-norm', grad_norm, iteration)
            writer.add_scalar('grad-norm vs samples', grad_norm,
                              args.consumed_train_samples)
572
573
574
        if num_zeros_in_grad is not None:
            writer.add_scalar('num-zeros', num_zeros_in_grad, iteration)
            writer.add_scalar('num-zeros vs samples', num_zeros_in_grad,
Rewon Child's avatar
Rewon Child committed
575
                              args.consumed_train_samples)
mohammad's avatar
mohammad committed
576
577
578
579
        if params_norm is not None:
            writer.add_scalar('params-norm', params_norm, iteration)
            writer.add_scalar('params-norm vs samples', params_norm,
                              args.consumed_train_samples)
580
581
582
        if args.log_timers_to_tensorboard:
            timers.write(timers_to_log, writer, iteration,
                         normalizer=total_iterations)
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
        if args.log_memory_to_tensorboard:
            mem_stats = torch.cuda.memory_stats()
            writer.add_scalar(
                "mem-reserved-bytes",
                mem_stats["reserved_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-bytes",
                mem_stats["allocated_bytes.all.current"],
                iteration,
            )
            writer.add_scalar(
                "mem-allocated-count",
                mem_stats["allocation.all.current"],
                iteration,
            )
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
600
601

    if iteration % args.log_interval == 0:
602
        elapsed_time = timers('interval-time').elapsed()
mohammad's avatar
mohammad committed
603
        elapsed_time_per_iteration = elapsed_time / total_iterations
mshoeybi's avatar
mshoeybi committed
604
        if writer:
605
606
607
            if args.log_timers_to_tensorboard:
                writer.add_scalar('iteration-time',
                                  elapsed_time_per_iteration, iteration)
608
609
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
mshoeybi's avatar
mshoeybi committed
610
        log_string += ' consumed samples: {:12d} |'.format(
611
            args.consumed_train_samples)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
612
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
mohammad's avatar
mohammad committed
613
            elapsed_time_per_iteration * 1000.0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
614
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
615
        log_string += ' global batch size: {:5d} |'.format(batch_size)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
616
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
617
618
619
620
            if key not in [advanced_iters_key, skipped_iters_key,
                           nan_iters_key]:
                avg = total_loss_dict[key].item() / \
                      float(max(1, total_loss_dict[advanced_iters_key]))
621
622
623
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
624
        log_string += ' loss scale: {:.1f} |'.format(loss_scale)
625
626
        if grad_norm is not None:
            log_string += ' grad norm: {:.3f} |'.format(grad_norm)
627
628
        if num_zeros_in_grad is not None:
            log_string += ' num zeros: {:.1f} |'.format(num_zeros_in_grad)
mohammad's avatar
mohammad committed
629
630
        if params_norm is not None:
            log_string += ' params norm: {:.3f} |'.format(params_norm)
mohammad's avatar
mohammad committed
631
632
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
633
        log_string += ' number of nan iterations: {:3d} |'.format(
mohammad's avatar
mohammad committed
634
635
            total_loss_dict[nan_iters_key])
        total_loss_dict[advanced_iters_key] = 0
mohammad's avatar
mohammad committed
636
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
637
        total_loss_dict[nan_iters_key] = 0
638
        print_rank_last(log_string)
639
640
641
        if report_memory_flag and learning_rate > 0.:
            # Report memory after optimizer state has been initialized.
            report_memory('(after {} iterations)'.format(iteration))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
642
643
644
645
646
647
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


648
def save_checkpoint_and_time(iteration, model, optimizer, opt_param_scheduler):
649
650
651
652
    timers = get_timers()
    # Extra barrier is added to make sure
    # all ranks report the max time.
    torch.distributed.barrier()
653
    timers('save-checkpoint').start()
654
    save_checkpoint(iteration, model, optimizer, opt_param_scheduler)
655
    torch.distributed.barrier()
656
657
    timers('save-checkpoint').stop()
    timers.log(['save-checkpoint'])
658
659


660
def train(forward_step_func, model, optimizer, opt_param_scheduler,
661
662
          train_data_iterator, valid_data_iterator,
          process_non_loss_data_func):
663
    """Train the model function."""
Mohammad's avatar
Mohammad committed
664
665
    args = get_args()
    timers = get_timers()
666

