scheduling_ddpm.py 28.4 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 UC Berkeley Team and The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
improve  
Patrick von Platen committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16

# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim

anton-l's avatar
anton-l committed
17
import math
18
from dataclasses import dataclass
19
from typing import List, Literal, Optional, Tuple, Union
Patrick von Platen's avatar
Patrick von Platen committed
20

Patrick von Platen's avatar
Patrick von Platen committed
21
import numpy as np
22
import torch
Patrick von Platen's avatar
improve  
Patrick von Platen committed
23

24
from ..configuration_utils import ConfigMixin, register_to_config
Dhruv Nair's avatar
Dhruv Nair committed
25
26
from ..utils import BaseOutput
from ..utils.torch_utils import randn_tensor
Kashif Rasul's avatar
Kashif Rasul committed
27
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
28
29
30
31
32


@dataclass
class DDPMSchedulerOutput(BaseOutput):
    """
33
    Output class for the scheduler's `step` function output.
34
35

    Args:
36
        prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
37
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
38
            denoising loop.
39
        pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
40
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
41
42
43
            `pred_original_sample` can be used to preview progress or for guidance.
    """

44
45
    prev_sample: torch.Tensor
    pred_original_sample: Optional[torch.Tensor] = None
46
47


YiYi Xu's avatar
YiYi Xu committed
48
def betas_for_alpha_bar(
49
50
51
52
    num_diffusion_timesteps: int,
    max_beta: float = 0.999,
    alpha_transform_type: Literal["cosine", "exp"] = "cosine",
) -> torch.Tensor:
53
    """
Patrick von Platen's avatar
Patrick von Platen committed
54
55
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].
56

57
58
59
60
    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.

    Args:
61
62
63
64
65
66
        num_diffusion_timesteps (`int`):
            The number of betas to produce.
        max_beta (`float`, defaults to `0.999`):
            The maximum beta to use; use values lower than 1 to avoid numerical instability.
        alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
            The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
67
68

    Returns:
69
70
        `torch.Tensor`:
            The betas used by the scheduler to step the model outputs.
71
    """
YiYi Xu's avatar
YiYi Xu committed
72
    if alpha_transform_type == "cosine":
73

YiYi Xu's avatar
YiYi Xu committed
74
75
76
77
78
79
80
81
82
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
83
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
84
85
86
87
88

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
89
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
90
    return torch.tensor(betas, dtype=torch.float32)
Patrick von Platen's avatar
improve  
Patrick von Platen committed
91
92


93
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
94
def rescale_zero_terminal_snr(betas: torch.Tensor) -> torch.Tensor:
95
    """
Quentin Gallouédec's avatar
Quentin Gallouédec committed
96
    Rescales betas to have zero terminal SNR Based on https://huggingface.co/papers/2305.08891 (Algorithm 1)
97
98

    Args:
99
        betas (`torch.Tensor`):
100
            The betas that the scheduler is being initialized with.
101
102

    Returns:
103
104
        `torch.Tensor`:
            Rescaled betas with zero terminal SNR.
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    """
    # Convert betas to alphas_bar_sqrt
    alphas = 1.0 - betas
    alphas_cumprod = torch.cumprod(alphas, dim=0)
    alphas_bar_sqrt = alphas_cumprod.sqrt()

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= alphas_bar_sqrt_T

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas = alphas_bar[1:] / alphas_bar[:-1]  # Revert cumprod
    alphas = torch.cat([alphas_bar[0:1], alphas])
    betas = 1 - alphas

    return betas


Patrick von Platen's avatar
Patrick von Platen committed
130
class DDPMScheduler(SchedulerMixin, ConfigMixin):
131
    """
132
    `DDPMScheduler` explores the connections between denoising score matching and Langevin dynamics sampling.
133