667
668
669
    # Write args to tensorboard
    write_args_to_tensorboard()

670
    # Turn on training mode which enables dropout.
671
672
    for model_module in model:
        model_module.train()
673
674
675
676
677
678
679

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

680
    timers('interval-time').start()
681
    print_datetime('before the start of training step')
682
683
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
684
        update_num_microbatches(args.consumed_train_samples)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
685
        args.curr_iteration = iteration
686
687
688
689
690
        loss_dict, skipped_iter, grad_norm, num_zeros_in_grad = \
            train_step(forward_step_func,
                       train_data_iterator,
                       model,
                       optimizer,
Lawrence McAfee's avatar
Lawrence McAfee committed
691
                       opt_param_scheduler)
692
        iteration += 1
693
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
694
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
695
                                       get_num_microbatches()
696
697

        # Logging.
698
        loss_scale = optimizer.get_loss_scale().item()
699
700
701
        params_norm = None
        if args.log_params_norm:
            params_norm = calc_params_l2_norm(model)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
702
703
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
704
                                          iteration, loss_scale,
705
                                          report_memory_flag, skipped_iter,
706
                                          grad_norm, params_norm, num_zeros_in_grad)
707
708

        # Autoresume
709
710
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
711
            check_adlr_autoresume_termination(iteration, model, optimizer,
712
                                              opt_param_scheduler)
713
714
715
716
717
718

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
719
                                       valid_data_iterator, model,
720
721
                                       iteration, process_non_loss_data_func,
                                       False)
722

723
724
        # Checkpointing
        saved_checkpoint = False
725
726
727
728
        if args.exit_signal_handler:
            signal_handler = get_signal_handler()
            if any(signal_handler.signals_received()):
                save_checkpoint_and_time(iteration, model, optimizer,
729
                                         opt_param_scheduler)
730
731
732
                print_datetime('exiting program after receiving SIGTERM.')
                sys.exit()

733
734
735
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
            save_checkpoint_and_time(iteration, model, optimizer,
736
                                     opt_param_scheduler)
737
738
            saved_checkpoint = True

739
740
741
742
743
744
745
746
747
748
749
        # Exiting based on duration
        if args.exit_duration_in_mins:
            train_time = (time.time() - _TRAIN_START_TIME) / 60.0
            done_cuda = torch.cuda.IntTensor(
                [train_time > args.exit_duration_in_mins])
            torch.distributed.all_reduce(
                done_cuda, op=torch.distributed.ReduceOp.MAX)
            done = done_cuda.item()
            if done:
                if not saved_checkpoint:
                    save_checkpoint_and_time(iteration, model, optimizer,
750
                                             opt_param_scheduler)
751
                print_datetime('exiting program after {} minutes'.format(train_time))
752
753
                sys.exit()

754
        # Exiting based on iterations
755
        if args.exit_interval and iteration % args.exit_interval == 0:
756
757
            if not saved_checkpoint:
                save_checkpoint_and_time(iteration, model, optimizer,
758
                                         opt_param_scheduler)
759
            torch.distributed.barrier()
760
            print_datetime('exiting program at iteration {}'.format(iteration))
Mohammad's avatar
Mohammad committed
761
            sys.exit()
762

763

mohammad's avatar
mohammad committed
764
    return iteration
765
766


767
768
769
770
771
def evaluate(forward_step_func,
             data_iterator,
             model,
             process_non_loss_data_func,
             verbose=False):
772
    """Evaluation."""
Mohammad's avatar
Mohammad committed
773
    args = get_args()
774

Vijay Korthikanti's avatar
Vijay Korthikanti committed
775
776
    if args.vision_pretraining and args.vision_pretraining_type == "dino":
        compute_feature_bank(model)
777

778
    # Turn on evaluation mode which disables dropout.
779
780
    for model_module in model:
        model_module.eval()
781
782
783
784
785
786
787
788
789
790

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
791

792
            forward_backward_func = get_forward_backward_func()
793
794
795
796
            loss_dicts = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True)