134
135
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
136
137

    Args:
138
        num_train_timesteps (`int`, defaults to `1000`):
139
            The number of diffusion steps to train the model.
140
        beta_start (`float`, defaults to `0.0001`):
141
            The starting `beta` value of inference.
142
        beta_end (`float`, defaults to `0.02`):
143
            The final `beta` value.
144
145
        beta_schedule (`"linear"`, `"scaled_linear"`, `"squaredcos_cap_v2"`, or `"sigmoid"`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model.
146
147
        trained_betas (`np.ndarray`, *optional*):
            An array of betas to pass directly to the constructor without using `beta_start` and `beta_end`.
148
149
        variance_type (`"fixed_small"`, `"fixed_small_log"`, `"fixed_large"`, `"fixed_large_log"`, `"learned"`, or `"learned_range"`, defaults to `"fixed_small"`):
            Clip the variance when adding noise to the denoised sample.
150
151
        clip_sample (`bool`, defaults to `True`):
            Clip the predicted sample for numerical stability.
152
        clip_sample_range (`float`, defaults to `1.0`):
153
            The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
154
        prediction_type (`"epsilon"`, `"sample"`, or `"v_prediction"`, defaults to `"epsilon"`):
155
156
157
158
159
160
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        thresholding (`bool`, defaults to `False`):
            Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
            as Stable Diffusion.
161
        dynamic_thresholding_ratio (`float`, defaults to `0.995`):
162
            The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
163
        sample_max_value (`float`, defaults to `1.0`):
164
            The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
165
        timestep_spacing (`"linspace"`, `"leading"`, or `"trailing"`, defaults to `"leading"`):
166
167
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
168
        steps_offset (`int`, defaults to `0`):
169
            An offset added to the inference steps, as required by some model families.
170
171
172
173
        rescale_betas_zero_snr (`bool`, defaults to `False`):
            Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
            dark samples instead of limiting it to samples with medium brightness. Loosely related to
            [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
174
175
    """

Kashif Rasul's avatar
Kashif Rasul committed
176
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
177
    order = 1
178

179
    @register_to_config
Patrick von Platen's avatar
improve  
Patrick von Platen committed
180
181
    def __init__(
        self,
Partho's avatar
Partho committed
182
183
184
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
185
        beta_schedule: Literal["linear", "scaled_linear", "squaredcos_cap_v2", "sigmoid"] = "linear",
186
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
187
188
189
        variance_type: Literal[
            "fixed_small", "fixed_small_log", "fixed_large", "fixed_large_log", "learned", "learned_range"
        ] = "fixed_small",
Partho's avatar
Partho committed
190
        clip_sample: bool = True,
191
        prediction_type: Literal["epsilon", "sample", "v_prediction"] = "epsilon",
192
193
194
195
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        clip_sample_range: float = 1.0,
        sample_max_value: float = 1.0,
196
        timestep_spacing: Literal["linspace", "leading", "trailing"] = "leading",
197
        steps_offset: int = 0,
198
        rescale_betas_zero_snr: bool = False,
Patrick von Platen's avatar
improve  
Patrick von Platen committed
199
    ):
200
        if trained_betas is not None:
201
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
202
        elif beta_schedule == "linear":
203
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
204
205
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
206
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
anton-l's avatar
anton-l committed
207
        elif beta_schedule == "squaredcos_cap_v2":
Patrick von Platen's avatar
Patrick von Platen committed
208
            # Glide cosine schedule
Nathan Lambert's avatar
Nathan Lambert committed
209
            self.betas = betas_for_alpha_bar(num_train_timesteps)
Nathan Lambert's avatar
Nathan Lambert committed
210
211
212
213
        elif beta_schedule == "sigmoid":
            # GeoDiff sigmoid schedule
            betas = torch.linspace(-6, 6, num_train_timesteps)
            self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
Patrick von Platen's avatar
improve  
Patrick von Platen committed
214
        else:
215
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
Patrick von Platen's avatar
improve  
Patrick von Platen committed
216

217
218
219
220
        # Rescale for zero SNR
        if rescale_betas_zero_snr:
            self.betas = rescale_zero_terminal_snr(self.betas)

Patrick von Platen's avatar
Patrick von Platen committed
221
        self.alphas = 1.0 - self.betas
222
223
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
        self.one = torch.tensor(1.0)
Patrick von Platen's avatar
Patrick von Platen committed
224

225
226
227
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = 1.0

228
        # setable values
Will Berman's avatar
Will Berman committed
229
        self.custom_timesteps = False
230
        self.num_inference_steps = None
231
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())
Patrick von Platen's avatar
Patrick von Platen committed
232

233
234
        self.variance_type = variance_type

235
    def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
236
237
238
239
240
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
241
            sample (`torch.Tensor`):
242
243
244
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.
245
246

        Returns:
247
            `torch.Tensor`:
248
                A scaled input sample.
249
250
251
        """
        return sample

Will Berman's avatar
Will Berman committed
252
253
254
255
256
257
    def set_timesteps(
        self,
        num_inference_steps: Optional[int] = None,
        device: Union[str, torch.device] = None,
        timesteps: Optional[List[int]] = None,
    ):
258
        """
259
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
260
261

        Args:
262
263
            num_inference_steps (`int`):
                The number of diffusion steps used when generating samples with a pre-trained model. If used,
Will Berman's avatar
Will Berman committed
264
                `timesteps` must be `None`.
265
266
267
268
269
270
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
            timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
                timestep spacing strategy of equal spacing between timesteps is used. If `timesteps` is passed,
                `num_inference_steps` must be `None`.
Will Berman's avatar
Will Berman committed
271

272
        """
Will Berman's avatar
Will Berman committed
273
274
275
276
277
278
279
280
281
282
        if num_inference_steps is not None and timesteps is not None:
            raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")

        if timesteps is not None:
            for i in range(1, len(timesteps)):
                if timesteps[i] >= timesteps[i - 1]:
                    raise ValueError("`custom_timesteps` must be in descending order.")

            if timesteps[0] >= self.config.num_train_timesteps:
                raise ValueError(
283
                    f"`timesteps` must start before `self.config.train_timesteps`: {self.config.num_train_timesteps}."
Will Berman's avatar
Will Berman committed
284
285
286
287
288
289
290
291
292
293
294
                )

            timesteps = np.array(timesteps, dtype=np.int64)
            self.custom_timesteps = True
        else:
            if num_inference_steps > self.config.num_train_timesteps:
                raise ValueError(
                    f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
                    f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
                    f" maximal {self.config.num_train_timesteps} timesteps."
                )
295

Will Berman's avatar
Will Berman committed
296
297
            self.num_inference_steps = num_inference_steps
            self.custom_timesteps = False
298

Quentin Gallouédec's avatar
Quentin Gallouédec committed
299
            # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://huggingface.co/papers/2305.08891
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
            if self.config.timestep_spacing == "linspace":
                timesteps = (
                    np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
                    .round()[::-1]
                    .copy()
                    .astype(np.int64)
                )
            elif self.config.timestep_spacing == "leading":
                step_ratio = self.config.num_train_timesteps // self.num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
                timesteps += self.config.steps_offset
            elif self.config.timestep_spacing == "trailing":
                step_ratio = self.config.num_train_timesteps / self.num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
                timesteps -= 1
            else:
                raise ValueError(
                    f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
                )

324
        self.timesteps = torch.from_numpy(timesteps).to(device)
325

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
    def _get_variance(
        self,
        t: int,
        predicted_variance: Optional[torch.Tensor] = None,
        variance_type: Optional[
            Literal["fixed_small", "fixed_small_log", "fixed_large", "fixed_large_log", "learned", "learned_range"]
        ] = None,
    ) -> torch.Tensor:
        """
        Compute the variance for a given timestep according to the specified variance type.

        Args:
            t (`int`):
                The current timestep.
            predicted_variance (`torch.Tensor`, *optional*):
                The predicted variance from the model. Used only when `variance_type` is `"learned"` or
                `"learned_range"`.
            variance_type (`"fixed_small"`, `"fixed_small_log"`, `"fixed_large"`, `"fixed_large_log"`, `"learned"`, or `"learned_range"`, *optional*):
                The type of variance to compute. If `None`, uses the variance type specified in the scheduler
                configuration.

        Returns:
            `torch.Tensor`:
                The computed variance.
        """
Will Berman's avatar
Will Berman committed
351
352
        prev_t = self.previous_timestep(t)

353
        alpha_prod_t = self.alphas_cumprod[t]
354
355
        alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
        current_beta_t = 1 - alpha_prod_t / alpha_prod_t_prev
Patrick von Platen's avatar
Patrick von Platen committed
356

Quentin Gallouédec's avatar
Quentin Gallouédec committed
357
        # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://huggingface.co/papers/2006.11239)
358
        # and sample from it to get previous sample
Kashif Rasul's avatar
Kashif Rasul committed
359
        # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
360
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * current_beta_t
William Berman's avatar
William Berman committed
361
362

        # we always take the log of variance, so clamp it to ensure it's not 0
William Berman's avatar
William Berman committed
363
        variance = torch.clamp(variance, min=1e-20)
Patrick von Platen's avatar
Patrick von Platen committed
364

365
366
367
        if variance_type is None:
            variance_type = self.config.variance_type