797
            # Empty unused memory
Lawrence McAfee's avatar
Lawrence McAfee committed
798
            if args.empty_unused_memory_level >= 1:
799
800
                torch.cuda.empty_cache()

801
802
803
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                # Reduce across processes.
                for loss_dict in loss_dicts:
804
                    for key in loss_dict:
805
806
                        total_loss_dict[key] = total_loss_dict.get(
                            key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
807

808
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
809
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
810
                                           * get_num_microbatches()
811
812
813
814
815
816
        collected_non_loss_data = None
        if process_non_loss_data_func is not None and is_last_rank():
            collected_non_loss_data = forward_backward_func(
                forward_step_func, data_iterator, model, optimizer=None,
                timers=None, forward_only=True, collect_non_loss_data=True)

817
    # Move model back to the train mode.
818
819
    for model_module in model:
        model_module.train()
820
821

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
822
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
823

824
    return total_loss_dict, collected_non_loss_data
825
826
827

def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
828
829
                               iteration, process_non_loss_data_func,
                               verbose=False):
830
    """Helper function to evaluate and dump results on screen."""
831
    args = get_args()
Mohammad's avatar
Mohammad committed
832
833
    writer = get_tensorboard_writer()

834
835
836
    total_loss_dict, collected_non_loss_data = evaluate(
        forward_step_func, data_iterator, model,
        process_non_loss_data_func, verbose)
837
838
839
840
841
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
mshoeybi's avatar
mshoeybi committed
842
        if writer:
mohammad's avatar
mohammad committed
843
            writer.add_scalar('{} validation'.format(key),
844
845
                              total_loss_dict[key].item(),
                              iteration)
mohammad's avatar
mohammad committed
846
            writer.add_scalar('{} validation vs samples'.format(key),
847
848
                              total_loss_dict[key].item(),
                              args.consumed_train_samples)
849
            if args.log_validation_ppl_to_tensorboard:
mohammad's avatar
mohammad committed
850
                writer.add_scalar('{} validation ppl'.format(key), ppl,
851
                                  iteration)
mohammad's avatar
mohammad committed
852
                writer.add_scalar('{} validation ppl vs samples'.format(key),
853
                                  ppl, args.consumed_train_samples)
854

855
856
857
    if process_non_loss_data_func is not None and writer and is_last_rank():
        process_non_loss_data_func(collected_non_loss_data, iteration, writer)

858
    length = len(string) + 1
859
860
861
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
862
863


Vijay Korthikanti's avatar
Vijay Korthikanti committed
864
def cyclic_iter(iter):
865
    while True:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
866
        for x in iter:
867
868
            yield x

869
870
871
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
872
    args = get_args()
873

874
875
876
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
877
878
879

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
880
881
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
882
        args.consumed_train_samples = args.iteration * args.global_batch_size
883
    if args.iteration > 0 and args.consumed_valid_samples == 0:
884
885
886
        if args.train_samples is None:
            args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
                args.eval_iters * args.global_batch_size
887

888
    # Data loader only on rank 0 of each model parallel group.
889
    if mpu.get_tensor_model_parallel_rank() == 0:
890
891

        # Number of train/valid/test samples.
892
893
894
895
896
897
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
898
        test_iters = args.eval_iters
899
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
900
901
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
902
903
904
905
906
907
908
909
910
911
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
912
913
914
915
916
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
917
918
919
920
921
922
923
924
925
926
927
928
929

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
930
931
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
932
933
934
935
936
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

    # Build iterators.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
937
938
939
    dl_type = args.dataloader_type
    assert dl_type in ['single', 'cyclic']

940
    if train_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
941
942
        train_data_iterator = iter(train_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(train_dataloader))
943
944
945
    else:
        train_data_iterator = None

946
    if valid_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
947
948
        valid_data_iterator = iter(valid_dataloader) if dl_type == 'single' \
                              else iter(cyclic_iter(valid_dataloader))
949
    else:
950
        valid_data_iterator = None
951

952
    if test_dataloader is not None:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
953
954
        test_data_iterator = iter(test_dataloader) if dl_type == 'single' \
                             else iter(cyclic_iter(test_dataloader))
955
956
957
    else:
        test_data_iterator = None

958
    return train_data_iterator, valid_data_iterator, test_data_iterator