368
        # hacks - were probably added for training stability
369
        if variance_type == "fixed_small":
William Berman's avatar
William Berman committed
370
            variance = variance
Quentin Gallouédec's avatar
Quentin Gallouédec committed
371
        # for rl-diffuser https://huggingface.co/papers/2205.09991
372
        elif variance_type == "fixed_small_log":
373
            variance = torch.log(variance)
374
            variance = torch.exp(0.5 * variance)
375
        elif variance_type == "fixed_large":
376
            variance = current_beta_t
377
        elif variance_type == "fixed_large_log":
Patrick von Platen's avatar
Patrick von Platen committed
378
            # Glide max_log
379
            variance = torch.log(current_beta_t)
380
381
382
        elif variance_type == "learned":
            return predicted_variance
        elif variance_type == "learned_range":
383
            min_log = torch.log(variance)
William Berman's avatar
William Berman committed
384
            max_log = torch.log(current_beta_t)
385
386
            frac = (predicted_variance + 1) / 2
            variance = frac * max_log + (1 - frac) * min_log
Patrick von Platen's avatar
Patrick von Platen committed
387
388
389

        return variance

390
    def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
391
        """
392
393
        Apply dynamic thresholding to the predicted sample.

394
395
396
397
398
399
        "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
        prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
        s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
        pixels from saturation at each step. We find that dynamic thresholding results in significantly better
        photorealism as well as better image-text alignment, especially when using very large guidance weights."

Quentin Gallouédec's avatar
Quentin Gallouédec committed
400
        https://huggingface.co/papers/2205.11487
401
402
403
404
405
406
407
408

        Args:
            sample (`torch.Tensor`):
                The predicted sample to be thresholded.

        Returns:
            `torch.Tensor`:
                The thresholded sample.
409
410
        """
        dtype = sample.dtype
411
        batch_size, channels, *remaining_dims = sample.shape
412
413
414
415
416

        if dtype not in (torch.float32, torch.float64):
            sample = sample.float()  # upcast for quantile calculation, and clamp not implemented for cpu half

        # Flatten sample for doing quantile calculation along each image
417
        sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
418
419
420
421
422
423
424
425
426
427

        abs_sample = sample.abs()  # "a certain percentile absolute pixel value"

        s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
        s = torch.clamp(
            s, min=1, max=self.config.sample_max_value
        )  # When clamped to min=1, equivalent to standard clipping to [-1, 1]
        s = s.unsqueeze(1)  # (batch_size, 1) because clamp will broadcast along dim=0
        sample = torch.clamp(sample, -s, s) / s  # "we threshold xt0 to the range [-s, s] and then divide by s"

428
        sample = sample.reshape(batch_size, channels, *remaining_dims)
429
430
431
        sample = sample.to(dtype)

        return sample
432

433
434
    def step(
        self,
435
        model_output: torch.Tensor,
436
        timestep: int,
437
        sample: torch.Tensor,
438
        generator: Optional[torch.Generator] = None,
439
        return_dict: bool = True,
440
    ) -> Union[DDPMSchedulerOutput, Tuple]:
441
        """
442
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
443
444
445
        process from the learned model outputs (most often the predicted noise).

        Args:
446
            model_output (`torch.Tensor`):
447
                The direct output from learned diffusion model.
448
            timestep (`int`):
449
                The current discrete timestep in the diffusion chain.
450
            sample (`torch.Tensor`):
451
452
453
                A current instance of a sample created by the diffusion process.
            generator (`torch.Generator`, *optional*):
                A random number generator.
454
            return_dict (`bool`, defaults to `True`):
455
                Whether or not to return a [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`.
456
457

        Returns:
458
459
460
            [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
461
        """
462
        t = timestep
Will Berman's avatar
Will Berman committed
463
464

        prev_t = self.previous_timestep(t)
465

466
467
468
469
470
        if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
            model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
        else:
            predicted_variance = None

Patrick von Platen's avatar
Patrick von Platen committed
471
        # 1. compute alphas, betas
472
        alpha_prod_t = self.alphas_cumprod[t]
473
        alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
Patrick von Platen's avatar
Patrick von Platen committed
474
475
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev
476
477
        current_alpha_t = alpha_prod_t / alpha_prod_t_prev
        current_beta_t = 1 - current_alpha_t
Patrick von Platen's avatar
Patrick von Platen committed
478

479
        # 2. compute predicted original sample from predicted noise also called
Quentin Gallouédec's avatar
Quentin Gallouédec committed
480
        # "predicted x_0" of formula (15) from https://huggingface.co/papers/2006.11239
481
        if self.config.prediction_type == "epsilon":
Patrick von Platen's avatar
Patrick von Platen committed
482
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
483
        elif self.config.prediction_type == "sample":
Patrick von Platen's avatar
Patrick von Platen committed
484
            pred_original_sample = model_output
485
486
        elif self.config.prediction_type == "v_prediction":
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
487
488
        else:
            raise ValueError(
489
490
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
                " `v_prediction`  for the DDPMScheduler."
491
            )
Patrick von Platen's avatar
Patrick von Platen committed
492

493
        # 3. Clip or threshold "predicted x_0"
494
495
496
        if self.config.thresholding:
            pred_original_sample = self._threshold_sample(pred_original_sample)
        elif self.config.clip_sample:
497
498
            pred_original_sample = pred_original_sample.clamp(
                -self.config.clip_sample_range, self.config.clip_sample_range
Will Berman's avatar
Will Berman committed
499
            )
Patrick von Platen's avatar
Patrick von Platen committed
500

501
        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
Quentin Gallouédec's avatar
Quentin Gallouédec committed
502
        # See formula (7) from https://huggingface.co/papers/2006.11239
503
504
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t
        current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t
Patrick von Platen's avatar
Patrick von Platen committed
505

506
        # 5. Compute predicted previous sample µ_t
Quentin Gallouédec's avatar
Quentin Gallouédec committed
507
        # See formula (7) from https://huggingface.co/papers/2006.11239
508
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
Patrick von Platen's avatar
Patrick von Platen committed
509

Patrick von Platen's avatar
Patrick von Platen committed
510
511
512
        # 6. Add noise
        variance = 0
        if t > 0:
513
            device = model_output.device
514
515
516
            variance_noise = randn_tensor(
                model_output.shape, generator=generator, device=device, dtype=model_output.dtype
            )
517
518
            if self.variance_type == "fixed_small_log":
                variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise
519
520
521
            elif self.variance_type == "learned_range":
                variance = self._get_variance(t, predicted_variance=predicted_variance)
                variance = torch.exp(0.5 * variance) * variance_noise
522
523
            else:
                variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * variance_noise
Patrick von Platen's avatar
Patrick von Platen committed
524
525
526

        pred_prev_sample = pred_prev_sample + variance

527
        if not return_dict:
528
529
530
531
            return (
                pred_prev_sample,
                pred_original_sample,
            )
532

533
        return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
Patrick von Platen's avatar
Patrick von Platen committed
534

Partho's avatar
Partho committed
535
536
    def add_noise(
        self,
537
538
        original_samples: torch.Tensor,
        noise: torch.Tensor,
539
        timesteps: torch.IntTensor,
540
    ) -> torch.Tensor:
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
        """
        Add noise to the original samples according to the noise magnitude at each timestep (this is the forward
        diffusion process).

        Args:
            original_samples (`torch.Tensor`):
                The original samples to which noise will be added.
            noise (`torch.Tensor`):
                The noise to add to the samples.
            timesteps (`torch.IntTensor`):
                The timesteps indicating the noise level for each sample.

        Returns:
            `torch.Tensor`:
                The noisy samples.
        """
557
        # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
558
559
560
561
        # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
        # for the subsequent add_noise calls
        self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
        alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
562
        timesteps = timesteps.to(original_samples.device)
563

564
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
565
566
567
568
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

569
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
570
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
571
572
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
573
574

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
anton-l's avatar
anton-l committed
575
        return noisy_samples
anton-l's avatar
anton-l committed
576

577
    def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor:
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
        """
        Compute the velocity prediction from the sample and noise according to the velocity formula.

        Args:
            sample (`torch.Tensor`):
                The input sample.
            noise (`torch.Tensor`):
                The noise tensor.
            timesteps (`torch.IntTensor`):
                The timesteps for velocity computation.

        Returns:
            `torch.Tensor`:
                The computed velocity.
        """
593
        # Make sure alphas_cumprod and timestep have same device and dtype as sample
594
595
        self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device)
        alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)
596
597
        timesteps = timesteps.to(sample.device)

598
        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
599
600
601
602
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(sample.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

603
        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
604
605
606
607
608
609
610
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
        return velocity

611
    def __len__(self) -> int:
Nathan Lambert's avatar
Nathan Lambert committed
612
        return self.config.num_train_timesteps
Will Berman's avatar
Will Berman committed
613

614
615
616
617
618
619
620
621
622
623
624
625
    def previous_timestep(self, timestep: int) -> int:
        """
        Compute the previous timestep in the diffusion chain.

        Args:
            timestep (`int`):
                The current timestep.

        Returns:
            `int`:
                The previous timestep.
        """
626
        if self.custom_timesteps or self.num_inference_steps:
Will Berman's avatar
Will Berman committed
627
628
629
630
631
632
            index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0]
            if index == self.timesteps.shape[0] - 1:
                prev_t = torch.tensor(-1)
            else:
                prev_t = self.timesteps[index + 1]
        else:
633
            prev_t = timestep - 1
Will Berman's avatar
Will Berman committed
634
        return prev_t